JPS61225507A - Flame holding device for heat exchanging - Google Patents

Flame holding device for heat exchanging

Info

Publication number
JPS61225507A
JPS61225507A JP60066017A JP6601785A JPS61225507A JP S61225507 A JPS61225507 A JP S61225507A JP 60066017 A JP60066017 A JP 60066017A JP 6601785 A JP6601785 A JP 6601785A JP S61225507 A JPS61225507 A JP S61225507A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer passage
heated
heat
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066017A
Other languages
Japanese (ja)
Other versions
JPH0550647B2 (en
Inventor
Kazu Igarashi
五十嵐 和
Tetsuji Nishiyama
西山 哲司
Koji Nakamura
康治 中村
Kenichi Mase
間瀬 健一
Ryozo Echigo
越後 亮三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60066017A priority Critical patent/JPS61225507A/en
Publication of JPS61225507A publication Critical patent/JPS61225507A/en
Publication of JPH0550647B2 publication Critical patent/JPH0550647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/16Radiant burners using permeable blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/82Preventing flashback or blowback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Abstract

PURPOSE:To contrive to miniaturize a heat exchanging part and not to require a long and large burning chamber for preventing incomplete burning by a method wherein a porous object provided with many heat transfer passages communicating a liquid supply header with a liquid exhaust header is arranged via a narrow space over a heat transfer passage group provided between each heat transfer passage. CONSTITUTION:An object to be heated is transferred through a heat transfer passage 5 communicating a liquid supply header 3 with a liquid exhaust header 4. A premixed gas supplied from the lower side is passed toward the upper side through a small clearance 7 of a heat transfer passage group, introduced to a space between a heat transfer passage group A and a porous object B, then, ignited and burnt, a burning exhaust gas is exhausted by passing upward. The heated porous object supplies the heat to the heat transfer passage group, heats the object to be heated, and raises the object temperature. Meantime, the heat transfer passage group is cooled by a liquid to be heated transferred through the heat transfer passage, accordingly, the temperature rising of a premixed gas is restrained at lower level than an igniting temperature, thus, the generation of a backfire is obstructed. The porous object is heated at all time, therefore, the premixed gas is burnt perfectly, also the blow-off of a flame is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料を用いて熱交換を行う給湯装置などに
おける熱交換らう保炎装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flame stabilizing device for heat exchange in a water heater or the like that performs heat exchange using fuel.

〔従来の技術〕[Conventional technology]

従来の給湯装置としては、第6図に示すように、燃料ガ
ス人口20から供給されたガスが燃焼バーナ21で空気
と予混合されて燃焼室22で完全燃焼し、この高温燃焼
ガスと上部のフィン付蛇管23内を通る水が熱交換され
て、温水または熱水が作られるものである。
As shown in FIG. 6, in a conventional water heater, gas supplied from a fuel gas supply 20 is premixed with air in a combustion burner 21 and completely combusted in a combustion chamber 22, and this high-temperature combustion gas is mixed with the upper part. Water passing through the finned corrugated pipe 23 undergoes heat exchange to produce hot water or hot water.

なお、図中、24は水供給管を、25は温水出口をそれ
ぞれ示している。
In the figure, 24 indicates a water supply pipe, and 25 indicates a hot water outlet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、かかる従来例にあっては、前記した燃焼
室22が、給湯装置において絶対不可欠の構成要素であ
って、また、不完全燃焼を防止する都合上、燃焼バーナ
21とフィン付蛇管23との間隔りは、少なくとも20
cmを必要としている。
However, in such a conventional example, the combustion chamber 22 described above is an absolutely essential component in the water heater, and the combustion burner 21 and the finned flexible pipe 23 are connected to each other in order to prevent incomplete combustion. The spacing is at least 20
We need cm.

このため、燃焼室22を必須の構成とする従来の給湯装
置にあっては、小型化を望めないという問照点を有して
いる。
For this reason, conventional water heaters that include the combustion chamber 22 as an essential component have a problem in that they cannot be downsized.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、被加温液体の給液ヘッダと排液ヘッダとの
間を連通ずる多数の伝熱路を有し、且つ下方から供給さ
れる予混合ガスを上方に向けて通過させる小間隙を前記
伝熱路の相互間に設けてなる伝熱路群と、この伝熱路群
の上方に、狭少な空間を介して設けられる多孔質物体と
からなることをその構成としている。
This invention has a large number of heat transfer paths that communicate between a supply header and a discharge header for the liquid to be heated, and also has a small gap that allows the premixed gas supplied from below to pass upward. The structure includes a group of heat transfer paths provided between the heat transfer paths, and a porous object provided above the group of heat transfer paths with a narrow space interposed therebetween.

〔作用〕[Effect]

伝熱路が給液ヘッダと排液ヘッダを連通し、被加温液体
を給液ヘッダ側から排液ヘッダに輸送する。
A heat transfer path communicates the liquid supply header and the liquid discharge header, and transports the heated liquid from the liquid supply header side to the liquid discharge header.

伝熱路群の小間隙は、下方から供給される予混合ガスを
上方に通過させて、このガスを伝熱路群と多孔質物体と
の間の狭少な空間に導く。かかる空間に゛至った予混合
ガスは、別途用意される点火装置などの点火、又は既に
燃焼している予混合ガスの熱により常に、この空間で着
火燃焼し、多孔質物体及び伝熱路群を加熱する。
The small gaps in the heat transfer channels allow the premixed gas supplied from below to pass upwardly and guide this gas into the narrow space between the heat transfer channels and the porous body. The premixed gas that has reached this space is always ignited and burned in this space by ignition from a separately prepared ignition device or by the heat of the already combusted premixed gas, causing the porous object and the heat transfer path group to ignite and burn. heat up.

そして、多孔質物体は、燃焼排ガスを、その多孔質物体
内で上方に通過させて排出する。
The porous body then allows the combustion exhaust gas to pass upward within the porous body and be discharged.

この加熱された多孔質物体は、該伝熱路群に熱を放射し
て、前記伝熱路群へ熱供給を行い、前記した燃焼による
熱と相俟って該伝熱路群の伝熱路内を輸送される被加温
液体を加熱、昇温させる。
This heated porous object radiates heat to the group of heat transfer paths, supplies heat to the group of heat transfer paths, and together with the heat from the combustion described above, increases the heat transfer in the group of heat transfer paths. The liquid to be heated that is transported through the route is heated to raise its temperature.

反面、この伝熱路群は、伝熱路内を輸送される被加温液
体により冷やされており、この伝熱路群の小間隙内の予
混合ガスの温度が発火温度に上昇するのを抑止し、予混
合ガスの送出負荷量の大小に拘らず逆火の発生を阻止す
る。
On the other hand, this group of heat transfer paths is cooled by the heated liquid transported inside the heat transfer path, and the temperature of the premixed gas in the small gap of this group of heat transfer paths is prevented from rising to the ignition temperature. To prevent backfire from occurring regardless of the magnitude of the premixed gas delivery load.

また、前記多孔質物体は、常時加熱されているため、予
混合ガスを完全燃焼させると共に、炎の吹き消えを防止
する。
Furthermore, since the porous object is constantly heated, it completely burns the premixed gas and prevents the flame from blowing out.

〔実施例〕〔Example〕

以下、この発明の詳細を図面に示す一実施例について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention shown in the drawings will be described in detail below.

図中、1は予混合ガスの導入管であって、この導入管l
は、直方体状で上面が開口するケース2内部に連通ずる
ように、このケース2底板中央で開口、連設されている
。また、3は給水ヘッダであって、ケース2の側壁2a
の一側端寄りの箇所からケース2の内部に貫通、導入さ
れ、この側壁2aの前記−側端に連設される隣の側壁2
b、及び該側壁2aと対向する側壁2Cの内壁面に沿っ
て密接するように添設されている。なお、このケース2
内に導入される給水ヘッダ3の先端部は閉塞されている
In the figure, 1 is an introduction pipe for premixed gas, and this introduction pipe l
are opened at the center of the bottom plate of the case 2 and are connected to each other so as to communicate with the inside of the case 2, which has a rectangular parallelepiped shape and has an open top. Further, 3 is a water supply header, which is a side wall 2a of the case 2.
An adjacent side wall 2 is penetrated and introduced into the case 2 from a location near one side end and is connected to the negative side end of this side wall 2a.
b, and is attached closely along the inner wall surface of the side wall 2C facing the side wall 2a. Furthermore, this case 2
The tip of the water supply header 3 introduced into the tank is closed.

4は排水ヘッダであって、前記側壁2Cからケース2内
に導入され、側壁2d及び側壁2aの内壁面に沿って密
接するように添設されており、この排水ヘッダ4のケー
ス2内の先端部も、前記給水ヘッダ3と同様に閉塞され
ている。
Reference numeral 4 denotes a drainage header, which is introduced into the case 2 from the side wall 2C and is attached closely along the inner wall surfaces of the side wall 2d and the side wall 2a. The section is also closed like the water supply header 3.

このようにケース2に配置された給水ヘッダ3と排水ヘ
ッダ4は、並列に配置される多数の伝熱細管5で連通さ
れている。この伝熱細管5としては、腐食を防止し、且
つ耐圧にするために、耐腐食性の金属管1例えばステン
レス、チタン、インコネル、銅管の細管が選択され、そ
の外径は、1〜8mmのものが用いられるが、なかでも
1〜311径が好適である。また、これら伝熱細管5〜
5は、外側面同志の間隔が1〜5鰭程度に設定されてお
り、各伝熱細管5の間には、第1〜3図に示す通り各伝
熱細管5の表面を横切るように、細線6を畳織状に延在
させ配置している。
The water supply header 3 and the drainage header 4 arranged in the case 2 in this manner are communicated with each other through a large number of heat transfer thin tubes 5 arranged in parallel. As the heat transfer thin tube 5, a corrosion-resistant metal tube 1 such as stainless steel, titanium, Inconel, or copper tube is selected in order to prevent corrosion and to withstand pressure, and its outer diameter is 1 to 8 mm. Among them, diameters of 1 to 311 are preferred. In addition, these heat transfer thin tubes 5~
5, the interval between the outer surfaces is set to about 1 to 5 fins, and between each heat transfer thin tube 5, as shown in FIGS. 1 to 3, there are The thin wires 6 are arranged in a tatami-like manner.

この細線6についても、好ましくは耐腐食性。This thin wire 6 is also preferably corrosion resistant.

耐熱性のもの、例えばステンレス、チタン、インコネル
、銅、セラミックスファイバー、硝子繊維などの材質が
適用される。
Heat-resistant materials such as stainless steel, titanium, Inconel, copper, ceramic fiber, and glass fiber are used.

かかる伝熱細管5と細線6とで伝熱路群Aを構成し、こ
の伝熱路群Aは、下方から供給される予混合ガスを上方
に向けて通過させる小間隙7を有しており、ボイラを構
成している。
These heat transfer thin tubes 5 and thin wires 6 constitute a heat transfer path group A, and this heat transfer path group A has a small gap 7 through which the premixed gas supplied from below passes upward. , making up the boiler.

なお、前記導入管1によりケース2内に供給される予混
合ガスは、前記伝熱路群Aの下方のガスヘッダ10に導
かれるようにされている。
The premixed gas supplied into the case 2 through the introduction pipe 1 is guided to a gas header 10 below the heat transfer path group A.

さらに、伝熱路群Aの上方には、セラミックス。Further, above the heat transfer path group A, ceramics are provided.

金属網等の多孔質物体8を、狭少な空間9を介在させて
設けている。また、この空間9の所定−には、圧電素子
などの点火源(図示せず)が設けられており、該伝熱路
群Aを通過上昇した予混合ガスの燃焼開始に供される。
A porous object 8 such as a metal net is provided with a narrow space 9 interposed therebetween. Further, an ignition source (not shown) such as a piezoelectric element is provided at a predetermined portion of this space 9, and is used to start combustion of the premixed gas that has passed through the heat transfer path group A and risen.

このような構成において、前記給水ヘンダ3に通水され
る水は、第1図に示すように、該多孔質物体8の周縁に
沿って流れ、次に、伝熱細管5〜5を流れ、排水ヘンダ
4に達し、前記給水ヘッダ3と同様に、多孔質物体8の
周縁に沿ってケース2の外に導かれる。
In such a configuration, the water flowing through the water supply hender 3 flows along the periphery of the porous body 8, as shown in FIG. 1, and then flows through the heat transfer thin tubes 5 to 5. It reaches the drainage header 4 and, like the water supply header 3, is led out of the case 2 along the periphery of the porous body 8.

また、導入管1からケース内のガスヘッダ10に所定の
送出負荷で供給される予混合ガスは、伝熱路群Aの小間
隙7を通過して空間9に至り、前記点火源により点火さ
れて燃焼を開始する。この燃焼排ガスは、該多孔質物体
内8を通過して排出される。なお、この狭少な空間9で
起こる燃焼は平面的に広がりをもつ燃焼であって、第3
図に示すような炎11を発生させる。
Further, the premixed gas supplied from the introduction pipe 1 to the gas header 10 in the case at a predetermined delivery load passes through the small gap 7 of the heat transfer path group A, reaches the space 9, and is ignited by the ignition source. Start combustion. This combustion exhaust gas passes through the porous body 8 and is discharged. Note that the combustion that occurs in this narrow space 9 is a combustion that spreads out in a plane, and the third
A flame 11 as shown in the figure is generated.

かかる燃焼により、前記伝熱路群Aは、放射伝熱により
加熱されて伝熱細管S内を通る水を昇温させて、温水又
は熱水にする。
By such combustion, the heat transfer path group A is heated by radiant heat transfer and raises the temperature of the water passing through the heat transfer thin tubes S, thereby turning it into hot water or hot water.

また、燃焼により多孔質物体8も、加熱されることにな
り、この多孔質物体8からの熱放射により伝熱路群Aは
、更に加熱される。
Moreover, the porous object 8 is also heated by the combustion, and the heat transfer path group A is further heated by the heat radiation from the porous object 8.

そして、加熱された多孔質物体8は、その周縁にそって
設けられている給水ヘンダ3及び排水ヘッダ4をも、加
熱するため、前記した炎および多孔質物体8からの熱放
射による間接加熱に加えて、相加的に水を昇温させるも
のであり、高い熱交換率を得ることが出来る。
The heated porous object 8 also heats the water supply header 3 and drainage header 4 provided along its periphery, so that indirect heating due to the above-described flame and heat radiation from the porous object 8 occurs. In addition, the temperature of water is increased additively, and a high heat exchange rate can be obtained.

なお、上記したように給水へフダ3が、多孔質物体8に
より加熱されて内部を通る水を昇温させるにも拘らず、
水は100℃よりも裔くなることはないため、該伝熱路
群Aを通過する予混合ガスは、それほど高い温度、とり
わけ発火温度に達することがない。また、各伝熱細管5
の間隔Sは狭く、細線6が畳織状に延設されているため
、前記小間隙7は文字通り微細なものとなり、通過する
予混合ガスとの接触面積を大きくし、温度上昇を確実に
抑止する。このように、伝熱路群Aにより、いわゆる消
炎距離が保持され、上方の燃焼が下方に移る、逆火現象
を防止し、炎11は、常に一定の位置で表面燃焼として
維持される。このため、バーナの負荷を下げてガス量を
絞った場合にも、逆火現象は起こることはない。
In addition, although the water supply lid 3 is heated by the porous body 8 and raises the temperature of the water passing through the inside as described above,
Since water does not grow below 100° C., the premixed gas passing through the heat transfer path group A does not reach a very high temperature, especially the ignition temperature. In addition, each heat transfer thin tube 5
Since the interval S is narrow and the thin wires 6 are extended in a tatami-weave pattern, the small gap 7 is literally minute, increasing the contact area with the passing premixed gas and reliably suppressing the temperature rise. do. In this way, the heat transfer path group A maintains a so-called flame-out distance, prevents a flashback phenomenon in which upward combustion moves downward, and flame 11 is always maintained at a constant position as surface combustion. Therefore, even if the load on the burner is reduced and the amount of gas is reduced, no flashback phenomenon will occur.

一般に、バーナの負荷を上げると、予混合ガスの流速は
増すため、炎は吹き飛び、又は吹き消え現象が発生する
が、この実施例によれば、負荷を上げ予混合ガスを増す
と、その増分だけ発生熱量も多くなり、従って、セラミ
ックス等でなる多孔質物体8も、加熱増となり、放射熱
量も大きくなる。そして、この放射熱が伝熱路群Aを通
過直後の予混合ガスを加熱することになり、燃焼速度を
速め、炎は、常に一定位置で燃焼が開始され、該多孔質
物体8と伝熱路群への間隙(空間9)で平面的な表面燃
焼が維持されて、保炎効果をもたらす。
Generally, when the load on the burner is increased, the flow velocity of the premixed gas increases, causing the flame to blow away or disappear. However, according to this embodiment, when the load is increased and the amount of premixed gas is increased, the increment Therefore, the porous object 8 made of ceramics or the like is also heated, and the amount of heat radiated increases. Then, this radiant heat heats the premixed gas immediately after passing through the heat transfer path group A, increasing the combustion speed, so that the flame always starts burning at a fixed position, and heat is transferred to the porous object 8. Planar surface combustion is maintained in the gap (space 9) to the group of paths, resulting in a flame holding effect.

さらに、このような表面燃焼によれば、第3図に示すよ
うに、炎11が一様に短炎の集合体であり平面状に広が
りをもって燃焼するため、・炎11に局部的な高温の箇
所が発生せず、また、供給水で水冷される伝熱路群Aの
影響により、燃焼温度が、通常のバーナ燃焼に比較して
低温となる。
Furthermore, according to such surface combustion, as shown in FIG. 3, the flame 11 is a uniform collection of short flames and burns with a spread in a plane. Because there are no heat transfer points and the heat transfer path group A is water-cooled by the supply water, the combustion temperature is lower than that in normal burner combustion.

かかる燃焼温度の低温化は、窒素酸化物の生成を抑止す
るための主要な因子であり、従来にない排出ガスのクリ
ーン化を期し得たものである。
Such a lower combustion temperature is a major factor in suppressing the production of nitrogen oxides, and is expected to result in cleaner exhaust gas than ever before.

発明者らの実施においては、以下の条件を選択している
In the inventors' implementation, the following conditions are selected.

○条件 ・予混合ガス−都市ガス(10,00Qkcal/h)
・伝熱路群A(細管ボイラ)の面積−120mm X 
120mm・伝熱細管5の材質−ステンレス 外径−2龍 ・各伝熱細管5の間隔S−4wm ・細線6−ステンレス線 径寸法−0,5mm ・給水ヘッダ3及び排水ヘッダ4の外径−20mm内径
−9mm ・多孔質物体8−気孔率80%、厚さ10mmのセラミ
ックス 上記の条件で行った結果、給水温度18℃の水を37’
/mid、の流速で送出した場合、回収温水(34℃)
が得られた。
○Conditions/Premixed gas-city gas (10,00Qkcal/h)
・Area of heat transfer path group A (thin tube boiler) - 120mm
120mm・Material of heat transfer capillary tube 5-Stainless steel outer diameter-2×Spacing between each heat transfer capillary tube 5-4wm・Thin wire 6-Stainless steel wire diameter dimension-0.5mm・Outer diameter of water supply header 3 and drainage header 4- 20mm Inner diameter - 9mm Porous object 8 - Ceramic with porosity 80% and thickness 10mm As a result of conducting under the above conditions, water with a water supply temperature of 18°C was
/mid, the recovered hot water (34℃)
was gotten.

また、この実施に際して、逆火あるいは吹き消え現象は
全く発生せず保炎効果を得ることができた。
In addition, during this implementation, no backfire or blow-out phenomenon occurred and a flame-holding effect could be obtained.

次に、第4図及び第5図に示す、この発明を適用した他
の一実施例について説明する。
Next, another embodiment to which this invention is applied, shown in FIGS. 4 and 5, will be described.

この実施例においては、伝熱路群Aを第5図に示すよう
に、セラミックス板12に、給水ヘッダ3と排水ヘッダ
4間を連通ずる多数の液体輸送孔13を所定間隔を介し
て平行に開設すると共に、各液体輸送孔13の間部には
、下面から上面に向けて予混合ガスを通過させ得る、多
数のガス流通孔14を開設した構造としている。なお、
このガス流通孔14は、前記液体輸送孔14には干渉し
ないものであって、下方から供給される予混合ガスを、
上方に通過させる構造であればよく、例えば、第5図に
示す如く、セラミックス板12の上下方向に対して傾斜
して開設してもよい。とりわけ、このようにガス流通孔
14を傾斜させた場合には、前記した消炎距離を充分に
確保することとなり、逆火の確実な防止ができる。
In this embodiment, as shown in FIG. 5, the heat transfer path group A is formed by forming a large number of liquid transport holes 13 in parallel at predetermined intervals in a ceramic plate 12, which communicates between the water supply header 3 and the drainage header 4. At the same time, a large number of gas flow holes 14 are opened between each liquid transport hole 13 to allow the premixed gas to pass from the bottom surface to the top surface. In addition,
This gas distribution hole 14 does not interfere with the liquid transport hole 14, and allows the premixed gas supplied from below to
Any structure is sufficient as long as it allows passage upward, and for example, as shown in FIG. 5, it may be opened at an angle with respect to the vertical direction of the ceramic plate 12. Particularly, when the gas flow holes 14 are inclined in this manner, the above-mentioned flame extinguishing distance is sufficiently ensured, and backfire can be reliably prevented.

なお、この実施例においては、第4図に示すように、セ
ラミックス板12からなる伝熱路群Aを、平行に配置し
た直管状の給水ヘッダ3と排水ヘッダ4の間に配設して
いるが、前記した実施例のように、該伝熱路群Aの周縁
に沿って、各ヘッダ3゜4を配設させることも勿論可能
である。
In this embodiment, as shown in FIG. 4, a heat transfer path group A made of ceramic plates 12 is arranged between a straight pipe-shaped water supply header 3 and a drainage header 4 arranged in parallel. However, it is of course possible to arrange the headers 3 and 4 along the periphery of the heat transfer path group A, as in the embodiment described above.

また、この実施例においても、前記した実施例と同様に
、多孔質物体8を設け、伝熱路群Aとこの多孔質物体8
との間の空間9で表面燃焼を発生させるもので、同様の
保炎効果を得ることもできる。
Further, in this embodiment as well, a porous body 8 is provided, and the heat transfer path group A and this porous body 8 are
A similar flame-holding effect can also be obtained by generating surface combustion in the space 9 between the two.

以上、実施例について説明したが、この発明においては
、被加温液体としては、水に限られるものではなt、目
的により各種の液体の加温を可能とするものである。
Although the embodiments have been described above, in the present invention, the liquid to be heated is not limited to water, but various liquids can be heated depending on the purpose.

また、伝熱路群Aの面積、形状などは、適宜設計変更さ
れ得るものであって、特に、方形状のものとする必要は
ない。
Further, the area, shape, etc. of the heat transfer path group A can be changed in design as appropriate, and there is no particular need for it to be rectangular.

さらに、上記実施例においては、多孔質物体8をセラミ
ックス材で構成しているが、その他金属の綱、石綿等を
用いることも可能である。
Further, in the above embodiment, the porous body 8 is made of ceramic material, but other materials such as metal rope, asbestos, etc. can also be used.

〔発明の効果〕〔Effect of the invention〕

畝上の説明で明白なように、予混合ガスが高負荷燃焼の
場合でも、吹き消えや、吹き飛び現象が起こらないと共
に、低負荷燃焼の場合でも逆火は起こらず、安全性を飛
曜的に向上させる効果が有る。
As is clear from the explanation above, even when the premixed gas is burned under high load, no blow-off or blow-off phenomenon occurs, and even when burned under low load, no backfire occurs, which greatly improves safety. It has the effect of improving

また、伝熱路群と多孔質物体との間の狭少な空間での表
面燃焼を起こさせる構成としたことによって、熱交換部
の面積及び体積を小さくすることが可能となり、小型で
場所をとらない給湯装置を作ることができる効果が有る
In addition, by adopting a configuration that allows surface combustion to occur in the narrow space between the heat transfer path group and the porous object, it is possible to reduce the area and volume of the heat exchange section, making it compact and space-saving. This has the effect of making it possible to create a hot water supply system that does not require a conventional method.

さらに、燃焼に伴って加熱される多孔質物体が、予混合
ガスを完全燃焼させるため、従来のような給湯装置に設
けられている、不完全燃焼を防止するための、長大な燃
焼室を不要となし、熱交換部の縮小化と相俟って根本的
な小型化が可能とされている。
Furthermore, since the porous object that is heated during combustion completely burns the premixed gas, there is no need for a long combustion chamber that is installed in conventional water heaters to prevent incomplete combustion. Combined with the miniaturization of the heat exchange section, fundamental miniaturization is possible.

さらにまた、平面燃焼であることと伝熱路群の冷却作用
により火炎温度を低下させて、有害な窒素酸化物の生成
を抑止する効果が有る。
Furthermore, the flame temperature is lowered due to the planar combustion and the cooling effect of the heat transfer path group, which has the effect of suppressing the generation of harmful nitrogen oxides.

而して又、伝熱路群は、予混合ガスの燃焼による放射熱
及び加熱された多孔質物体の熱放射による間接加熱を受
けるため、熱交換率を向上する効果が有る。
Furthermore, since the heat transfer path group receives indirect heating due to radiant heat from the combustion of the premixed gas and heat radiation from the heated porous object, it has the effect of improving the heat exchange rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を適用した熱交換用保炎装置の一部
破断斜視図、第2図は、第1図のA−A断面図、第3図
は、同実施例における燃焼状態を示す説明図、第4図は
、この発明を適用した他の一実施例における伝熱路群を
給水ヘッダと排水ヘッダに取付けた状態を示す斜視図、
第5図は、同伝熱路群を示す一部破断拡大斜視図、第6
図は、従来の給湯装置を示す説明図である。 3・・・・・・給水ヘッダ、4・・・・・・排水ヘッダ
、5・・・・・・伝熱細管、6・・・・・・細線、7・
・・・・・小間隙、8・・・・・・多孔質物体、9・・
・・・・空間。 IKs図 第4図 第5図
Fig. 1 is a partially cutaway perspective view of a flame stabilizing device for heat exchange to which the present invention is applied, Fig. 2 is a cross-sectional view taken along line A-A in Fig. 1, and Fig. 3 shows the combustion state in the same embodiment. FIG. 4 is a perspective view showing a state in which a group of heat transfer paths is attached to a water supply header and a drainage header in another embodiment to which the present invention is applied;
Fig. 5 is a partially cutaway enlarged perspective view showing the heat transfer path group;
The figure is an explanatory diagram showing a conventional water heater. 3...Water supply header, 4...Drain header, 5...Heat transfer thin tube, 6...Thin wire, 7.
...Small gap, 8...Porous object, 9...
····space. IKs diagram Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)被加温液体の給液ヘッダと排液ヘッダとの間を連
通する多数の伝熱路を有し、且つ下方から供給される予
混合ガスを上方に向けて通過させる小間隙を前記伝熱路
の相互間に設けてなる伝熱路群と、この伝熱路群の上方
に、狭少な空間を介して設けられる多孔質物体とからな
ることを特徴とする熱交換用保炎装置。
(1) It has a large number of heat transfer paths that communicate between the supply header and the drain header for the liquid to be heated, and has a small gap that allows the premixed gas supplied from below to pass upward. A flame holding device for heat exchange, comprising a group of heat transfer paths provided between the heat transfer paths, and a porous object provided above the group of heat transfer paths with a narrow space interposed therebetween. .
(2)前記伝熱路は、細管により構成される特許請求の
範囲第1項記載の熱交換用保炎装置。
(2) The flame stabilizing device for heat exchange according to claim 1, wherein the heat transfer path is constituted by a thin tube.
(3)前記伝熱路群は、セラミックス等の耐熱ブロック
に貫通される多数の液体輸送孔からなり、前記耐熱ブロ
ックには、液体輸送孔には干渉せず、且つ上下方向に貫
通させる多数のガス流通用の孔が開設される特許請求の
範囲第1項記載の熱交換用保炎装置。
(3) The heat transfer path group consists of a large number of liquid transport holes that are penetrated through a heat-resistant block such as ceramics, and the heat-resistant block has a large number of holes that do not interfere with the liquid transport holes and are penetrated in the vertical direction. The flame stabilizing device for heat exchange according to claim 1, wherein holes for gas circulation are provided.
JP60066017A 1985-03-29 1985-03-29 Flame holding device for heat exchanging Granted JPS61225507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066017A JPS61225507A (en) 1985-03-29 1985-03-29 Flame holding device for heat exchanging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066017A JPS61225507A (en) 1985-03-29 1985-03-29 Flame holding device for heat exchanging

Publications (2)

Publication Number Publication Date
JPS61225507A true JPS61225507A (en) 1986-10-07
JPH0550647B2 JPH0550647B2 (en) 1993-07-29

Family

ID=13303740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066017A Granted JPS61225507A (en) 1985-03-29 1985-03-29 Flame holding device for heat exchanging

Country Status (1)

Country Link
JP (1) JPS61225507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896190A3 (en) * 1997-08-07 1999-09-15 Robert Bosch Gmbh Burner for heating installation
CN106993342A (en) * 2015-10-18 2017-07-28 谢彦君 A kind of PTC electric heater units

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949494A (en) * 1982-09-14 1984-03-22 Ryozo Echigo Heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949494A (en) * 1982-09-14 1984-03-22 Ryozo Echigo Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896190A3 (en) * 1997-08-07 1999-09-15 Robert Bosch Gmbh Burner for heating installation
CN106993342A (en) * 2015-10-18 2017-07-28 谢彦君 A kind of PTC electric heater units

Also Published As

Publication number Publication date
JPH0550647B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
EP1211459B1 (en) Combustion apparatus
US8622736B2 (en) Recuperator burner having flattened heat exchanger pipes
US6321743B1 (en) Single-ended self-recuperated radiant tube annulus system
US5224542A (en) Gas fired radiant tube heater
JP4694955B2 (en) 2-layer combustor
US3509867A (en) Radiant and convective heater
JPH064171Y2 (en) Radiant chives
JP4559011B2 (en) Fluid catalyst treatment equipment
JP2003519773A (en) Tube heating furnace
JPS61225507A (en) Flame holding device for heat exchanging
EP2023040A1 (en) Combustor
JPS61225542A (en) Heat exchanger
JPS61256113A (en) Surface combustion burner and heat exchanger utilizing this burner
JPS61225541A (en) Heat exchanger
JPS61246512A (en) Burner
CA2102975C (en) Gas burner
JPS61225543A (en) Heat exchanging method and heat exchanger directly used therefor
JPS61256112A (en) Surface combustion burner and heat exchanger utilizing this burner
JPH0739880B2 (en) Fluid heating device
JP7105437B2 (en) heating heater
JPS5892703A (en) Combustion apparatus
JPS61256111A (en) Surface combustion burner and heat exchanger utilizing this burner
JPH07139701A (en) Annular once-through boiler
JP2899712B2 (en) Zonal jet burner
JPS62233639A (en) Fluid heating apparatus