JPH0258330B2 - - Google Patents

Info

Publication number
JPH0258330B2
JPH0258330B2 JP29783588A JP29783588A JPH0258330B2 JP H0258330 B2 JPH0258330 B2 JP H0258330B2 JP 29783588 A JP29783588 A JP 29783588A JP 29783588 A JP29783588 A JP 29783588A JP H0258330 B2 JPH0258330 B2 JP H0258330B2
Authority
JP
Japan
Prior art keywords
nickel
copper
pine
solution
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29783588A
Other languages
Japanese (ja)
Other versions
JPH02145731A (en
Inventor
Naoyuki Tsuchida
Kazuyuki Takaishi
Iwao Fukui
Juzo Fukuoka
Yukio Ishikawa
Tomoyuki Inami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP29783588A priority Critical patent/JPH02145731A/en
Publication of JPH02145731A publication Critical patent/JPH02145731A/en
Publication of JPH0258330B2 publication Critical patent/JPH0258330B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ニツケルを含む塩化物溶液中の銅イ
オンの除去方法に関する。 〔従来の技術〕 電気ニツケルの製造は、ニツケルマツトを溶解
鋳造し、これを陽極として電解精製する方法や、
塩素等の酸化剤を用いてニツケルマツト中のニツ
ケル分を浸出し、得た浸出液から電解液を調整
し、電解採取する方法などにより行なわれてい
る。これらの方法においては、ニツケルマツト中
に含有されている銅は、ニツケルと共に電解液、
あるいは浸出液中に浸出する。浸出液を用いて電
解する場合、浸出液をそのまゝ電解すると、電解
時に銅イオンが陰極に析出し、電着ニツケル中の
不純物としての銅濃度が大きくなるため、電解液
として供給する浸出液中の銅濃度が0.001g/
未満となるまで銅を除去する工程を設けている。 このニツケルマツトを塩素により浸出して得た
塩化ニツケル溶液中の銅イオンを除去する方法と
して、ニツケルマツトを使用する方法が、米国特
許第2180520号明細書に記載されている。この方
法は、ニツケルマツト中の金属ニツケルにより、
伸出液中の銅イオンを金属銅として析出させるも
のであるが、液中の銅濃度を0.001g/未満ま
でに除去することは出来ない。 又、特公昭56−24021号公報には、ニツケルマ
ツトを塩素浸出して得た浸出液中の銅イオンをモ
ル比でNi/S>1なるニツケル硫化物と元素状
硫黄とを併用して、硫化物として除去する方法が
記載されている。この方法はニツケル硫化物と元
素状硫黄とを併用して液中の銅イオンを硫化物と
して除去する際、100℃以上の反応温度を必要と
するため、用いる装置の材質に高価なものが必要
となり、多量のニツケルマツトを使用しても、脱
銅後の液中の銅イオン濃度は、0.013g/程度
までしか低下せず、電解槽の陰極に電解液として
供給するためには、更に溶媒抽出工程等の脱銅工
程を経なければならないという問題がある。 更に、液中の銅イオンとニツケルマツトとを反
応させた後の残渣には、数十重量%のニツケルを
含んでおり、塩素浸出によりこのニツケル分を回
収する必要があるが、塩素浸出の工程で(1)式に示
す反応に従い元素状硫黄が浸出され、SO4 2-を生
じて浸出液中のSO4 2-濃度を増加させ、この
SO4 2-濃度の増加は、ニツケルの電解採取に際
し、(2)式に示す副反応の酸素発生反応の比率を増
加せしめ、ニツケルマツトの塩素浸出に用いるべ
き塩素ガスの発生を著しく低下させるばかりでな
く、不活性アノードとして用いられているルテニ
ウム−チタン複合電極等を劣化させる問題があ
る。 S+3Cl2+4H2O=SO4 2-+6Cl-+8H (1) 2H2O=O2+4H++4e- (2) 〔発明が解決しようとする課題〕 本発明は、従来必要な100℃以上の反応温度を、
安価な装置材質の使用可能な70℃以下となしうる
と共に、電解採取にそのまゝ用いることが出来る
ように、終液中の銅イオン濃度を0.001g/未
満まで低下させることが可能であり、且つ脱銅処
理により発生する残渣が塩素浸出可能である塩化
物溶液からの銅イオンの除去方法を得ることを課
題とする。 〔課題を解決するための手段〕 本発明による課題を解決するための手段は、銅
を含むニツケル塩化物溶液に、粒径100μm以下
のニツケルマツトを、塩化物溶液中の銅に対して
該ニツケルマツト中のニツケル量がモル比で3倍
以上となる量を添加し、該塩化物溶液の温度を40
〜70℃に維持して30分以上撹拌する第一工程と、
第一工程を経た溶液に、粒径100μm以下のニツ
ケルマツトを、該ニツケルマツト中のNi3S2と金
属Niとの合計量で該溶液中のCuCl3 2-全部をCu2S
に変換するに必要とするニツケルマツトの該溶液
中の銅量に対しての反応理論量の10倍以上となる
量と、90重量%以上が粒径100μm以下からな硫
黄を、該溶液中の銅1モル量に対し20モル以上の
量とを添加し、該溶液の温度を70℃以下に維持し
て70分間以上撹拌する第二工程とを有する塩化物
溶液からの銅イオンの除去方法である。 〔作用〕 第一工程について、 (a) ニツケルマツトの粒径 60℃のNi200g/、Cu30g/、270g/
の組成の塩化物水溶液1に、第2表に示す
組成の種々の粒度のニツケルマツト200gを添
加し、温度を60℃に維持して撹拌しつつ、0.5
時間後に分析試料として一部を分取し、2時間
後に撹拌を停止して固液分離し、分離した溶液
中の銅濃度を測定して、ニツケルマツトの粒径
と、分離した液中の銅濃度と、脱銅率との関係
を求めた。 その結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for removing copper ions from a nickel-containing chloride solution. [Prior art] Electric nickel is produced by melting and casting nickel pine and electrolytically refining it using this as an anode.
This is done by leaching out the nickel content in nickel pine using an oxidizing agent such as chlorine, preparing an electrolytic solution from the obtained leaching solution, and performing electrowinning. In these methods, the copper contained in the nickel pine is mixed with the nickel in an electrolyte,
Or it leaches into the exudate. When performing electrolysis using a leachate, if the leachate is electrolyzed as is, copper ions will be deposited on the cathode during electrolysis, increasing the concentration of copper as an impurity in the electrodeposited nickel. Concentration is 0.001g/
A step is provided to remove copper until it becomes less than 100%. US Pat. No. 2,180,520 describes a method of using nickel pine to remove copper ions from a nickel chloride solution obtained by leaching nickel pine with chlorine. This method uses the metal nickel in the nickel mat,
Although this method precipitates copper ions in the elongation solution as metallic copper, it is not possible to remove the copper concentration in the solution to less than 0.001g/. In addition, Japanese Patent Publication No. 56-24021 discloses that copper ions in the leachate obtained by leaching nickel pine with chlorine are combined with elemental sulfur and nickel sulfide with a molar ratio of Ni/S>1. A method for removing it is described. This method uses a combination of nickel sulfide and elemental sulfur to remove copper ions in the liquid as sulfide, and requires a reaction temperature of 100°C or higher, which requires expensive equipment. Therefore, even if a large amount of nickel pine is used, the copper ion concentration in the solution after decoppering will only decrease to about 0.013g/, and in order to supply it as an electrolyte to the cathode of the electrolytic cell, further solvent extraction is required. There is a problem in that copper removal processes such as copper removal processes must be performed. Furthermore, the residue after reacting copper ions in the liquid with nickel pine contains several tens of weight percent of nickel, and it is necessary to recover this nickel by chlorine leaching. Elemental sulfur is leached according to the reaction shown in equation (1), producing SO 4 2- and increasing the SO 4 2- concentration in the leachate.
An increase in the SO 4 2- concentration increases the ratio of the side reaction of oxygen generation shown in equation (2) during electrowinning of nickel, and significantly reduces the generation of chlorine gas that should be used for leaching chlorine from nickel pine. However, there is a problem in that it deteriorates the ruthenium-titanium composite electrode used as an inert anode. S+3Cl 2 +4H 2 O=SO 4 2- +6Cl - +8H (1) 2H 2 O=O 2 +4H + +4e - (2) [Problem to be solved by the invention] The present invention solves the problem of reaction at 100°C or higher, which was conventionally required. temperature,
It is possible to lower the copper ion concentration in the final solution to less than 0.001 g/l so that it can be used as is for electrowinning, and it is possible to lower the temperature to 70°C or less, which allows the use of inexpensive equipment materials. Another object of the present invention is to provide a method for removing copper ions from a chloride solution in which the residue generated by copper removal treatment can be leached with chlorine. [Means for Solving the Problems] The means for solving the problems according to the present invention is to add nickel pine with a particle size of 100 μm or less to a nickel chloride solution containing copper, and add nickel pine to the copper in the chloride solution in the nickel pine. of nickel in an amount that is at least 3 times the molar ratio, and the temperature of the chloride solution is increased to 40
A first step of maintaining the temperature at ~70°C and stirring for 30 minutes or more;
Nickel pine with a particle size of 100 μm or less is added to the solution that has undergone the first step, and the total amount of Ni 3 S 2 and metal Ni in the nickel pine is added to CuCl 3 2 - all of the Cu 2 S in the solution.
Copper in the solution is added in an amount that is at least 10 times the theoretical reaction amount to the amount of copper in the solution of nickel pine required to convert it into A method for removing copper ions from a chloride solution, which comprises adding an amount of 20 mol or more per 1 mol, and stirring the solution for 70 minutes or more while maintaining the temperature of the solution at 70°C or less. . [Effect] Regarding the first step, (a) Nickel pine particle size Ni200g/, Cu30g/, 270g/ at 60℃
Add 200 g of nickel pine of various particle sizes with the composition shown in Table 2 to chloride aqueous solution 1 with the composition of 0.5
After that time, take a portion as an analysis sample, stop stirring after 2 hours, separate the solid and liquid, measure the copper concentration in the separated solution, and determine the particle size of the nickel pine and the copper concentration in the separated solution. The relationship between this and the copper removal rate was determined. The results are shown in Table 1.

【表】【table】

【表】 第1表の結果から添加するニツケルマツトの
粒径が100μm未満では脱銅率が低下すること
が判る。 (b) ニツケルマツトの添加量 Ni200g/、Cu20g/、Cl270g/の
組成の水溶液1に、粒径100μm以下の第2
表の組成のニツケルマツトの添加量を変えて添
加し、60℃で2時間撹拌し、固液分離し、得た
液中の銅濃度を測定した。 結果を第3表に示す。
[Table] From the results in Table 1, it can be seen that the copper removal rate decreases when the particle size of the nickel pine added is less than 100 μm. (b) Addition amount of nickel pine To aqueous solution 1 with a composition of Ni200g/, Cu20g/, Cl270g/, a second particle with a particle size of 100 μm or less is added.
Varying amounts of nickel pine having the composition shown in the table were added, stirred at 60°C for 2 hours, solid-liquid separated, and the copper concentration in the resulting liquid was measured. The results are shown in Table 3.

【表】 第3表の結果から、添加するニツケルマツト
の量は、添加するニツケルマツト中のニツケル
量が溶液中の銅1モルに対して3モル未満で
は、終液中の銅濃度が小さくならないことが判
る。 (c) 反応温度 Ni200g/、Cu20g/、Cl270g/の
組成の水溶液1に、粒径100μm以下の第2
表の組成のニツケルマツトの160gを添加し、
反応温度を変えて2時間撹拌し、固液分離し、
得た液中の銅濃度を測定した。 結果を第4表に示す。
[Table] From the results in Table 3, the amount of nickel pine added is such that if the amount of nickel in the nickel pine added is less than 3 mol per 1 mol of copper in the solution, the copper concentration in the final solution will not become small. I understand. (c) Reaction temperature A second solution with a particle size of 100 μm or less is added to an aqueous solution 1 with a composition of Ni200g/, Cu20g/, Cl270g/.
Add 160g of nickel pine with the composition shown in the table,
Stir for 2 hours while changing the reaction temperature, separate solid and liquid,
The copper concentration in the obtained liquid was measured. The results are shown in Table 4.

【表】 第4表の結果から、反応温度は40〜70℃が良
いことが判る。この理由については以下のよう
に考えられる。 一般にニツケルマツト中には、Ni3S2の他
に、金属Niが含まれており、元素状硫黄が存
在しない場合には、次の(3)、(4)、(5)式で示され
る反応が生ずるとされているが、(3)、(4)式はそ
れぞれNi3S2と金属Niの溶解反応であり、(5)式
に示す銅イオンの電気化学的析出反応と組みと
なるものである。 Ni0=Ni2+2e- (3) Ni3S2=Ni2++2NiS+2e- (4) Cu2++2e-=Cu0 (5) 又、本発明のように塩化物溶液の場合には、
(6)式に示される一価の銅クロロ錯体からの金属
銅の析出反応が考えられるが、この一価の銅ク
ロロ錯体からの銅の析出電位は(5)式の銅析出電
位よりも300mV以上も低いので通常の状態で
は起きにくいものと考えられる。 CuCl3 2-+e-=Cu0+3Cl- (6) 反応温度が高ければ高い程、(3)式や(4)式の反
応は進行し、液中の銅イオンは金属銅として沈
澱してくるが、一方、液中の溶存酸素や撹拌に
よつて巻き込まれた空気により(6)式に示される
反応の逆の反応に従い金属銅の再溶解も進行
し、その結果脱銅率が低下するものと考えられ
る。一方、反応温度が40℃よりも低下すると、
(3)、(4)、(5)式の反応や金属銅の再溶解は起きに
くくなり、その結果、脱銅率は低下するものと
思われるが、何れにせよ各反応の温度依存性が
複雑に組み合わさつて40〜70℃の温度範囲に最
適範囲が生ずるものと考えられる。 (d) 反応時間 Ni200g/、Cu30g/、Cl270g/の
組成の水溶液1に、粒径100μm以下の第2
表の組成のニツケルマツトの200gを添加し、
反応温度50℃で反応時間を変えて撹拌し、固液
分離し、得た液中の銅濃度を測定した。 結果を第5表に示す。
[Table] From the results in Table 4, it can be seen that the reaction temperature is preferably 40 to 70°C. The reason for this is thought to be as follows. In general, nickel pine contains metallic Ni in addition to Ni 3 S 2 , and if elemental sulfur is not present, the reactions shown by the following equations (3), (4), and (5) will occur. Equations (3) and (4) are the dissolution reactions of Ni 3 S 2 and metal Ni, respectively, and are paired with the electrochemical precipitation reaction of copper ions shown in equation (5). It is. Ni 0 = Ni 2 +2e - (3) Ni 3 S 2 = Ni 2+ +2NiS+2e - (4) Cu 2+ +2e - = Cu 0 (5) In addition, in the case of a chloride solution as in the present invention,
The precipitation reaction of metallic copper from the monovalent copper chloro complex shown in equation (6) is considered, but the deposition potential of copper from this monovalent copper chloro complex is 300 mV higher than the copper precipitation potential in equation (5). Since the above values are also low, it is considered unlikely to occur under normal conditions. CuCl 3 2- +e - = Cu 0 +3Cl - (6) The higher the reaction temperature, the more the reactions in equations (3) and (4) progress, and the copper ions in the liquid precipitate as metallic copper. However, on the other hand, due to the dissolved oxygen in the liquid and the air drawn in by stirring, the re-dissolution of metallic copper proceeds according to the reverse reaction of the reaction shown in equation (6), and as a result, the copper removal rate decreases. it is conceivable that. On the other hand, when the reaction temperature drops below 40℃,
The reactions of equations (3), (4), and (5) and the redissolution of metallic copper will become less likely to occur, and as a result, the copper removal rate will decrease, but in any case, the temperature dependence of each reaction is It is thought that a complex combination results in an optimum temperature range between 40 and 70°C. (d) Reaction time To aqueous solution 1 with a composition of Ni200g/, Cu30g/, Cl270g/, a second particle with a particle size of 100 μm or less is added.
Add 200g of nickel pine with the composition shown in the table,
The mixture was stirred at a reaction temperature of 50° C. while varying the reaction time, solid-liquid separation was performed, and the copper concentration in the resulting liquid was measured. The results are shown in Table 5.

【表】 次工程である第二工程での元素状硫黄の使用
量を出来るだけ少なくするためには、この第一
工程を終了した液中の銅イオンを0.1g/前
後まで減少させておくことが望ましい。 この目的を達成するためには、第5表より30
分以上反応させれば良いことが判る。 第二工程について、 (a) ニツケルマツトの粒径 Ni200g/、Cu0.08g/、Cl270g/
の組成の水溶液1に、各種の粒径の第2表の
組成のニツケルマツトの4gと、粒径100μm
以下の硫黄2.3gを添加し、反応温度20℃で2
時間撹拌し、固液分離し、得た液中の銅濃度を
測定した。 結果を第6表に示す。
[Table] In order to minimize the amount of elemental sulfur used in the second step, which is the next step, it is necessary to reduce the copper ions in the liquid after the first step to around 0.1g/. is desirable. In order to achieve this purpose, 30
It turns out that it is better to react for more than a minute. Regarding the second step, (a) Particle size of nickel pine Ni200g/, Cu0.08g/, Cl270g/
Into aqueous solution 1 with the composition, 4 g of nickel pine with the composition shown in Table 2 with various particle sizes and 100 μm particle size.
Add the following 2.3g of sulfur, and at a reaction temperature of 20℃
The mixture was stirred for a period of time, separated into solid and liquid, and the copper concentration in the resulting liquid was measured. The results are shown in Table 6.

【表】 この第二工程終了後の脱銅液をニツケルの電
解液としてそのまゝ使用するためには、液中の
銅濃度を0.001g/未満とすることが必要で
あるが、第6表から粒径100μm以下のニツケ
ルマツトを用いれば良いことが判る。 (b) ニツケルマツトの添加量 Ni200g/、Cu0.08g/、Cl270g/
の組成の水溶液1に、粒径100μm以下の、
Ni83.3、Cu0.2、Fe0.5、S14.0各重量%の組成
のニツケルマツトの各種量と、粒径100μm以
下の硫黄をニツケルマツト量の2倍量を添加
し、反応温度20℃で2時間撹拌し、固液分離
し、得た液中の銅濃度を測定した。 結果を第7表に示す。
[Table] In order to use the copper-removed solution after completing this second step as an electrolyte for nickel, the copper concentration in the solution must be less than 0.001g/, as shown in Table 6. From this, it can be seen that it is sufficient to use nickel pine with a particle size of 100 μm or less. (b) Addition amount of nickel pine Ni200g/, Cu0.08g/, Cl270g/
In aqueous solution 1 with the composition of, particles with a particle size of 100 μm or less
Various amounts of nickel pine with a composition of Ni83.3, Cu0.2, Fe0.5, S14.0 each weight% and sulfur with a particle size of 100 μm or less were added in an amount twice the amount of nickel pine, and the reaction temperature was 20℃. The mixture was stirred for a period of time, solid-liquid separated, and the copper concentration in the resulting liquid was measured. The results are shown in Table 7.

【表】 ※…原液中の銅1モルに対して添加した硫黄
のモル比
又、ニツケルマツトの反応理論量に対する倍
率は、次の(7)、(8)式から以下のようにして求め
られる。 3Ni3S2+S0+2CiCl3 2-=3Ni2+ +6Cl-+6NiS+Cu2S (7) 3Ni0+S0+2CuCl3 2-=3Ni2 + +6Cl-+Cu2S (8) マツト品位 Ni83.3% S14.0% Cu0.2% Fe0.5% ニツケルマツト100g中の Ni83.3÷58.71=1.418モル S14.0÷32.06=0.436モル Cu0.2÷63.54=0.003モル Fe0.5÷55.85=0.009モル FeS→0.009モル CuS→0.003モル Ni3S2→(0.436−0.009−0.003) ÷2=0.212モル Ni0→1.418−0.212×3=0.782モル ∴FeS0.009×87.91=0.8% CuS0.003×95.61=0.3% Ni3S20.212×240.25=51.0% Ni00.782×58.71=45.9% +98% (7)式より Ni3S2:CiCl3 2-=3:2 このニツケルマツト100g中のNi3S2
CiCl3 2-をCu2Sに変換しうるCiCl3 2-のモル量は 0.212モル×2/3=0.141モル (8)式より Ni0:CiCl3 2-=3:2 このニツケルマツト100g中のNi0でCiCl3 2-
をCi2Sに変換しうるCuCl3 2-のモル量は CuCl3 2-=0.782モル×2/3=0.521モル このニツケルマツト100g中のNi3S2とNi0
の合計量でCiCl3 2-をCu2Sに変換しうるCuCl3 2-
のモル量は 0.141+0.521=0.662モル このニツケルマツト100gでCuCl3 2-を、
Cu2Sに変換して除去しうるCu重量%は、 0.662×63.54=42.06g よつてCuを0.08g/含む液1中の
CuCl3 2-全部をCu2Sに変換するのに必要とする
このニツケルマツトのこの液中の銅量に対して
の反応理論量は、 100:42.06=x:0.08 x=0.19g 第7表におけるニツケルマツトの反応理論量
に対する倍率 0.33÷0.19=1.73倍 1.66÷0.19=8.73倍 2.00÷0.19=10.52倍 3.00÷0.19=15.78倍 第7表から、脱銅終液中の銅濃度をそのまゝ
電解液として使用しうる0.001g/未満とす
るためには、使用するニツケルマツト中の
Ni3S2とNi0との合計量でCiCl3 2-をCu2Sに変換
しうるニツケルマツトの初液中の銅量に対して
の反応理論量に対して10倍以上のニツケルマツ
トを添加する必要のあることが判る。 なお、こゝでは銅量に対してのニツケルマツ
トの反応理論量を求めているが、CuCl3 2-或い
はCu2Sに対しての量を求めた場合には、その
数値は異なるが、実質的には同じであるから本
発明範囲に属するものである。 (c) 硫黄の粒径 Ni200g/、Cu0.08g/、Cl270g/
の組成の水溶液1に、粒径100μm以下の、
第2表の組成のニツケルマツトの4gと、粒径
100μm以下の割合が種々の硫黄を2.3gとを添
加し、反応温度20℃で2時間撹拌し、固液分離
し、得た液中の銅濃度を測定した。結果を第8
表に示す。
[Table] *...Molar ratio of sulfur added to 1 mole of copper in the stock solution Also, the ratio to the theoretical reaction amount of nickel pine can be obtained from the following equations (7) and (8) as follows. 3Ni 3 S 2 +S 0 +2CiCl 3 2- =3Ni 2+ +6Cl - +6NiS+Cu 2 S (7) 3Ni 0 +S 0 +2CuCl 3 2- =3Ni 2 + +6Cl - +Cu 2 S (8) Mat grade Ni83.3% S14. 0% Cu0.2% Fe0.5% Ni83.3÷58.71 = 1.418 mole S14.0÷32.06 = 0.436 mole Cu0.2÷63.54 = 0.003 mole Fe0.5÷55.85 = 0.009 mole FeS → 0.009 mole CuS → 0.003 mol Ni 3 S 2 → (0.436 − 0.009 − 0.003) ÷ 2 = 0.212 mol Ni 0 → 1.418 − 0.212 × 3 = 0.782 mol ∴ FeS 0.009 × 87.91 = 0.8% CuS 0.003 × 95.61 = 0.3% Ni 3 S 2 0.212×240.25=51.0% Ni 0 0.782×58. 71=45.9% +98% From formula (7), Ni 3 S 2 :CiCl 3 2- = 3:2 Ni 3 S 2 in 100g of this nickel pine
The molar amount of CiCl 3 2- that can convert CiCl 3 2- to Cu 2 S is 0.212 mol x 2/3 = 0.141 mol (8), Ni 0 :CiCl 3 2- = 3:2 in 100 g of this nickel pine. Ni 0 and CiCl 3 2-
The molar amount of CuCl 3 2- that can be converted into Ci 2 S is CuCl 3 2- = 0.782 mol x 2/3 = 0.521 mol The total amount of Ni 3 S 2 and Ni 0 in 100 g of this nickel pine is CiCl 3 2 - can be converted to Cu 2 S CuCl 3 2-
The molar amount of is 0.141 + 0.521 = 0.662 mol CuCl 3 2- in 100 g of this nickel pine,
The weight percent of Cu that can be converted into Cu 2 S and removed is 0.662×63.54=42.06g. Therefore, the weight percentage of Cu in liquid 1 containing 0.08g/Cu is 0.662×63.54=42.06g.
The theoretical reaction amount of this nickel pine required to convert all of CuCl 3 2- into Cu 2 S with respect to the amount of copper in this solution is 100:42.06=x:0.08 x=0.19g in Table 7. Multiplying ratio for the theoretical reaction amount of nickel pine 0.33 ÷ 0.19 = 1.73 times 1.66 ÷ 0.19 = 8.73 times 2.00 ÷ 0.19 = 10.52 times 3.00 ÷ 0.19 = 15.78 times From Table 7, the copper concentration in the copper-removed final solution is kept as it is in the electrolyte. In order to make it less than 0.001g/ that can be used as
The total amount of Ni 3 S 2 and Ni 0 can convert CiCl 3 2- into Cu 2 S. Add 10 times or more of nickel pine to the reaction theoretical amount based on the amount of copper in the initial solution of nickel pine. It turns out it's necessary. In this case, the theoretical reaction amount of nickel pine with respect to the amount of copper is calculated, but if the amount is calculated with respect to CuCl 3 2- or Cu 2 S, the numerical value will be different, but the actual amount will be the same. Since they are the same, they belong to the scope of the present invention. (c) Sulfur particle size Ni200g/, Cu0.08g/, Cl270g/
In aqueous solution 1 with the composition of, particles with a particle size of 100 μm or less are
4g of nickel pine with the composition shown in Table 2 and particle size
2.3 g of sulfur of various proportions of 100 μm or less were added, stirred at a reaction temperature of 20° C. for 2 hours, solid-liquid separated, and the copper concentration in the resulting liquid was measured. 8th result
Shown in the table.

【表】 第8表に示す結果から、粒径100μmを超え
る粒子を多く含む硫黄は、脱銅効率が良くない
ことが判る。粒径100μmを超える粒子の多い
硫黄を用いて脱銅終液中の銅濃度を<0.001
g/にしようとすると、多量の硫黄を添加せ
ざるを得なくなり、発生する残渣中の硫黄量が
増加することになる。よつて用いる硫黄の粒径
は100μm以下が90重量%以上のものを用いる
ことが必要である。 (d) 硫黄の添加量 Ni200g/、Cu0.08g/、Cl270g/
の組成の水溶液1に、粒径100μm以下の、
第2表の組成のニツケルマツトの4gと、粒径
100μm以下の硫黄を種々の量とを添加し、反
応温度60℃で2時間撹拌し、固液分離し、得た
液中の銅濃度を測定した。 結果を第9表に示す。
[Table] From the results shown in Table 8, it can be seen that sulfur containing many particles with a particle size exceeding 100 μm has poor copper removal efficiency. Using sulfur containing many particles with a particle size of over 100 μm, the copper concentration in the copper-removed final solution was reduced to <0.001.
g/g/g/g/g/g, it is necessary to add a large amount of sulfur, resulting in an increase in the amount of sulfur in the generated residue. Therefore, the particle size of the sulfur used must be 90% by weight or more of 100 μm or less. (d) Amount of sulfur added Ni200g/, Cu0.08g/, Cl270g/
In aqueous solution 1 with the composition of, particles with a particle size of 100 μm or less are
4g of nickel pine with the composition shown in Table 2 and particle size
Various amounts of sulfur of 100 μm or less were added, stirred at a reaction temperature of 60° C. for 2 hours, solid-liquid separated, and the copper concentration in the resulting liquid was measured. The results are shown in Table 9.

【表】 S/Cuモル比は、原液中の銅モル量と、添
加する硫黄のモル量との比である。 第9表の結果から脱銅終液中の銅濃度を<
0.001g/とするためには、原液中の銅1モ
ルに対して20モル以上の量の硫黄の添加を必要
とすることが判る。 (e) 反応温度 Ni200g/、Cu0.08g/、Cl270g/
の組成の水溶液1に、粒径100μm以下の第
2表の組成のニツケルマツトの4gと、粒径
100μm以下が90重量%以上の硫黄2.6gを添加
し、反応温度を種々変えて2時間撹拌し、固液
分離し、得た液中の銅濃度を測定した。 結果を第10表に示す。
[Table] The S/Cu molar ratio is the ratio of the molar amount of copper in the stock solution to the molar amount of sulfur added. From the results in Table 9, the copper concentration in the copper-removed final solution is <
It can be seen that in order to obtain 0.001 g/mol, it is necessary to add sulfur in an amount of 20 moles or more per mole of copper in the stock solution. (e) Reaction temperature Ni200g/, Cu0.08g/, Cl270g/
Into aqueous solution 1 with the composition of
2.6 g of sulfur with 90% by weight or more of 100 μm or less was added, stirred for 2 hours at various reaction temperatures, solid-liquid separated, and the copper concentration in the resulting liquid was measured. The results are shown in Table 10.

【表】 第10表の結果から第二工程では、反応温度を
70℃以下とすることにより、初めて液中の銅濃
度を0.001g/以下に出来ることが判る。 (f) 反応時間 Ni200g/、Cu0.08g/、Cl270g/
の組成の水溶液1に、粒径100μm以下の第
2表の組成のニツケルマツトの4gと、粒径
100μm以下が90重量%以上の硫黄2.6gを添加
し、反応温度40℃で反応時間を種々変えて撹拌
し、固液分離し、得た液中の銅濃度を測定し
た。 結果を第11表に示す。
[Table] From the results in Table 10, in the second step, the reaction temperature was
It can be seen that by keeping the temperature below 70°C, the copper concentration in the liquid can be reduced to below 0.001g/. (f) Reaction time Ni200g/, Cu0.08g/, Cl270g/
Into aqueous solution 1 with the composition of
2.6 g of sulfur with 90% by weight or more of 100 μm or less was added, stirred at a reaction temperature of 40° C. for various reaction times, solid-liquid separation, and the copper concentration in the resulting liquid was measured. The results are shown in Table 11.

〔実施例〕〔Example〕

36の実容量を有し、撹拌機と、加熱用蛇管
と、オーバーフロー管とが設けられた第一工程用
のセメンテーシヨンNo.1槽と、100の実容量を
有し、撹拌機と、冷却用蛇管と、抜き取りノズル
が設けられた第二工程用のセメンテーシヨンNo.2
槽と、No.2槽の抜き取りノズルに結合された定量
ポンプと、定量ポンプより抜き取られたスラリー
を固液分離するためのフイルタープレスとからな
る装置を用いた。 セメンテーシヨンNo.1槽に、Ni160g/、
Cu19g/、Cl208g/の組成の塩化物溶液
を、48h/hrと、全量が粒径100μm以下でそのう
ち90重量%が粒径75μm以下の第2表の組成のニ
ツケルマツト6.0Kg/hrを供給して45℃で45分反
応させ、オーバーフロー管からセメンテーシヨン
No.2槽にオーバーフローさせた。セメンテーシヨ
ンNo.2では、上記のニツケルマツト0.25Kg/hr
と、粒径100μm以下で90重量%以上が粒径45μm
以下の硫黄を0.165Kg/hrとを添加して40℃で2
時間反応させた。セメンテーシヨンNo.2槽から、
定量ポンプにより48l/hrの割合でフイルタープ
レスに取出し固液分離して脱銅終液を得た。セメ
ンテーシヨンNo.1槽からNo.2槽への液中の銅濃度
は0.087g/であり、脱銅終液の銅濃度は
0.0005g/であつた。 第一工程でのNi/Cuモル比=5.56、第二工程
でのニツケルマツトの反応理論量に対する倍率=
18.9で、S/Cuモル比=78.3であつた。 このように、第一工程で固液分離せずに第二工
程を行なうことが出来る。又、発生した残渣中の
S0品位は2.6重量%であつた。 〔発明の効果〕 本発明方法によれば、銅を含有する塩化物溶液
中の銅濃度を0.001g/以下とできるので、再
度脱銅処理をしなくても、そのままニツケルの電
解槽に電解液として使用できる。又、本発明方法
では、添加する硫黄の量が従来より少なくてすむ
ので、最終の残渣中の硫黄量が少なく、残渣中の
ニツケルの塩素浸出を効率的に行なえる。
Cementation tank No. 1 for the first process, which has an actual capacity of 100 mm and is equipped with an agitator, a heating coil, and an overflow pipe; Cementation No. 2 for the second process, equipped with a cooling pipe and a extraction nozzle
An apparatus consisting of a tank, a metering pump connected to the extraction nozzle of tank No. 2, and a filter press for separating solid and liquid from the slurry extracted from the metering pump was used. In the cementation No. 1 tank, Ni 160g/,
A chloride solution with a composition of 19 g of Cu/208 g of Cl was supplied for 48 h/hr, and 6.0 Kg/hr of nickel pine with a composition shown in Table 2, the total amount of which was 100 μm or less in particle size and 90% by weight of which was 75 μm or less in particle size. Incubate at 45℃ for 45 minutes and remove cementation from the overflow tube.
It overflowed into No. 2 tank. For cementation No. 2, the above nickel pine is used at 0.25Kg/hr.
And, the particle size is 100μm or less, and more than 90% by weight is 45μm in size.
2 at 40℃ with the addition of 0.165Kg/hr of sulfur.
Allowed time to react. From cementation tank No. 2,
Using a metering pump, the solution was taken out to a filter press at a rate of 48 l/hr and subjected to solid-liquid separation to obtain a copper-free final solution. The copper concentration in the solution from cementation tank No. 1 to No. 2 tank is 0.087 g/, and the copper concentration in the final copper-free solution is
It was 0.0005g/. Ni/Cu molar ratio in the first step = 5.56, magnification of the theoretical reaction amount of nickel pine in the second step =
18.9, and the S/Cu molar ratio was 78.3. In this way, the second step can be performed without solid-liquid separation in the first step. In addition, in the generated residue
The S0 grade was 2.6% by weight. [Effects of the Invention] According to the method of the present invention, the copper concentration in the copper-containing chloride solution can be reduced to 0.001 g/or less, so the electrolyte can be directly poured into the nickel electrolytic cell without having to undergo copper removal treatment again. Can be used as Furthermore, in the method of the present invention, the amount of sulfur added is smaller than that of the conventional method, so the amount of sulfur in the final residue is small, and chlorine leaching of nickel in the residue can be carried out efficiently.

Claims (1)

【特許請求の範囲】[Claims] 1 銅を含むニツケル塩化物溶液に、粒径100μ
m以下のニツケルマツトを、塩化物溶液中の銅に
対して該ニツケルマツト中のニツケル量がモル比
で3倍以上となる量を添加し、該塩化物溶液の温
度を40〜70℃に維持して30分以上撹拌する第一工
程と、第一工程を経た溶液に、粒径100μm以下
のニツケルマツトを、該ニツケルマツト中の
Ni3S2と金属Niとの合計量で該溶液中のCuCl3 2-
全部をCu2Sに変換するに必要とするニツケルマ
ツトの該溶液中の銅量に対しての反応理論量の10
倍以上となる量と、90重量%以上が粒径100μm
以下からなる硫黄を、該溶液中の銅1モル量に対
し20モル以上の量とを添加し、該溶液の温度を70
℃以下に維持して70分間以上撹拌する第二工程と
を有する塩化物溶液からの銅イオンの除去方法。
1 Particle size 100μ in a nickel chloride solution containing copper.
m or less of nickel pine is added in such an amount that the amount of nickel in the nickel pine is at least three times the molar ratio of the copper in the chloride solution, and the temperature of the chloride solution is maintained at 40 to 70°C. A first step of stirring for 30 minutes or more, and adding nickel pine with a particle size of 100 μm or less to the solution after the first step.
The total amount of Ni 3 S 2 and metal Ni in the solution is CuCl 3 2-
10 of the theoretical reaction amount for the amount of copper in the solution of nickel pine required to convert all of the copper into Cu 2 S.
The amount is more than double, and more than 90% by weight has a particle size of 100 μm.
Sulfur consisting of the following is added in an amount of 20 moles or more per 1 mole of copper in the solution, and the temperature of the solution is raised to 70 °C.
A method for removing copper ions from a chloride solution, comprising: a second step of maintaining the temperature at or below °C and stirring for 70 minutes or more.
JP29783588A 1988-11-25 1988-11-25 Method for removing copper ion from chloride solution Granted JPH02145731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29783588A JPH02145731A (en) 1988-11-25 1988-11-25 Method for removing copper ion from chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29783588A JPH02145731A (en) 1988-11-25 1988-11-25 Method for removing copper ion from chloride solution

Publications (2)

Publication Number Publication Date
JPH02145731A JPH02145731A (en) 1990-06-05
JPH0258330B2 true JPH0258330B2 (en) 1990-12-07

Family

ID=17851770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29783588A Granted JPH02145731A (en) 1988-11-25 1988-11-25 Method for removing copper ion from chloride solution

Country Status (1)

Country Link
JP (1) JPH02145731A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923584B2 (en) * 2006-01-20 2012-04-25 住友金属鉱山株式会社 Method for removing copper ions from aqueous nickel chloride solution
JP4924754B2 (en) * 2010-06-21 2012-04-25 住友金属鉱山株式会社 Method for removing copper ions from copper-containing nickel chloride solution and method for producing electrolytic nickel
JP5565282B2 (en) * 2010-11-15 2014-08-06 住友金属鉱山株式会社 Method for separating copper ion and method for producing electrolytic nickel
JP5673471B2 (en) * 2011-09-22 2015-02-18 住友金属鉱山株式会社 Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel

Also Published As

Publication number Publication date
JPH02145731A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
AU669906B2 (en) Production of metals from minerals
WO2019102765A1 (en) Method for treating lithium ion battery waste
JP2019094556A (en) Processing method of waste lithium ion battery
JPS604892B2 (en) How to recover metal from copper refining anode slime
JP2019147990A (en) Method of recovering ruthenium
US7138005B2 (en) Nickel refining method
PL111879B1 (en) Method of recovery of copper from diluted acid solutions
US20210292927A1 (en) Method for refining bismuth
US4468302A (en) Processing copper-nickel matte
US4312724A (en) Method for the recovery of lead from materials containing lead sulfide
JPH0258330B2 (en)
AU736577B2 (en) Process for the production of high purity copper metal from primary or secondary sulphides
WO2015171010A1 (en) Process of extracting gold and silver from ores and mining by-products
JP2003183871A (en) Electrolytic refining method for producing high-purity tin, and apparatus therefor
US4634507A (en) Process for the production of lead from sulphide ores
JPS6338538A (en) Recovering method for nickel from nickel sulfide
US2082487A (en) Metallurgy of tin
JP2003277067A (en) Method for manufacturing nickel sulfide with excellent oxidation resistance
AU2003264660B2 (en) Method for removal of silver from a copper chloride solution
JP7420001B2 (en) Method for producing metal cadmium
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
US881527A (en) Process for treating complex cobalt ores and for refining cobalt from nickel, arsenical, and silver-bearing ores.
US1489121A (en) Metallurgical process
JPS63297584A (en) Method for recovering tellurium
Van Niekerk, CJ & Allen The electrolytic extraction of zinc at the Zinc Corporation of South Africa Limited

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 18

EXPY Cancellation because of completion of term