JPH0257808A - Method for fuel combustion with oxidization catalyst - Google Patents

Method for fuel combustion with oxidization catalyst

Info

Publication number
JPH0257808A
JPH0257808A JP63208577A JP20857788A JPH0257808A JP H0257808 A JPH0257808 A JP H0257808A JP 63208577 A JP63208577 A JP 63208577A JP 20857788 A JP20857788 A JP 20857788A JP H0257808 A JPH0257808 A JP H0257808A
Authority
JP
Japan
Prior art keywords
rhodium
catalyst
stage
particle diameter
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208577A
Other languages
Japanese (ja)
Inventor
Masato Okada
真人 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP63208577A priority Critical patent/JPH0257808A/en
Publication of JPH0257808A publication Critical patent/JPH0257808A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent any loss in action of catalyst by a method wherein one catalyst having as its major constituent rhodium having a relative small particle diameter is stored at a front stage and another catalyst having as its major constituent rhodium having a relative large particle diameter is stored at a rear stage. CONSTITUTION:Catalysts having as their major constituents rhodium are applied at front and rear stages of a combustion device. Rhodium at the front stage is of a high active catalyst with a relative small particle diameter under its high dispersed state and rhodium at the rear stage is of a catalyst having a large particle diameter under a relative low dispersed state. A combustion device having these catalysts is applied. Since the rhodium catalyst at the front stage has no problem of losing any active state, this catalyst is dispersed as highly as possible and in order to increase its active characteristic, a particle diameter of each of rhodium particles is 5 to 20nm. At the rear stage, a combustion of fuel is continued to reach a substantial high temperature. The catalysts may easily be condensed and diluted if a degree of dispersion is high. Accordingly, a particle diameter of rhodium particle is 0.05 to 2mum in order to reduce a degree of dispersion and decreased a degree of active state as compared with that of the former stage. With this arrangement, a stable combustion can be carried out even at a high temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、長期間に亘って失活することのない触媒を使
用する燃料の燃焼方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fuel combustion method using a catalyst that does not become deactivated over a long period of time.

(従来技術とその問題点) 従来から都市ガス等の各種燃料を燃焼させるためのシス
テムとして、該システムを2段以上に分は各段の触媒を
変えることにより各触媒の失活を効果的に防止して長期
間に亘って安定して燃料の燃焼を行う方法が提案されて
いる(例えば特開昭61〜237905号公報)。
(Prior art and its problems) Traditionally, as a system for combusting various fuels such as city gas, the system has two or more stages, and by changing the catalyst in each stage, it is possible to effectively deactivate each catalyst. A method has been proposed to prevent this and burn fuel stably over a long period of time (for example, Japanese Patent Application Laid-Open No. 1983-237905).

従来の該システムは、前段にパラジウム触媒を、後段に
ロジウム触媒を使用する2段型システムが多く使用され
ている。前段側の触媒は着火用として使用され高活性が
要求されるため前記パラジウムを高分散させた触媒が使
用されているが、該システムでは、コージェネレーショ
ンガスタービンのように燃料として都市ガスを使用する
場合に、該都市ガス中に付臭剤として含まれる硫黄化合
物(例、えばメルカプタン)が前記パラジウムを被毒し
て活性を低下させてしまう。
Conventional systems are often two-stage systems in which a palladium catalyst is used in the first stage and a rhodium catalyst is used in the second stage. The catalyst on the front stage side is used for ignition and requires high activity, so a catalyst with highly dispersed palladium is used, but in this system, city gas is used as fuel like a cogeneration gas turbine. In some cases, sulfur compounds (such as mercaptans) contained as odorants in the city gas poison the palladium and reduce its activity.

一方後段側の触媒としては、前述したロジウム触媒の他
に、白金系触媒、パラジウム系触媒、コバルトやクロム
等の卑金属酸化物及び複合酸化物系触媒が提案されてい
るが、白金及びパラジウム系触媒は高温耐久性に乏しく
又酸化され揮発され易いという欠点がある。更に前記卑
金属系触媒は貴金属系触媒と比較して低温着火性、高温
燃焼完結性に劣っている。前記ロジウム触媒は、白金及
びパラジウムより高温耐久性があり、又卑金属系触媒と
比較して高温燃焼完結性に優れている。しかし該ロジウ
ム触媒はあまり高温になると酸化され失活してしまうと
いう欠点がある。
On the other hand, as the catalyst for the latter stage, in addition to the rhodium catalyst mentioned above, platinum-based catalysts, palladium-based catalysts, base metal oxides such as cobalt and chromium, and composite oxide-based catalysts have been proposed; has the drawback of poor high-temperature durability and being easily oxidized and volatilized. Furthermore, the base metal catalyst is inferior to the noble metal catalyst in low temperature ignition performance and high temperature combustion completion performance. The rhodium catalyst has higher high-temperature durability than platinum and palladium, and has better high-temperature combustion completion than base metal catalysts. However, the rhodium catalyst has the disadvantage that it is oxidized and deactivated when the temperature is too high.

(発明の目的) 本発明は、前述の従来技術の欠点を解消し、触媒の失活
を効果的に防止し長期間に亘って安定燃焼を可能にする
方法を堤供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a method that eliminates the drawbacks of the prior art described above, effectively prevents catalyst deactivation, and enables stable combustion over a long period of time.

(問題点を解決するだめの手段) 本発明は、前段側及び後段側に分割された燃焼装置に燃
料を供給して燃焼させる方法において、前段側に比較的
粒径の小さいロジウムを主成分とする触媒を、又後段側
に粒径の比較的大きいロジウムを主成分とする触媒を収
容したことを特徴とする方法である。
(Means for Solving the Problems) The present invention provides a method for supplying fuel to a combustion device divided into a front stage side and a rear stage side for combustion, in which rhodium with a relatively small particle size is used as a main component in the front stage side. This method is characterized in that a catalyst having a relatively large particle size and containing rhodium as a main component is housed in the latter stage.

以下本発明をより詳細に説明する。The present invention will be explained in more detail below.

本発明は、前記燃焼装置の前後両段にロジウムを主とす
る触媒を使用し、前段側のロジ°ウムを高分散させた粒
径の比較的小さい高活性触媒とし、後段側のロジウムを
比較的低分散の粒径の大きい触媒とした燃焼装置を使用
するようにしている。
The present invention uses a catalyst mainly containing rhodium in both the front and rear stages of the combustion device, and uses a highly active catalyst with a relatively small particle size with highly dispersed rhodium in the former stage, and compares the rhodium in the latter stage. We are trying to use a combustion device that uses a catalyst with a large particle size and low dispersion.

ロジウム触媒は従来のパラジウム触媒と比較して硫黄成
分による被毒を受は難く、長期間に亘って触媒の失活が
生じない。しかもロジウムはメタンに対する酸化活性が
パラジウムに次いで高いため、着火用触媒としても好都
合である。又ロジウムはかなり高温になると酸化され失
活することがあるが、前段は着火用でありさほど温度が
上昇しないため問題は生じない。前段のロジウム触媒は
失活の問題がないため、できるだけ高分散させて活性を
高くしておくことが好ましく、各ロジウム粒子の・粒径
は5〜20nmとすることが望ましい。
Rhodium catalysts are less susceptible to poisoning by sulfur components than conventional palladium catalysts, and the catalyst does not deactivate over a long period of time. Moreover, since rhodium has the second highest methane oxidation activity after palladium, it is also convenient as an ignition catalyst. Also, rhodium may be oxidized and deactivated when it reaches a fairly high temperature, but since the first stage is used for ignition and the temperature does not rise that much, no problem occurs. Since the rhodium catalyst in the first stage does not have the problem of deactivation, it is preferable to disperse it as highly as possible to increase its activity, and it is desirable that the particle size of each rhodium particle is 5 to 20 nm.

5nm未満であると、あまりに粒径が小さ過ぎ着火温度
での凝集が生じはじめ又20nmを超えるとやや活性が
低下する。
When the particle size is less than 5 nm, the particle size is too small and agglomeration begins to occur at the ignition temperature, and when it exceeds 20 nm, the activity decreases slightly.

後段における触媒の役割は、失活することなく前段で着
火された燃料の燃焼を完結させることにあるが、本発明
では該後段の触媒として白金及びパラジウムと比較して
高温耐久性があり、卑金属系触媒と比較して燃焼完結性
の大きいロジウムを使用する。後段では燃料の燃焼が継
続しかなり高温に達することがあるが、後段での触媒は
分散度があまり高いと該高温のため凝集し揮発し易くな
る。従って該ロジウムは前段に比べて分散度を低くし活
性度を低下させておき凝集と揮発による失活を防止する
。該ロジウム粒子の粒径は0.05〜2μ「n程度であ
ることが望ましく、2μmを超えると活性が低くなり過
ぎ高温での安定燃焼を確保できないことがある。
The role of the catalyst in the latter stage is to complete the combustion of the fuel ignited in the former stage without deactivation, but in the present invention, the catalyst in the latter stage is a base metal that has high temperature durability compared to platinum and palladium. Rhodium is used because it has a higher combustion completion rate than other catalysts. In the latter stage, fuel continues to burn and reaches a fairly high temperature, but if the degree of dispersion of the catalyst in the latter stage is too high, the high temperature tends to cause it to coagulate and volatilize. Therefore, the rhodium has a lower degree of dispersion and lowers its activity than in the previous stage to prevent deactivation due to aggregation and volatilization. The particle size of the rhodium particles is desirably about 0.05 to 2 μm; if it exceeds 2 μm, the activity becomes too low and stable combustion at high temperatures may not be ensured.

前述した通り、ロジウム触媒はあまり高温になると酸化
され易く、予め分散度を低下させておくことだけでは不
十分である場合には、セリウムを添加しロジウムの酸化
を防止しておくことが好ましい。該セリウムの添加によ
りロジウムの酸化はほぼ完全に防止され、かなり高温に
おいても安定した燃焼を行うことができる。
As mentioned above, the rhodium catalyst is easily oxidized when the temperature is too high, and if it is insufficient to reduce the degree of dispersion in advance, it is preferable to add cerium to prevent the oxidation of rhodium. By adding cerium, oxidation of rhodium is almost completely prevented, and stable combustion can be achieved even at fairly high temperatures.

(実施例) 以下実施例に基づいて本発明をより詳細に説明するが、
該実施例は本発明を限定するものではない。
(Examples) The present invention will be explained in more detail based on Examples below.
The examples are not intended to limit the invention.

触媒A コープイライト担体に3.5重量%の酸化ランタン、3
.5重量の酸化ネオジム、3重量%の酸化バリウムを含
有するアルミナを被覆し、次いでこれをジニトロジアン
ミンパラジウム硝酸溶液に浸漬して乾燥し、水素気流中
800℃で処理して担体11あたりパラジウム20gを
担持した触媒Aを得た。
Catalyst A: 3.5% by weight lanthanum oxide on a coppillite support, 3
.. Alumina containing 5% by weight of neodymium oxide and 3% by weight of barium oxide was coated, then immersed in dinitrodiammine palladium nitric acid solution, dried and treated in a stream of hydrogen at 800°C to obtain 20g of palladium per carrier 11. A supported catalyst A was obtained.

触媒B コープイライト担体に3.5重量%の酸化ランタン、3
.5重量の酸化ネオジム、3重量%の酸化バリウムを含
有するアルミナを被覆し、次いでこれを硝酸ロジウム溶
液に浸漬して乾燥し、水素気流中800℃で処理して担
体11あたりロジウム20gを担持したロジウム触媒B
を得た。このときのロジウムの粒径はL2nmであった
Catalyst B 3.5% by weight of lanthanum oxide on a copeillite support, 3
.. Alumina containing 5% by weight of neodymium oxide and 3% by weight of barium oxide was coated, then immersed in a rhodium nitrate solution, dried, and treated in a hydrogen stream at 800°C to support 20g of rhodium per carrier 11. Rhodium catalyst B
I got it. The rhodium particle size at this time was L2 nm.

触媒C コープイライト担体に3.5重量%の酸化ランタン、3
.5重量の酸化ネオジム、3重量%の酸化バリウムを含
有するアルミナを被覆し、次いでこれをセリウムをロジ
ウムに対して5%含有するような硝酸ロジウム溶液に浸
漬して乾燥し、水素気流中1300℃で処理して担体1
1あたりロジウムとして20g1セリウムをその酸化物
として1g担持したロジウム−酸化セリウム触媒Cを得
た。このときのロジウムの粒径は0.8μmであった。
Catalyst C 3.5% by weight of lanthanum oxide on a copierite support, 3
.. Alumina containing 5% neodymium oxide and 3% barium oxide by weight was coated, then immersed in a rhodium nitrate solution containing 5% cerium to rhodium, dried, and heated at 1300°C in a hydrogen stream. Carrier 1
A rhodium-cerium oxide catalyst C was obtained in which 20 g of rhodium and 1 g of cerium as its oxide were supported per catalyst. The rhodium particle size at this time was 0.8 μm.

このように調製した触媒を、前段に触媒B1後役に触媒
Cが位置するよう燃焼装置内にセットし、メタン90%
を含む都市ガスの接触燃焼を常圧下、空気量6ONm”
7時、触媒入ロ部ガス流速15m/秒、燃焼温度130
0℃の条件下で触媒性能試験を行ったところ、窒素酸化
物、未燃炭化水* (UHC)、−酸化炭素を含まない
燃焼ガスが1000時間に亘って得られた。又比較例と
して前段側に触媒A、後段側に触媒Bを用いて同様にし
て触媒性能試験を行ったところ、約200時間で着火不
能となった。
The catalyst prepared in this way was set in a combustion device with catalyst B in the front stage and catalyst C in the rear stage, and the methane was reduced to 90%.
Catalytic combustion of city gas containing gas under normal pressure with an air volume of 6ONm”
7 o'clock, catalyst entrance gas flow rate 15 m/sec, combustion temperature 130
When a catalyst performance test was conducted at 0° C., combustion gas containing no nitrogen oxides, unburned hydrocarbons* (UHC), and carbon oxides was obtained for 1000 hours. Further, as a comparative example, a catalyst performance test was conducted in the same manner using catalyst A on the front stage side and catalyst B on the rear stage side, and ignition became impossible after about 200 hours.

(発明の効果) 本発明は、燃焼装置の前段側及び後段側の両者にロジウ
ムを主成分とする触媒を充填し、前段側のロジウム触媒
の分散度を後段側のロジウム触媒の分散度より大きくし
、つまり粒径を小さくし、該燃焼装置に燃料を供給して
高温においても安定した燃焼を可能にする方法である。
(Effects of the Invention) The present invention is characterized in that both the front and rear stages of a combustion device are filled with catalysts containing rhodium as a main component, and the degree of dispersion of the rhodium catalyst on the front stage is greater than the degree of dispersion of the rhodium catalyst on the rear stage. In other words, this is a method of reducing the particle size and supplying fuel to the combustion device to enable stable combustion even at high temperatures.

本発明では着火用であり高温に達することのない前段に
おける触媒を着火能に優れ硫黄成分による被毒を受は難
いロジウムとすることにより燃焼装置の着火用性能を大
幅に向上させる七ともに、後段におけるロジウムの凝集
を該ロジウム粒径の分散度を低くしておくことにより抑
制し、長期間に亘る安定した燃焼を確保するようにして
いる。
In the present invention, the catalyst in the front stage, which is used for ignition and does not reach high temperatures, is made of rhodium, which has excellent ignition ability and is not susceptible to poisoning by sulfur components, thereby greatly improving the ignition performance of the combustion device. By keeping the degree of dispersion of the rhodium particle size low, the agglomeration of rhodium is suppressed to ensure stable combustion over a long period of time.

このような構成による燃焼装置を使用しても燃焼温度が
あまり高くなり過ぎると、ロジウムの酸化が生じ失活す
るが、その場合には該ロジウム触媒にfめセリウムを添
加し該ロジウムの酸化を防止すれば、より確実にロジウ
ムの失活を回避することができ、安定燃焼を確実に行う
ことができる。
Even if a combustion device with such a configuration is used, if the combustion temperature becomes too high, rhodium will be oxidized and deactivated, but in that case, cerium may be added to the rhodium catalyst to prevent the oxidation of the rhodium. If this is prevented, deactivation of rhodium can be more reliably avoided and stable combustion can be reliably performed.

Claims (6)

【特許請求の範囲】[Claims] (1)前段側及び後段側に分割された燃焼装置に燃料を
供給して燃焼させる方法において、前段側に比較的粒径
の小さいロジウムを主成分とする触媒を、又後段側に粒
径の比較的大きいロジウムを主成分とする触媒を収容し
たことを特徴とする方法。
(1) In a method of supplying fuel to a combustion device divided into a front stage side and a rear stage side for combustion, a catalyst mainly composed of rhodium with a relatively small particle size is placed on the front side, and a catalyst with a relatively small particle size is placed on the rear side. A method characterized in that a relatively large rhodium-based catalyst is contained.
(2)前段側のロジウムの粒径が5〜50nm、後段側
のロジウムの粒径が0.05〜2μmである請求項1に
記載の方法。
(2) The method according to claim 1, wherein the rhodium in the first stage has a particle size of 5 to 50 nm, and the rhodium in the second stage has a particle size of 0.05 to 2 μm.
(3)後段側のロジウムにセリウムが添加されている請
求項1又は2に記載の方法。
(3) The method according to claim 1 or 2, wherein cerium is added to the rhodium in the latter stage.
(4)セリウムのロジウムに対する量が0.1〜10重
量%である請求項3に記載の方法。
(4) The method according to claim 3, wherein the amount of cerium relative to rhodium is 0.1 to 10% by weight.
(5)触媒が、アルミナ、マグネシア及びジルコニアか
ら成る群から選択される少なくとも1種の酸化物で被覆
された担体上に分散担持されている請求項1から4のい
ずれかに記載の方法。
(5) The method according to any one of claims 1 to 4, wherein the catalyst is dispersed and supported on a carrier coated with at least one oxide selected from the group consisting of alumina, magnesia, and zirconia.
(6)担体上に被覆された酸化物が、ランタン、セリウ
ム、ネオジム、プラセオジム及びバリウムから成る群か
ら選択される少なくとも1種の元素の酸化物で安定化さ
れている請求項1から5のいずれかに記載の方法。
(6) Any one of claims 1 to 5, wherein the oxide coated on the carrier is stabilized with an oxide of at least one element selected from the group consisting of lanthanum, cerium, neodymium, praseodymium, and barium. Method described in Crab.
JP63208577A 1988-08-23 1988-08-23 Method for fuel combustion with oxidization catalyst Pending JPH0257808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208577A JPH0257808A (en) 1988-08-23 1988-08-23 Method for fuel combustion with oxidization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208577A JPH0257808A (en) 1988-08-23 1988-08-23 Method for fuel combustion with oxidization catalyst

Publications (1)

Publication Number Publication Date
JPH0257808A true JPH0257808A (en) 1990-02-27

Family

ID=16558489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208577A Pending JPH0257808A (en) 1988-08-23 1988-08-23 Method for fuel combustion with oxidization catalyst

Country Status (1)

Country Link
JP (1) JPH0257808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503875A (en) * 2012-12-12 2016-02-08 スリーエム イノベイティブ プロパティズ カンパニー Catalyst burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503875A (en) * 2012-12-12 2016-02-08 スリーエム イノベイティブ プロパティズ カンパニー Catalyst burner

Similar Documents

Publication Publication Date Title
US5702675A (en) Catalyst for purifying exhaust gases and process for producing the same
AU618391B2 (en) An improved catalyst comprising ceria having a P-type metal oxide disperded thereon, alumina and a platinum group metal
US4678770A (en) Three-way catalyst for lean exhaust systems
JP2979809B2 (en) Exhaust gas purification catalyst and method for producing the same
AU698375B2 (en) Catalyst with zirconia/ceria support
JPWO2002040152A1 (en) Catalyst for purifying methane-containing exhaust gas and method for purifying methane-containing exhaust gas
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
JPS63205141A (en) Catalyst for purifying exhaust gas
US20040192546A1 (en) Catalyst for the low temperature oxidation of methane
KR940003609A (en) Catalysts for treating exhaust gases from internal combustion and stationary supply lines
JPH0257808A (en) Method for fuel combustion with oxidization catalyst
JPS62216642A (en) Catalytic material for gas turbine combustor
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JP4412595B2 (en) Exhaust gas purification method for internal combustion engine and exhaust gas purification system for internal combustion engine
JPH08182928A (en) Nitrogen oxide occlusion composition and exhaust gas purification
JPH0156329B2 (en)
JPH04215845A (en) Catalyst for purifying exhaust gas
JP2523484B2 (en) Gas turbine combustor
JPS63104651A (en) Catalyst for purifying exhaust gas
JPS63296842A (en) Oxidizing palladium catalyst
JP3779793B2 (en) Catalyst and method for purification of combustion exhaust gas containing methane
JPS6377545A (en) Catalyst for purifying exhaust gas
JP6315569B2 (en) Combustion catalyst system
JPS63209751A (en) Production of oxidation catalyst
JPS63294411A (en) Combustion of fuel by oxidation catalyst