JPH025820B2 - - Google Patents

Info

Publication number
JPH025820B2
JPH025820B2 JP20072783A JP20072783A JPH025820B2 JP H025820 B2 JPH025820 B2 JP H025820B2 JP 20072783 A JP20072783 A JP 20072783A JP 20072783 A JP20072783 A JP 20072783A JP H025820 B2 JPH025820 B2 JP H025820B2
Authority
JP
Japan
Prior art keywords
annealing
grain
parts
final
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20072783A
Other languages
Japanese (ja)
Other versions
JPS6096770A (en
Inventor
Osamu Tanaka
Yoshitaka Hiromae
Shozaburo Nakajima
Hiroshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20072783A priority Critical patent/JPS6096770A/en
Publication of JPS6096770A publication Critical patent/JPS6096770A/en
Publication of JPH025820B2 publication Critical patent/JPH025820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は鉄損の優れた方向性電磁鋼板の製造法
に関する。 (従来技術) 方向性電磁鋼板は、主としてトランスその他電
気機器の鉄心として使用されるもので、磁気特性
として励磁特性と鉄損特性が良好でなくてはなら
ない。 方向性電磁鋼板は、2次再結晶現象を利用して
圧延面に(110)面、圧延方向に<001>軸をもつ
たGoss組織と称される2次再結晶を発達させる
ことによつて得られる。この2次再結晶を発達さ
せるためには、仕上焼鈍昇温過程の2次再結晶温
度域までは、1次再結晶粒成長を抑制するいわゆ
るインヒビターが必要で、現在ではAlN、MnS、
MnSe、BN等があり、これらインヒビターとし
ての条件は微細に析出分散し、一定温度域までは
溶解せず、サイズ変化を起さないことが重要であ
る。 通常、方向性電磁鋼板の製造方法としては、
Si4wt%(以下%と略す)以下を含有する珪素鋼
素材を熱延し、必要に応じて熱延板を焼鈍し、1
回又は2回の冷延工程により、最終仕上厚みの冷
延板を得、次に脱炭焼鈍を行つた後、MgOを主
成分とする焼鈍分離剤を塗布し、最終仕上焼鈍を
施して、前記Goss方位をもつた2次再結晶粒を
発達させ、更にS、Nなどの不純物を除去すると
共に、ガラス状絶縁皮膜を形成させる一連の工程
を経て製造される。 省エネルギーを強く要望される昨今では、方向
性電磁鋼板の鉄損を低減せしめる検討が種々なさ
れており、インヒビターを形成する添加成分の他
に、絶縁皮膜形成に係わる焼鈍分離剤について提
案されている。 例えば特関昭56−75577号公報には、MgOを主
成分とする焼鈍分離剤に、S又は1000℃以下で分
解するS化合物をS換算で0.4〜2%と、Sr化合
物をSr換算で0.2〜10%と含有させ、また必要に
応じて、Ti化合物を含有させ、該焼鈍分離剤を
脱炭焼鈍により、SiO2を含む酸化層が形成され
た板表面に塗布し、次いで最終仕上焼鈍する方法
が開示されている。 また特開昭58−107417号公報は、MgOを主成
分とする焼鈍分離剤に、粒度20μ以下が70%以上
の粒度分布をもつSbまたはSb化合物を0.01〜1.0
%含有させ、該焼鈍分離剤を塗布して最終仕上焼
鈍する方法である。 前者では、焼鈍分離剤へのS含有により鉄損を
低くし、Sr含有によつて前記S含有により生じ
る皮膜の点状欠損を防ぐようにしている。また後
者では焼鈍分離剤へSbを含有させて、2次再結
晶粒径の減少を図り、鉄損を低下せしめるように
している。このように提案されているが、これで
十分といえるものは少なく、今後も種々検討しな
ければならないというのが現状である。 〔発明の目的) 本発明は、鉄損の優れた方向性電磁鋼板の製造
を目的とし、皮膜形成過程を詳細に検討し、創出
されたものである。 (発明の構成・作用) 以下に本発明を詳細に述べる。方向性電磁鋼板
の製造において、最終仕上焼鈍で焼鈍分離剤
MgOと、反応によつて板表面に形成されるガラ
ス状皮膜は、主としてMgOと脱炭焼鈍で板表面
に形成された酸化膜中のSiO2とが、2MgO+SiO2
→Mg2SiO4の反応により形成される。このため、
脱炭焼鈍で形成される板表面の酸化膜には、一定
量以上のSiO2が存在することが必要であるから、
SiO2形成域の低露点で、長時間脱炭焼鈍するの
が望ましい。 しかし、脱炭性、生産性の問題から熱化学平衡
上は、フアヤライト(Fayalite)形成域である高
露点、短時間焼鈍を行うのが普通である。このた
め脱炭板の酸化膜は、Fe2SiO4フアヤライト或い
はFe2SiO2+SiO2主体の酸化膜となつており、ご
く少量のFeOを含む場合がある。このようなFe
酸化物は、鋼板表面の酸素量の源となつて、最終
仕上焼鈍過程で焼鈍間を酸化性にするため、磁気
特性向上の面からは好ましくない。 かかることから本発明者等は、磁気特性を向上
すべく最終仕上焼鈍での昇温過程における焼鈍雰
囲気ガスによるインヒビターの不安定化と、鋼板
表面酸化層への影響をできるだけ小さくするため
の焼鈍分離剤の組成について種々検討した結果、
従来は焼鈍分離剤中に含まれた場合に有害視され
ていた塩素化合物の中にも、特定の化合物に限つ
て非常に有効な作用を生ずる事を新規に見出し
た。 本発明はこの知見に基づきなされたもので、そ
の技術的骨子は、方向性電磁鋼板の製造におい
て、脱炭焼鈍を施して、SiO2を含む酸化層を形
成した鋼板上に、Sb、Sr、Ti、Zrの塩化物の1
種または2種以上を、酸化マグネシウム100重量
部に対して、0.02〜1.5重量部含む焼鈍分離剤を
塗布して、最終仕上焼鈍を行うことにより、鉄損
を著しく低減せしめるところにある。 この特定の塩化物を含有させた焼鈍分離剤によ
ると、これらの塩化物は低融点であるため、(例
えばSbCl3は約80℃)、焼鈍分離剤塗布乾燥工程、
或いは最終仕上焼鈍の昇温過程において、脱炭焼
鈍時に形成された酸化膜上に溶液又は溶融状態と
なつて酸化膜中のFe酸化物と反応して、焼鈍表
面酸化層中のFeOを減らし、表面をSiO2リツチ
にして緻密にする作用により、ガラス皮膜形成を
有利にする。又、FeOをエツチングすることで、
鋼板酸化膜中の酸素量を減らし、最終仕上焼鈍に
おける板間雰囲気が酸化性になるのを抑える効果
がある。 更に、塩化物として用いたSb、Sr、Zn、Tiが
鋼板表面に緻密なうすい膜を形成するため、
SiO2主体の酸化膜を最終仕上焼鈍昇温時に保護
すると共に、焼鈍分離剤MgOの水和水分による
雰囲気ガスによる酸化から、表面を保護する効果
がある。これらの新規な知見と効果により鉄損が
低減されるのである。 以下その詳細について述べる。 本発明の方法は、広く方向性電磁鋼板製造に用
いられるものである。まず、適用される一方向性
電磁鋼板用熱延板(以下熱延板という)の鋼成分
について述べる。Cはその含有量が0.03%未満の
場合は、二次再結晶が不良となり、一方、0.100
%を超えると脱炭性、磁気特性の点で好ましくな
いので、0.03〜0.100%とする。Siは鉄損を支配す
る重要な成分であり、2.5%未満では良好な鉄損
が得られない。一方、その含有量が4.0%を超え
ると、冷延性が著るしく劣化するので2.5〜4.0%
とする。 この他にインヒビターとして作用する硫化物あ
るいは窒化物を形成するために、Mn、S、Cu、
Al、N等が含有される。この含有量は特別な規
定の必要はないが、Mnは0.03〜0.20%、S:0.01
〜0.05%、Alは酸可溶Alとして0.01〜0.06%、N
は0.003〜0.012%、Cuは0.05〜0.030%である。硫
化物、窒化物は一方あるいは両方が含まれる。さ
らに必要に応じて、Sn、Sb、Se、Cr、Ni、Mo
等の元素を1種または2種以上含有させても差し
つかえない。 熱延板は、連続鋳造または造塊分塊圧延により
得られた鋼片を、熱間圧延して製造される。その
後熱延板は必要に応じて焼鈍され、次いで1回ま
たは中間焼鈍をはさんで、2回以上の冷間圧延に
より最終板厚、例えば0.15〜0.35mmにされる。 その後浸潤水素+窒素雰囲気中で脱炭焼鈍を行
ない、SiO2を含む酸化層が形成された板表面に、
本発明の焼鈍分離剤を塗布する。焼鈍分離剤は酸
化マグネシウム100重量部に対して、Sb、Sr、
Ti、Zrの塩化物の1種または2種以上を、0.02〜
1.5重量部含有させたものである。 塩化物含有量を0.02〜1.5重量部に限定したの
は、0.02重量部より少ないと前述のエツチング作
用及びシール作用が小さいこと、1.5重量部より
多いと、エツチング作用が強すぎて、鋼板表面を
荒らすためと、余剰のClが仕上焼鈍昇温過程の高
温部まで残留して、ガラス皮膜形成を妨げるため
である。 前記酸化マグネシウムは、水に易溶の軽質
MgOでもよく、水に不溶のMgOクリンカーを用
いてもよいが、水和水分4%以下の低活性MgO
を用いるのが効果的である。また、必要に応じて
TiO2、B化合物を添加してもよい。焼鈍分離剤
のスラリー液を塗布した鋼板は、200〜300℃で乾
燥した後、H2或いはN2+H2雰囲気で昇温して2
次再結晶させ、1200℃、20hr H2中で焼鈍して純
化せしめる最終仕上焼鈍を行う。 実施例 1 Si:3.25%、Al:0.028%、Cu:0.08%、Sn:
0.10%、Mn:0.080%、N:0.008%、S:0.024
%、C:0.065%の成分のスラブを、公知の方法
により熱延―熱延板焼鈍―酸洗―冷延により
0.225mm厚とした。この鋼板を840℃で2分間、
N2+H2浸潤雰囲気中で脱炭焼鈍をした後、
MgO100重量部、TiO25重量部に対し、塩化アン
チモン(SbCl3)の添加量を変えて配合した焼鈍
分離剤を塗布し、1200℃、20hrの仕上焼鈍を行つ
たところ、次のような結果が得られた。
(Industrial Application Field) The present invention relates to a method for producing grain-oriented electrical steel sheets with excellent iron loss. (Prior Art) Grain-oriented electrical steel sheets are mainly used as iron cores for transformers and other electrical equipment, and must have good magnetic properties such as excitation properties and iron loss properties. Grain-oriented electrical steel sheets are produced by utilizing the secondary recrystallization phenomenon to develop a secondary recrystallization called the Goss structure, which has a (110) plane on the rolled surface and a <001> axis in the rolling direction. can get. In order to develop this secondary recrystallization, a so-called inhibitor is required to suppress the primary recrystallized grain growth up to the secondary recrystallization temperature range in the final annealing heating process.
There are MnSe, BN, etc., and it is important that these inhibitors are finely precipitated and dispersed, do not melt up to a certain temperature range, and do not cause size changes. Normally, the manufacturing method for grain-oriented electrical steel sheets is as follows:
A silicon steel material containing Si4wt% (hereinafter abbreviated as %) or less is hot-rolled, and if necessary, the hot-rolled sheet is annealed.
A cold-rolled sheet with the final finish thickness is obtained through one or two cold rolling processes, and then decarburized annealed, coated with an annealing separator containing MgO as the main component, and subjected to final finish annealing. It is manufactured through a series of steps in which secondary recrystallized grains with the Goss orientation are developed, impurities such as S and N are removed, and a glass-like insulating film is formed. In recent years, when there is a strong demand for energy conservation, various studies have been made to reduce the iron loss of grain-oriented electrical steel sheets, and in addition to additive components that form inhibitors, annealing separators that are involved in the formation of insulation films have been proposed. For example, Tokusekki Publication No. 56-75577 states that in an annealing separator mainly composed of MgO, S or an S compound that decomposes at temperatures below 1000°C should be added in an amount of 0.4 to 2% in terms of S, and an Sr compound should be added in an amount of 0.2% in terms of Sr. ~10% and, if necessary, a Ti compound, and apply the annealing separator to the plate surface on which an oxide layer containing SiO 2 is formed by decarburization annealing, and then final finish annealing. A method is disclosed. Furthermore, JP-A-58-107417 discloses that Sb or an Sb compound having a particle size distribution of 70% or less of 20μ or less is added to an annealing separator mainly composed of MgO.
%, and the annealing separator is applied and final annealing is performed. In the former, iron loss is lowered by containing S in the annealing separator, and by containing Sr, point defects in the film caused by the S content are prevented. In the latter case, Sb is included in the annealing separator to reduce the secondary recrystallized grain size and reduce core loss. Although such proposals have been made, there are few that can be said to be sufficient, and the current situation is that various considerations must be made in the future. [Object of the Invention] The present invention was created through detailed study of the film formation process, with the aim of producing grain-oriented electrical steel sheets with excellent iron loss. (Structure and operation of the invention) The present invention will be described in detail below. In the production of grain-oriented electrical steel sheets, annealing separator is used in final annealing.
The glass-like film formed on the plate surface through the reaction between MgO and SiO 2 in the oxide film formed on the plate surface during decarburization annealing is 2MgO + SiO 2 .
→Formed by the reaction of Mg 2 SiO 4 . For this reason,
The oxide film formed on the plate surface during decarburization annealing requires the presence of a certain amount of SiO 2 or more.
It is desirable to perform decarburization annealing for a long time at a low dew point in the SiO 2 forming region. However, due to decarburization and productivity issues, in terms of thermochemical equilibrium, it is common to perform annealing at a high dew point and for a short time in the Fayalite formation region. Therefore, the oxide film of the decarburization plate is an oxide film mainly composed of Fe 2 SiO 4 huayalite or Fe 2 SiO 2 +SiO 2 and may contain a very small amount of FeO. Fe like this
Oxides act as a source of oxygen on the surface of the steel sheet, making the annealing area oxidizing during the final finish annealing process, and are therefore unfavorable from the standpoint of improving magnetic properties. Therefore, in order to improve the magnetic properties, the present inventors destabilized the inhibitor due to the annealing atmosphere gas during the temperature rising process in final finish annealing, and developed an annealing separation method to minimize the effect on the oxidized layer on the surface of the steel sheet. As a result of various studies on the composition of the agent,
Even among chlorine compounds, which were conventionally considered harmful when included in annealing separators, we have newly discovered that certain compounds have very effective effects. The present invention was made based on this knowledge, and its technical gist is that in the production of grain -oriented electrical steel sheets, Sb, Sr, Ti, Zr chloride 1
By applying an annealing separator containing 0.02 to 1.5 parts by weight of one or more seeds per 100 parts by weight of magnesium oxide and performing final annealing, iron loss can be significantly reduced. According to this particular chloride-containing annealing separator, since these chlorides have a low melting point (for example, SbCl 3 is about 80°C), the annealing separator coating and drying process,
Alternatively, in the temperature raising process of final finish annealing, it becomes a solution or molten state on the oxide film formed during decarburization annealing and reacts with Fe oxide in the oxide film to reduce FeO in the annealed surface oxide layer, By enriching the surface with SiO 2 and making it dense, it is advantageous for glass film formation. Also, by etching FeO,
It has the effect of reducing the amount of oxygen in the oxide film of the steel sheet and suppressing the atmosphere between the sheets from becoming oxidizing during final finish annealing. Furthermore, since Sb, Sr, Zn, and Ti used as chlorides form a dense thin film on the steel sheet surface,
It has the effect of protecting the SiO 2 -based oxide film during temperature rise during final annealing, and also protecting the surface from oxidation by atmospheric gas due to hydrated moisture of the annealing separator MgO. These new findings and effects will reduce iron loss. The details will be described below. The method of the present invention is widely used for producing grain-oriented electrical steel sheets. First, the steel components of the applied hot-rolled sheet for grain-oriented electrical steel sheet (hereinafter referred to as hot-rolled sheet) will be described. If the C content is less than 0.03%, secondary recrystallization will be poor;
% is unfavorable in terms of decarburization and magnetic properties, so it is set at 0.03 to 0.100%. Si is an important component that controls iron loss, and if it is less than 2.5%, good iron loss cannot be obtained. On the other hand, if its content exceeds 4.0%, the cold rollability will deteriorate significantly, so it should be reduced to 2.5 to 4.0%.
shall be. In addition, Mn, S, Cu,
Contains Al, N, etc. There is no need for special regulations regarding this content, but Mn is 0.03 to 0.20%, S: 0.01
~0.05%, Al is 0.01~0.06% as acid-soluble Al, N
is 0.003 to 0.012%, and Cu is 0.05 to 0.030%. One or both of sulfides and nitrides may be included. Furthermore, if necessary, Sn, Sb, Se, Cr, Ni, Mo
There is no problem even if one or more of the following elements are contained. A hot-rolled sheet is manufactured by hot-rolling a steel billet obtained by continuous casting or ingot-blushing rolling. Thereafter, the hot-rolled sheet is annealed if necessary, and then cold-rolled once or twice or more with intermediate annealing to give the sheet a final thickness of, for example, 0.15 to 0.35 mm. After that, decarburization annealing is performed in an infiltrated hydrogen + nitrogen atmosphere, and an oxide layer containing SiO 2 is formed on the plate surface.
Apply the annealing separator of the present invention. The annealing separator contains Sb, Sr,
One or more types of Ti, Zr chloride, 0.02~
It contained 1.5 parts by weight. The reason for limiting the chloride content to 0.02 to 1.5 parts by weight is that if it is less than 0.02 parts by weight, the aforementioned etching and sealing effects will be small, and if it is more than 1.5 parts by weight, the etching action will be too strong and the steel plate surface will be damaged. This is because excess Cl remains in the high-temperature part of the final annealing temperature increase process and prevents glass film formation. The magnesium oxide is a light compound that is easily soluble in water.
MgO may be used, or a water-insoluble MgO clinker may be used, but low-activity MgO with a hydration moisture of 4% or less may be used.
It is effective to use Also, if necessary
TiO 2 and B compound may be added. The steel plate coated with the slurry liquid of the annealing separator is dried at 200 to 300°C, and then heated in an H 2 or N 2 + H 2 atmosphere.
The final annealing is then recrystallized and purified by annealing in H 2 at 1200°C for 20 hours. Example 1 Si: 3.25%, Al: 0.028%, Cu: 0.08%, Sn:
0.10%, Mn: 0.080%, N: 0.008%, S: 0.024
%, C: 0.065% component was hot rolled, hot rolled plate annealed, pickled and cold rolled by a known method.
The thickness was 0.225mm. This steel plate was heated to 840℃ for 2 minutes.
After decarburization annealing in N2 + H2 infiltrated atmosphere,
When an annealing separator mixed with varying amounts of antimony chloride (SbCl 3 ) was applied to 100 parts by weight of MgO and 5 parts by weight of TiO 2 , and final annealing was performed at 1200°C for 20 hours, the following results were obtained. was gotten.

【表】 実施例 2 Si:3.18%、Al:0.026%、Mn:0.080%、N:
0.008%、S:0.023%、C:0.060%の成分のスラ
ブを公知の方法により、熱延―熱延板焼鈍―酸洗
―冷延により0.29mm厚とした。この鋼板を840℃
で2.5分間、N2+H2浸潤雰囲気中で脱炭焼鈍をし
た後、MgO100重量部、TiO25重量部に対し、塩
化ストロンチウムSrCl2、塩化ジルコニウムZrCl4
の添加量を変えて配合した焼鈍分離剤を塗布し、
1200℃、20hrの仕上焼鈍を行つたところ、次のよ
うな結果が得られた。
[Table] Example 2 Si: 3.18%, Al: 0.026%, Mn: 0.080%, N:
A slab containing 0.008%, S: 0.023%, and C: 0.060% was hot-rolled, hot-rolled plate annealed, pickled, and cold-rolled to a thickness of 0.29 mm by a known method. This steel plate is heated to 840℃
After decarburizing annealing in an N 2 + H 2 infiltration atmosphere for 2.5 minutes, strontium chloride SrCl 2 and zirconium chloride ZrCl 4 were added to 100 parts by weight of MgO and 5 parts by weight of TiO 2 .
Apply an annealing separator mixed with varying amounts of
When final annealing was performed at 1200°C for 20 hours, the following results were obtained.

【表】 実施例 3 実施例1で用いた脱炭焼鈍後の鋼板に、
MgO100重量部、TiO25重量部、NaBO20.2重量
部に対し、塩化アンチモン(SbCl3)と塩化スト
ロチウム(SrCl2)の比率を変えて配合した焼鈍
分離剤を塗布し、1200℃、20hrの仕上焼鈍を行つ
たところ、次の結果を得た。
[Table] Example 3 The steel plate after decarburization annealing used in Example 1 was
An annealing separator containing antimony chloride (SbCl 3 ) and strotium chloride (SrCl 2 ) in varying ratios was applied to 100 parts by weight of MgO, 5 parts by weight of TiO 2 , and 0.2 parts by weight of NaBO 2 . When finishing annealing was performed, the following results were obtained.

【表】【table】

【表】 実施例 4 C:0.045%、Si:3.15%、Mn:0.068%、S:
0.023%を含有する珪素鋼塊を分塊熱延し2.15mm
とした。これを酸洗後0.68mmまで冷延し、980℃
で焼鈍した後最終板厚0.29mmまで冷延した。次い
で840℃で2分間N2+H2浸潤雰囲気中で脱炭焼
鈍を行つた。 この鋼板に焼鈍分離剤としてMgO100重量部に
対し、SbCl3、ZrCl4の添加量を0.05〜1.0重量部
まで変えて塗布した後、最終仕上焼鈍を行つた。
焼鈍後の磁性とグラスフイルムの外観を第4表に
示す。
[Table] Example 4 C: 0.045%, Si: 3.15%, Mn: 0.068%, S:
Hot-rolled silicon steel ingot containing 0.023% to 2.15mm
And so. After pickling, it was cold-rolled to 0.68mm and heated to 980°C.
After annealing, it was cold rolled to a final thickness of 0.29 mm. Decarburization annealing was then performed at 840° C. for 2 minutes in an N 2 +H 2 infiltration atmosphere. After applying SbCl 3 and ZrCl 4 as an annealing separator to the steel sheet in varying amounts from 0.05 to 1.0 parts by weight based on 100 parts by weight of MgO, final annealing was performed.
Table 4 shows the magnetism and appearance of the glass film after annealing.

【表】 以上のように本発明によると、鉄損が低くかつ
良好な皮膜をもつ方向性電磁鋼板が製造される。
[Table] As described above, according to the present invention, a grain-oriented electrical steel sheet with low iron loss and a good film is manufactured.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.030〜0.100wt%、Si:2.5〜4.0wt%及
び硫化物、窒化物の少くとも一方を、1次再結晶
粒抑制剤として含有する熱延板を、必要に応じて
焼鈍し、1回または中間焼鈍をはさんで2回以上
の冷間圧延により最終板厚としたのち、脱炭焼鈍
を施してSiO2を含む酸化層を板表面に形成し、
前記酸化層上に、酸化マグネシウムを主成分とす
る焼鈍分離剤を塗布したのち最終仕上焼鈍を行な
う方向性電磁鋼板の製造方法において、Sb、Sr、
Ti、Zrの塩化物の1種または2種以上を、酸化
マグネシウム100重量部に対して0.02〜1.5重量部
含有させた焼鈍分離剤を用いることを特徴とする
鉄損の優れた方向性電磁鋼板の製造方法。
1 A hot rolled sheet containing C: 0.030 to 0.100 wt%, Si: 2.5 to 4.0 wt%, and at least one of sulfide and nitride as a primary recrystallized grain suppressor is annealed as necessary, After achieving the final plate thickness by cold rolling once or twice or more with intermediate annealing in between, decarburization annealing is performed to form an oxide layer containing SiO 2 on the plate surface,
In the method for producing a grain-oriented electrical steel sheet, in which a final annealing is performed after applying an annealing separator containing magnesium oxide as a main component on the oxide layer, Sb, Sr,
A grain-oriented electrical steel sheet with excellent iron loss characterized by using an annealing separator containing one or more chlorides of Ti and Zr in an amount of 0.02 to 1.5 parts by weight per 100 parts by weight of magnesium oxide. manufacturing method.
JP20072783A 1983-10-28 1983-10-28 Preparation of oriented electromagnetic steel plate excellent in iron loss Granted JPS6096770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20072783A JPS6096770A (en) 1983-10-28 1983-10-28 Preparation of oriented electromagnetic steel plate excellent in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20072783A JPS6096770A (en) 1983-10-28 1983-10-28 Preparation of oriented electromagnetic steel plate excellent in iron loss

Publications (2)

Publication Number Publication Date
JPS6096770A JPS6096770A (en) 1985-05-30
JPH025820B2 true JPH025820B2 (en) 1990-02-06

Family

ID=16429184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20072783A Granted JPS6096770A (en) 1983-10-28 1983-10-28 Preparation of oriented electromagnetic steel plate excellent in iron loss

Country Status (1)

Country Link
JP (1) JPS6096770A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691753B2 (en) * 1988-10-18 1997-12-17 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet having metallic luster with extremely excellent punchability
DE69015060T2 (en) * 1989-09-08 1995-04-27 Armco Inc Magnesium oxide coating for electrical sheets and coating processes.
KR102019711B1 (en) * 2016-09-26 2019-11-14 주식회사 엘지화학 The acrylic binder for the manufacturing of cathode of lithium sulfur secondary battery and the usage thereof

Also Published As

Publication number Publication date
JPS6096770A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
KR101294624B1 (en) A method of manufacturing oriented si steel containing cu
EP1464712A1 (en) Method for producing grain-oriented silicon steel plate with mirror surface
KR101596446B1 (en) Pre-coating composition for forsterite film-eliminated grain oriented electrical steels, grain oriented electrical steels manufactured by using the same, and method for manufacturing the same grain oriented electrical steels
KR101696627B1 (en) Annealing separating agent composition for base coating free electrical steel sheet, and method for manufacturing base coating free electrical steel sheet using the same
KR101651431B1 (en) Method of manufacturing oriented electrical steels
JPS633022B2 (en)
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JP2014201806A (en) Oriented electromagnetic steel sheet and manufacturing method therefor
KR0173781B1 (en) Magnesium oxide coating for electrical steels and the method of coating
CN112522609B (en) High magnetic induction oriented silicon steel containing composite inhibitor and production method thereof
JP6624028B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
KR101632871B1 (en) Method of manufacturing oriented electrical steels
JPH025820B2 (en)
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JP3336555B2 (en) Method for producing grain-oriented electrical steel sheet without glass coating with excellent surface properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JPH08143975A (en) Annealing releasing agent and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic characteristics
JPH02125815A (en) Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
KR100245032B1 (en) Process for producing directional sheet excellent in glass coating and magnetic properties
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
KR920010227B1 (en) Coating agents for annealing of the electric steel sheet
JPH06172939A (en) High magnetic flux density/low core loss grain-oriented silicon steel sheet and its production
JP7214974B2 (en) Manufacturing method of grain-oriented electrical steel sheet