JPH0258240A - Manufacture of lead phthalocyanine multilayer film - Google Patents

Manufacture of lead phthalocyanine multilayer film

Info

Publication number
JPH0258240A
JPH0258240A JP63208727A JP20872788A JPH0258240A JP H0258240 A JPH0258240 A JP H0258240A JP 63208727 A JP63208727 A JP 63208727A JP 20872788 A JP20872788 A JP 20872788A JP H0258240 A JPH0258240 A JP H0258240A
Authority
JP
Japan
Prior art keywords
layer
layers
lead phthalocyanine
multilayer film
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208727A
Other languages
Japanese (ja)
Inventor
Ikuhiko Machida
町田 育彦
Katsunori Waratani
克則 藁谷
Katsuhiro Nichogi
二梃木 克洋
Akira Taomoto
昭 田尾本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63208727A priority Critical patent/JPH0258240A/en
Publication of JPH0258240A publication Critical patent/JPH0258240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To make it possible to manufacture simply a lead phthalocyanine multilayer film, which is used as a multiplexed memory element to make a high integration possible, by a method wherein each layer constituting the multilayer film is manufactured by a deposition method and, at the same time, the switching characteristics of the respective layers are made to differ from each other by changing the deposition rate at the time of manufacture of each layer. CONSTITUTION:As a method of manufacturing a multilayer film consisting of lead phthalocyanine layers, whose switching characteristics are different from each other, each layer of the lead phthalocyanine layers is manufactured by a deposition method and at the same time, the switching characteristics of the respective layers are made to differ from each other by changing the deposition rate at the time of manufacture of each layer. For example, lead phthalocyanine sublimated and refined in a vacuum is put in a quartz crucible and is deposited in a vacuum by heating with a tungsten heater. Moreover, for manufacturing a thin film consisting of two layers, whose switching voltages are respectively 4V and 10V, the deposition rates of a first layer and a second layer are respectively set in 5Angstrom /sec and 8Angstrom /sec by controlling the temperature of the crucible and the first and second layers are respectively formed in a thickness of about 18000Angstrom and a thickness of about 20000Angstrom in such a way that the resistance values of the first and second layers become almost equal to each other.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、鉛フタロシアニン多層膜の製法に関し、詳
しくは、情報記憶に用いられ、電気的な入出力が可能な
メモリー素子を構成するための、鉛フタロシアニン多層
膜の製法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for producing a lead phthalocyanine multilayer film, and more specifically, the present invention relates to a method for producing a lead phthalocyanine multilayer film. This invention relates to a method for producing a phthalocyanine multilayer film.

従来の技術 従来の半導体メモリー素子は、81半導体技術の進歩に
よって大容量化が進んだが、現在その集積度は限界に近
づきつつある。この集積度の限界は、電子が固体内でバ
ンドを形成し空間的な広がりを持つため、物理的加工に
よる微細化が必要であるが、この微細化に限界があるた
めである。
BACKGROUND OF THE INVENTION Conventional semiconductor memory devices have increased in capacity due to advances in 81 semiconductor technology, but the degree of integration is currently approaching its limit. This limit on the degree of integration is due to the fact that electrons form bands in a solid and have spatial spread, which requires miniaturization through physical processing, but there is a limit to this miniaturization.

近年、有機分子を利用したメモリー素子が研究されてお
り、有機分子の場合には電子が分子内で局在化している
ため、将来の一層高度な微細化には有利であると考えら
れている。有機分子を利用、するメモリー素子が、その
機能もしくは特性を発揮するのは、分子が一定の配列も
しくは配向性を有するためである。このような配向性を
有する有機分子薄膜の製造には、L B法(ラングミュ
ア・プロジェット法)や真空蒸着法が適用できる。
In recent years, memory devices using organic molecules have been researched, and in the case of organic molecules, electrons are localized within the molecule, which is thought to be advantageous for even more advanced miniaturization in the future. . Memory elements that utilize organic molecules exhibit their functions or characteristics because the molecules have a certain arrangement or orientation. The LB method (Langmuir-Prodgett method) or the vacuum evaporation method can be applied to the production of an organic molecule thin film having such orientation.

メモリー素子として利用できる配向性を有する有機物と
して、フタロシアニン、特に鉛フタロシアニンカ有望視
されている。フタロシアニンは、その熱的安定性と光電
導性に注目されて、数多くの研究がなされている。フタ
ロシアニンは、中心金属としてCu、 Fe、 Co、
Ni、Zn等を有する錯体を構成し、多くの金属錯体で
は平面的な分子構造を有するが、鉛フタロシアニンは鉛
原子の原子半径が大きいため、鉛原子を頂点としたコー
ン状の分子構造を有している。このような分子構造をと
ることによって、鉛フタロシアニンの電気的特性は、極
めて特徴的なものとなる。すなわち、中心金属である鉛
原子が重なって積層された単斜晶系構造を有し、−次元
的な電導性を有するものであり、このことは、例えば、
フィツクス レタ′−ズφPhysics Lette
rs Vol、 45A、 No。4、p。
Phthalocyanine, especially lead phthalocyanine, is considered to be a promising organic material with orientation that can be used as a memory element. Phthalocyanine has attracted attention for its thermal stability and photoconductivity, and numerous studies have been conducted on it. Phthalocyanine has Cu, Fe, Co,
It forms a complex containing Ni, Zn, etc., and many metal complexes have a planar molecular structure, but lead phthalocyanine has a cone-shaped molecular structure with the lead atom at the apex because the atomic radius of the lead atom is large. are doing. By adopting such a molecular structure, lead phthalocyanine has extremely unique electrical properties. That is, it has a monoclinic structure in which lead atoms, which are the central metal, are stacked one on top of the other, and has -dimensional conductivity, which means that, for example,
Fixtures Letters φPhysics Lette
rs Vol, 45A, No. 4, p.

346.1973に報告されている。また、鉛フタロシ
アニンが、メモリー素子の機能として必要なスイッチン
グ現象を示すことも既に報告されている。この場合、昇
華法によって鉛フタロシアニン薄膜を製造しており、ス
イッチング現象は、電界に誘起された秩序無秩序転移(
order−disordertransition 
)によるものと説明されている。このような性質は、フ
タロシアニン分子の構造及びその結晶配向性と深い関係
があり、良好なスイッチング作用を果たし、メモリー素
子として有用な鉛フタロシアニン薄膜を製造するために
は、分子が一定方向に配向した良質な薄膜を製造する必
要がある 発明が解決しようとする課題 従来のメモリー素子は、0N−OFFの二値動作による
記憶を行っているので、記憶する情報の量に相当するだ
けの記憶単位、すなわち記憶空間を必要とし、記憶容量
の増加に伴ってそれだけ必要とする記憶空間も大きくな
り、メモリー素子が大きくなる問題がある。
346.1973. Furthermore, it has already been reported that lead phthalocyanine exhibits a switching phenomenon necessary for the function of memory devices. In this case, the lead phthalocyanine thin film is manufactured by the sublimation method, and the switching phenomenon is caused by an order-disorder transition (
order-disordertransition
). These properties are closely related to the structure of phthalocyanine molecules and their crystal orientation, and in order to produce lead phthalocyanine thin films that have good switching effects and are useful as memory devices, it is necessary to ensure that the molecules are oriented in a certain direction. It is necessary to manufacture a high-quality thin film.Problems to be Solved by the Invention Conventional memory devices perform storage using binary operation of 0N-OFF, so it is necessary to produce a memory unit corresponding to the amount of information to be stored. In other words, it requires storage space, and as the storage capacity increases, the required storage space also increases, causing the problem that the memory element becomes larger.

そこで、この発明の課題は、現在限界が見えてきたとさ
れるメモリー素子の集積度を、飛躍的に向上させること
のできるメモリー素子を構成することができる。鉛フタ
ロシアニン多層膜を製造する方法を提供することにある
Therefore, it is an object of the present invention to construct a memory element that can dramatically improve the degree of integration of memory elements, which is said to have reached its limit at present. An object of the present invention is to provide a method for manufacturing a lead phthalocyanine multilayer film.

課題を解決するための手段 発明者らは、前記した0N−OFFの二値動作による記
憶に代え、ひとつのメモリー素子を、印加電圧によって
三つ以上の状態へ変化させて記憶させることができれば
、記憶の多重化が図れ、一定の記憶空間に従来に比べて
飛躍的に多くの情報を記憶させることが可能になり、メ
モリー素子の大容量化、高集積化が実現できることを見
いだした。
Means for Solving the Problems The inventors have proposed that instead of storing data using the binary operation of 0N-OFF described above, if a single memory element can be changed into three or more states depending on an applied voltage and stored. It has been discovered that memory can be multiplexed and dramatically more information can be stored in a given storage space than before, making it possible to increase the capacity and integration of memory devices.

このような多重化メモリー素子の材料について検討した
結果、スイッチング特性を有する有機分子膜を多層に積
層することによって、上記のような多重記憶動作が可能
であることを見いだした。これは、有機分子膜の場合、
製造条件を適当に制御することによって容易にスイッチ
ング特性を変えることができるとともに、従来の半導体
に比べて、はるかに高度な集積化を実現できる可能性が
あるからである。そこで、メモリー素子に適した有機分
子膜としての前記鉛フタロシアニン薄膜を前記課題解決
のために利用することを検討した結果、この発明を完成
したものである。
As a result of studying materials for such multiplexed memory elements, it was discovered that the above-described multiplexed memory operation is possible by laminating multiple layers of organic molecular films having switching characteristics. In the case of organic molecular films, this is
This is because switching characteristics can be easily changed by appropriately controlling manufacturing conditions, and it is possible to achieve a much higher level of integration than conventional semiconductors. Therefore, as a result of studying the use of the lead phthalocyanine thin film as an organic molecular film suitable for memory devices to solve the above problems, the present invention was completed.

すなわち、前記課題を解決する、この発明のうち、請求
項1記載の発明は、互いにスイッチング特性の異なる鉛
フタロシアニン層からなる多層膜を製造する方法であっ
て、各層を蒸着法によって作製するとともに、各層の作
製時の蒸着速度を変えることによって、それぞれの層の
スイッチング特性を異ならせるようにしている。
That is, the invention according to claim 1 of this invention that solves the above problem is a method for manufacturing a multilayer film consisting of lead phthalocyanine layers having mutually different switching characteristics, in which each layer is manufactured by a vapor deposition method, and By changing the deposition rate during the fabrication of each layer, the switching characteristics of each layer are made to differ.

請求項2記載の発明は、請求項1記載の発明の実施に際
し、各層の作製時の蒸着速度を、2〜10^/secの
範囲で変えるようにしている。
According to the second aspect of the invention, when implementing the first aspect of the invention, the deposition rate during the production of each layer is varied within a range of 2 to 10^/sec.

作用 請求項1記載の発明によれば、鉛フタロンアニン層を真
空蒸着法によって製造することによって、メモリー素子
に必要なスイッチング特性を有する薄膜が作製でき、多
層膜の各層で蒸着速度を変えることによって、それぞれ
異なるスイッチング特性に設定することができる。
According to the invention described in claim 1, by manufacturing the lead phthalonanine layer by vacuum evaporation, a thin film having switching characteristics necessary for a memory element can be manufactured, and by changing the evaporation rate for each layer of the multilayer film, Each can be set to have different switching characteristics.

請求項2記載の発明によれば、蒸着速度を前記範囲の中
で変えることによって、多重化メモIJ −素子として
好適なスイッチング特性を有する多層膜を製造すること
ができる。
According to the second aspect of the invention, by varying the deposition rate within the above range, a multilayer film having switching characteristics suitable for a multiplexed memory IJ-device can be manufactured.

実施例 この発明における鉛フタロシアニンは、無水フタロシア
ニンあるいはその誘導体の水素原子が鉛分子で置換され
た、フタロシアニンおよび誘導体の鉛錯体を用いる。
Examples The lead phthalocyanine used in this invention is a lead complex of anhydrous phthalocyanine or a derivative thereof, in which the hydrogen atoms of the anhydrous phthalocyanine or its derivative are replaced with lead molecules.

発明者らは、鉛フタロシアニン薄膜の製造条件とスイッ
チング特性との関係について研究した結果、安定したス
イッチング現象の得られる条件を見いだした。さらに、
鉛フタロシアニン薄膜の製造条件のうち、真空蒸着法に
よって製造する場合の蒸着速度とスイッチング電圧との
間に、一定の関係があることを見いだした。第1図は、
このような鉛フタロシアニン薄膜(膜厚1μ)における
、蒸着速度(Rate)とスイッチング電圧(Swit
chingVol tage )との関係を示している
The inventors studied the relationship between the manufacturing conditions of lead phthalocyanine thin films and the switching characteristics, and as a result, they discovered conditions under which a stable switching phenomenon can be obtained. moreover,
Among the manufacturing conditions for lead phthalocyanine thin films, it has been found that there is a certain relationship between the deposition rate and switching voltage when manufacturing lead phthalocyanine thin films using a vacuum evaporation method. Figure 1 shows
The deposition rate (Rate) and switching voltage (Switch) in such a lead phthalocyanine thin film (thickness 1μ)
changingVoltage).

上記のような、鉛フタロシアニン薄膜を用い、その製造
時の蒸着速度を適宜に設定することによって、スイッチ
ング電圧の異なる層を、任意に製造することができ、こ
のようなスイッチング電圧の異なる鉛フタロシアニン薄
膜層を複数層設置することによって、この発明にかかる
鉛フタロシアニン多層膜が容易に製造できる。
By using a lead phthalocyanine thin film as described above and appropriately setting the deposition rate during its production, layers with different switching voltages can be manufactured as desired. By installing a plurality of layers, the lead phthalocyanine multilayer film according to the present invention can be easily manufactured.

鉛フタロシアニン多層膜からなるメモリー素子を製造す
るには、ガラス等の絶縁性基板上に、予め金等の金属を
電極として作製し、その上に、真空蒸着法によって鉛フ
タロシアニン薄膜を形成する。蒸着時の蒸着速度を順次
段階的に変化させることによって、スイッチング特性の
異なる複数層からなる多層構造の鉛フタロシアニン層を
構成する。ついで、適宜電極金属からなる対極な設置す
れば、メモリー素子が完成する。
To manufacture a memory element made of a lead phthalocyanine multilayer film, a metal such as gold is prepared in advance as an electrode on an insulating substrate such as glass, and a lead phthalocyanine thin film is formed thereon by vacuum evaporation. A lead phthalocyanine layer with a multilayer structure consisting of a plurality of layers having different switching characteristics is constructed by sequentially changing the deposition rate during vapor deposition stepwise. Then, a counter electrode made of an appropriate electrode metal is installed to complete the memory element.

上記製法において、メモリー素子に良好な多重記憶特性
を実現させるためには、複数層の各鉛フタロシアニン層
のスイッチング電圧、すなわちスイッチング特性が明確
に異なっていることが必要である。具体的には、例えば
、各層のスイッチング電圧が、互いに2倍以上異なって
いることが好ましい。各層毎のスイッチング特性を明確
に分離するためには、各層毎に蒸着速度を変化させる時
に、シャッターを閉じる等の配慮によって、中間のスイ
ッチング電圧を有する層ができないようにすることが好
ましい。
In the above manufacturing method, in order to realize good multiple memory characteristics in the memory element, it is necessary that the switching voltages, that is, the switching characteristics of each of the plurality of lead phthalocyanine layers, are clearly different. Specifically, for example, it is preferable that the switching voltages of each layer differ from each other by a factor of two or more. In order to clearly separate the switching characteristics of each layer, it is preferable to take precautions such as closing a shutter when changing the deposition rate for each layer to prevent the formation of layers with intermediate switching voltages.

また、蒸着速度の設定範囲は、多重化メモリー素子の要
求性能あるいは設計条件によって、必要とされるスイッ
チング特性を実現するのに適した速度に設定され、例え
ば、第1図に示した蒸着速度とスイッチング電圧との関
係等から決定される。
Further, the setting range of the deposition rate is set to a speed suitable for realizing the required switching characteristics depending on the required performance or design conditions of the multiplexed memory element. For example, the deposition rate shown in FIG. It is determined based on the relationship with switching voltage, etc.

具体的には、各層の作製時の蒸着速度を、2A/Sec
から10′A/seeの範囲で変えることが好ましく/
1゜ 多層膜を構成する各層は、スイッチング電圧が異なると
ともに、各層の抵抗値が等しいものが好ましい。これは
、メモリー素子に電界を印加したときに、各層に均等に
電界がかかるようにするためである。ひとつのメモリー
素子に、高抵抗な層と低抵抗な層が混在していると、素
子に印加された電界は、素子内部では、はとんど高抵抗
層側のみにかかつて低抵抗層側には電界がかからないと
いうアンバランスが生じ、良好な多重記憶動作が果たせ
なくなるからである。各層の抵抗値を等しくするには、
各層の膜厚を適当に調整する等の手段をとればよい。
Specifically, the deposition rate during the production of each layer was set to 2A/Sec.
It is preferable to change it within the range of 10'A/see from /
It is preferable that the layers constituting the 1° multilayer film have different switching voltages and the same resistance value. This is to ensure that when an electric field is applied to the memory element, the electric field is applied equally to each layer. If a single memory element contains both high-resistance layers and low-resistance layers, the electric field applied to the element will be applied only to the high-resistance layer or once to the low-resistance layer. This is because an unbalance occurs in which no electric field is applied to the memory, making it impossible to perform a good multiplexed memory operation. To make the resistance value of each layer equal,
What is necessary is to take measures such as appropriately adjusting the film thickness of each layer.

スイッチング特性の異なる層の数が多い程、多重化でき
る記憶量が飛躍的に増加するが、少なくとも2層あれば
、この発明の効果を発揮できる。
As the number of layers with different switching characteristics increases, the amount of memory that can be multiplexed increases dramatically, but the effects of the present invention can be exerted as long as there are at least two layers.

つぎに、上記した、この発明にかかるメモリー素子を実
際に製造した具体的実施例について説明する。
Next, a specific example in which the above-mentioned memory element according to the present invention was actually manufactured will be described.

〈実施例1〉 市販の鉛フタロシアニンを真空中で昇華精製したものを
原料として用い、これを石英ルツボに入れて夕/ゲステ
ンヒーターで加熱することによって真空蒸着を行った。
<Example 1> Commercially available lead phthalocyanine purified by sublimation in a vacuum was used as a raw material, and vacuum evaporation was performed by placing it in a quartz crucible and heating it with a Gesten heater.

蒸着時のルツボ温度を制御することによって、蒸着速度
を複数段階に制御した。蒸着時の真空度は、10 To
rrとした。蒸着基板としてはガラスを用い、鉛フタロ
シアニンを蒸着する前に、予め電極となる金を蒸着法に
よって作製しておき、その上に鉛フタロ7アニン薄膜を
蒸着形成した。
By controlling the crucible temperature during deposition, the deposition rate was controlled in multiple stages. The degree of vacuum during vapor deposition was 10 To
It was set as rr. Glass was used as the deposition substrate, and before depositing lead phthalocyanine, gold to serve as an electrode was previously prepared by a deposition method, and a lead phthalocyanine thin film was deposited thereon.

スイッチング電圧が4Vと10Vの2層の薄膜を作製す
るために、蒸着速度を、第1層は6^/sec、第2層
は8λ/secに設定した。このとき、形成される各層
の抵抗値が、はぼ等しくなるようにして、複数の鉛フタ
ロシアニン薄膜を形成した。蒸着速度と膜抵抗の関係は
、第2図に示すように、蒸着速度(Rate)が大きく
なるほど、膜抵抗(几esistance )が高くな
る。なお、この図では、鉛フタロシアニン薄膜の膜厚を
1μに設定して、OFF状態での抵抗値を測定した。こ
の結果から、両層の抵抗値を等しくするために、第1層
の鉛フタロシアニン蒸着膜を厚さ約18000大形成し
、第2層を厚さ約20000人形成した。各層単独での
スイッチング電圧およびOFF状態での抵抗値を、それ
ぞれ単独で作製したす/トイ°ツチセルで測定したとこ
ろ、第1層はスイッチング電圧4V、抵抗値36にΩで
あり、第2層はスイッチング電圧10V、抵抗値36に
Ωであり、スイッチング電圧には2倍以上の明確な違い
があると同時に、抵抗値は同じ値になっていることが確
認できた。
In order to produce a two-layer thin film with switching voltages of 4 V and 10 V, the deposition rate was set to 6^/sec for the first layer and 8λ/sec for the second layer. At this time, a plurality of lead phthalocyanine thin films were formed so that the resistance values of the respective layers formed were approximately equal. As shown in FIG. 2, the relationship between the deposition rate and film resistance is such that the higher the deposition rate, the higher the film resistance. In this figure, the thickness of the lead phthalocyanine thin film was set to 1 μm, and the resistance value in the OFF state was measured. Based on this result, in order to equalize the resistance values of both layers, the first layer of lead phthalocyanine vapor deposited film was formed to a thickness of about 18,000, and the second layer was formed to a thickness of about 20,000. When the switching voltage and the resistance value in the OFF state of each layer were measured using the independently fabricated ST/TOI cell, the first layer had a switching voltage of 4 V and a resistance value of 36 Ω, and the second layer had a switching voltage of 4 V and a resistance value of 36 Ω. The switching voltage was 10 V and the resistance value was 36 Ω, and it was confirmed that there was a clear difference of more than twice the switching voltage, and at the same time, the resistance value was the same.

上記のよう忙して、スイッチング特性の異なる2層を形
成した後、両端に電極を設置してV−I(電圧−電流)
特性を測定した結果、2段階のスイッチング特性を示し
、多層膜の状態でもそれぞ汁の層の特性が良好に保持さ
れていることが確認できた。
After forming two layers with different switching characteristics as described above, electrodes are installed on both ends to obtain V-I (voltage-current).
As a result of measuring the characteristics, it was confirmed that it exhibited two-stage switching characteristics, and that the characteristics of each layer of juice were well maintained even in the state of a multilayer film.

このような2段階のスイッチング動作を行えることから
、この発明の製造法によって製造された鉛フタロシアニ
ン多層膜が、多重化メモリー素子として良好に利用でき
ることが実証できた。
Since such a two-step switching operation can be performed, it has been demonstrated that the lead phthalocyanine multilayer film manufactured by the manufacturing method of the present invention can be favorably used as a multiplexed memory element.

発明の効果 以上に説明した、この発明のうち、請求項1記載の発明
は、鉛フタロシアニン層を蒸着法によって製造すること
によって、メモリー素子に必要なスイッチング特性の優
れた薄膜が作製できるとともに、多層膜の各層で蒸着速
度を変えることによって、それぞれ異なるスイッチング
特性に簡単かつ正確に設定することができる。したがっ
て、従来の半導体メモリー素子等では実現不可能であっ
た多重記憶が行える多重化メモリー素子となる鉛フタロ
シアニン多層膜を、極めて簡単に製造することができる
。しかも、従来の半導体に比べて高集積化が可能な有機
分子膜を利用すると同時に、多重記憶が行えることによ
って、従来のメモリー素子に対して、飛躍的な大容量化
あるいは高集積化を図ることができる。
Effects of the Invention Of the invention described above, the invention according to claim 1 is capable of producing a thin film with excellent switching characteristics required for a memory element by manufacturing a lead phthalocyanine layer by a vapor deposition method, and also makes it possible to produce a thin film with excellent switching characteristics necessary for a memory element. By varying the deposition rate for each layer of the film, different switching characteristics can be easily and precisely set. Therefore, it is possible to extremely easily produce a lead phthalocyanine multilayer film that serves as a multiplexed memory element that can perform multiple storage, which has been impossible with conventional semiconductor memory elements. Moreover, by using an organic molecular film that allows for higher integration than conventional semiconductors and at the same time being able to perform multiple storage, it is possible to dramatically increase capacity or increase integration compared to conventional memory elements. Can be done.

請求項2記載の発明によれば、請求項1記載の発明の上
記効果に加え、蒸着速度を2〜10^/SeCの範囲で
変えることによって、多重化メモリー素子として好適な
スイッチング特性を有する多層膜を製造することができ
る。
According to the invention set forth in claim 2, in addition to the above-mentioned effects of the invention set forth in claim 1, by changing the deposition rate in the range of 2 to 10^/SeC, a multilayer film having switching characteristics suitable for a multiplexed memory element is produced. Membranes can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例にかかる鉛フタロシアニン薄
膜の蒸着速度−スイッチング電圧関係線図、第2図は鉛
フタロンアニン薄膜の蒸着速度−抵抗値関係線図である
。 第1図 代理人の氏名 弁理士 粟 野 重 孝 ばか1名K 
% 通水(A /sec )
FIG. 1 is a vapor deposition rate-switching voltage relationship diagram for a lead phthalocyanine thin film according to an embodiment of the present invention, and FIG. 2 is a vapor deposition rate-resistance value relationship diagram for a lead phthalonanine thin film. Figure 1 Name of agent Patent attorney Shigetaka Awano Idiot 1 K
% Water flow (A/sec)

Claims (2)

【特許請求の範囲】[Claims] (1)互いにスイッチング特性の異なる鉛フタロシアニ
ン層からなる多層膜を製造する方法であって、各層を蒸
着法によって作製するとともに、各層の作製時の蒸着速
度を変えることによって、それぞれの層のスイッチング
特性を異ならせるようにすることを特徴とする鉛フタロ
シアニン多層膜の製法。
(1) A method for manufacturing a multilayer film consisting of lead phthalocyanine layers with different switching characteristics, in which each layer is manufactured by a vapor deposition method, and the switching characteristics of each layer are changed by changing the deposition rate during the manufacturing of each layer. A method for producing a lead phthalocyanine multilayer film, characterized in that the lead phthalocyanine multilayer film has different properties.
(2)各層の作製時の蒸着速度を、2〜10Å/sec
の範囲で変える請求項1記載の鉛フタロシアニン多層膜
の製法。
(2) The deposition rate during the production of each layer was set at 2 to 10 Å/sec.
2. The method for producing a lead phthalocyanine multilayer film according to claim 1, wherein the lead phthalocyanine multilayer film is varied within the following range.
JP63208727A 1988-08-23 1988-08-23 Manufacture of lead phthalocyanine multilayer film Pending JPH0258240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208727A JPH0258240A (en) 1988-08-23 1988-08-23 Manufacture of lead phthalocyanine multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208727A JPH0258240A (en) 1988-08-23 1988-08-23 Manufacture of lead phthalocyanine multilayer film

Publications (1)

Publication Number Publication Date
JPH0258240A true JPH0258240A (en) 1990-02-27

Family

ID=16561081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208727A Pending JPH0258240A (en) 1988-08-23 1988-08-23 Manufacture of lead phthalocyanine multilayer film

Country Status (1)

Country Link
JP (1) JPH0258240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052827A1 (en) * 2001-12-18 2003-06-26 Matsushita Electric Industrial Co., Ltd. Non-volatile memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052827A1 (en) * 2001-12-18 2003-06-26 Matsushita Electric Industrial Co., Ltd. Non-volatile memory
US7027327B2 (en) 2001-12-18 2006-04-11 Matsushita Electric Industrial Co., Ltd. Non-volatile memory

Similar Documents

Publication Publication Date Title
JP4824278B2 (en) Variable resistance material cell and manufacturing method thereof
US8466445B2 (en) Silver-selenide/chalcogenide glass stack for resistance variable memory and manufacturing method thereof
JP5134529B2 (en) Method for manufacturing electrolyte material layer in semiconductor memory device
US20090124041A1 (en) Resistance variable memory device with nanoparticle electrode and method of fabrication
JP7020690B2 (en) Memristor element and its manufacturing method
CN101271962A (en) Organic memory devices and preparation method thereof
CN110931635B (en) Low-density-change superlattice phase change film, phase change memory and preparation method of phase change film
US8920684B2 (en) Al-Sb-Te phase change material used for phase change memory and fabrication method thereof
JP2018538701A5 (en)
CN101826598A (en) Polymorphic organic resistive random access memory and preparation method
US6858465B2 (en) Elimination of dendrite formation during metal/chalcogenide glass deposition
CN104425712B (en) The all-transparent resistance-variable storing device of a kind of rare earth oxide as accumulation layer and preparation method thereof
KR101054465B1 (en) Variable resistance layer manufacturing method of resistive memory
CN109728162B (en) Phase change film, phase change memory cell, preparation method of phase change memory cell and phase change memory
CN109935688B (en) Phase change film structure, phase change storage unit, preparation method of phase change storage unit and phase change memory
CN113594360B (en) Memristor based on inorganic molecular crystal, preparation method and application thereof
US20070187744A1 (en) Integrated circuits, memory device, method of producing an integrated circuit, method of producing a memory device, memory module
JPH0258240A (en) Manufacture of lead phthalocyanine multilayer film
JPH0258264A (en) Memory device
CN111725397A (en) Phase change material structure, memory unit and manufacturing method thereof
CN111725396A (en) Graphene-phase change material structure, memory unit and preparation method thereof
KR101721162B1 (en) Proton-based resistive switching memory and method of fabricating the same
JP2019153621A (en) Phase change material and phase change type memory element by use thereof
JP7462281B2 (en) Non-volatile memory device and method for manufacturing the same
CN115000121A (en) Phase change memory and preparation method thereof