JPH0257657A - High damping material of mg alloy and its manufacture - Google Patents

High damping material of mg alloy and its manufacture

Info

Publication number
JPH0257657A
JPH0257657A JP20727188A JP20727188A JPH0257657A JP H0257657 A JPH0257657 A JP H0257657A JP 20727188 A JP20727188 A JP 20727188A JP 20727188 A JP20727188 A JP 20727188A JP H0257657 A JPH0257657 A JP H0257657A
Authority
JP
Japan
Prior art keywords
alloy
vibration damping
recrystallized
grain size
damping material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20727188A
Other languages
Japanese (ja)
Inventor
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP20727188A priority Critical patent/JPH0257657A/en
Publication of JPH0257657A publication Critical patent/JPH0257657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title material having excellent vibration damping characteristics in which structure is regulated to the recrystallized one of fine grain size by subjecting the ingot of an Mg-Si alloy having specific compsn. to rolling and extruding and thereafter annealing it in the range of specific temp. CONSTITUTION:An Mg alloy contg. 0.2 to 10wt.% Si is refined and cast into a billet. The billet is subjected to homogenizing treatment, e.g., at 470 deg.C for 8hr and is thereafter subjected to hot extruding or hot rolling at 400 deg.C to work into a plate material of 2 to 3mm thickness. The material is annealed at 250 to 500 deg.C for 4hr to 1min to regulate the structure to recrystallized one of >=10mum grain size, by which the Mg alloy high damping material having excellent vibration damping characteristics and having excellent strength, formability, dimensional accuracy, surface properties, etc., is manufactured. Furthermore, in the manufacturing stage, homogenizing treatment to the ingot is not necessarily needed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた撮動減衰特性を有し、音響機器、精密機
器、自動車等の振動を嫌う構造部材として使用されるM
9合金制制振材関するものでおる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent imaging damping characteristics and is used as a structural member of acoustic equipment, precision equipment, automobiles, etc. that dislikes vibrations.
This article concerns 9-alloy vibration damping materials.

〔従来の技術〕[Conventional technology]

従来、音W機器、精密機器、自動車等の撮動を嫌う構造
部材用の金属材料には、いわゆる制振材として(:、o
−Ni系合金、Mn−Cu系合金、N1−Tj系合金、
Zn−A1系合金。
Conventionally, metal materials for structural members of sound equipment, precision instruments, automobiles, etc. that are difficult to photograph have been treated with so-called vibration damping materials (:, o
-Ni alloy, Mn-Cu alloy, N1-Tj alloy,
Zn-A1 alloy.

Fe−Cr系合金、Fe−C系合金、Fe−C3i系合
金等と共に純Mg、Mg−Zr系合金、Mg−N +系
合金等の鋳造材が知られている。特にMg系の鋳造材は
実用金属材料中最も小さい比重と最も大きい振動減衰性
を有するため、この特性を生かしてミサイル内部の精密
機器のハウジング材などに使用することが検討されてい
る。
In addition to Fe-Cr alloys, Fe-C alloys, Fe-C3i alloys, etc., cast materials such as pure Mg, Mg-Zr alloys, and Mg-N + alloys are known. In particular, Mg-based cast materials have the lowest specific gravity and highest vibration damping properties among all practical metal materials, and are being considered for use in housing materials for precision equipment inside missiles, taking advantage of these characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記rV1g合金に制振材として使用しつ
るレベルの振動減衰性を発揮させるには、鋳造時に特別
の注意をはらい鋳造品を柱状ではなく等軸になるような
条件で鋳込む必要があった。これは柱状晶になると振動
減衰性が著しく劣化するためである。また圧延、押出な
どの塑性加工をMg合金鋳塊に施した場合も、原因は不
明であるが、著しく振動減衰性が劣化することが知られ
ている。従って上記Mg合金を制振材として使用できる
のは、ある特定の条件で製造した鋳物に限られ、圧延材
や押出材などの展伸材は撮動減衰性が劣るため全く使用
されていないのが実状で必る。
However, in order to use the rV1g alloy mentioned above as a vibration damping material and to exhibit vibration damping properties at the level of a temple, it was necessary to take special care during casting and to cast the cast product under conditions that would make it equiaxed rather than columnar. . This is because the vibration damping properties deteriorate significantly when the crystals become columnar. Furthermore, it is known that when a Mg alloy ingot is subjected to plastic working such as rolling or extrusion, the vibration damping properties are significantly deteriorated, although the cause is unknown. Therefore, the above-mentioned Mg alloy can be used as a damping material only in castings manufactured under certain specific conditions, and rolled materials, extruded materials, and other wrought materials are not used at all because of their inferior vibration damping properties. is necessary in reality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、大量生産性1強度
や延性などの機械特性、成形加工性。
In view of this, the present invention was developed as a result of various studies, and was developed to improve mass productivity, mechanical properties such as strength and ductility, and moldability.

寸法精度1表面性状等、多くの点で鋳物よりも優れた点
を有し、更に鋳物と同等の撮動減衰性を有するMg合金
の展伸材からなるMg合金制振材とその製造方法を開発
したものである。
We have developed an Mg alloy vibration damping material made of a wrought Mg alloy material that is superior to castings in many respects, such as dimensional accuracy and surface quality, and also has the same damping properties as castings, and a method for manufacturing the same. It was developed.

即ち本発明制振材は、3i0.2〜10重量%を含み、
残部MLiiと不可避的不純物からなるMg合金の圧延
材又は押出材であって、平均粒径が10μm以上の再結
晶粒組織を有することを特徴とするものである。
That is, the vibration damping material of the present invention contains 0.2 to 10% by weight of 3i,
This is a rolled or extruded Mg alloy material consisting of the remainder MLii and unavoidable impurities, and is characterized by having a recrystallized grain structure with an average grain size of 10 μm or more.

また本発明製造方法は、Si0.2〜10重量%を含み
、残部Mgと不可避的不純物からなるMS?合金鋳塊を
均質化処理し又は処理することなく圧延又は押出加工し
た後、250〜500’Cの温度で24時間以内の焼鈍
を施すことにより、平均粒径が10μm以上の再結晶粒
組織とすることを特徴とするものである。
Moreover, the manufacturing method of the present invention is characterized in that MS? After the alloy ingot is homogenized or rolled or extruded without any treatment, it is annealed at a temperature of 250 to 500'C within 24 hours to create a recrystallized grain structure with an average grain size of 10 μm or more. It is characterized by:

(作 用) しかして本発明においてM9合金の組成を上記の如く限
定したのは次の理由によるものである。
(Function) The reason why the composition of the M9 alloy is limited as described above in the present invention is as follows.

3iはMgが本来有している撮動減衰性を更に高め、か
つ結晶粒を均一、微細化することによって強度と延性を
向上させるも、3i含有量が0.2重量%(以下重量%
を単に%と略記〉未満では効果が少なく、10%を越え
ると結晶粒が微細になりすぎて俊述のように振動減衰性
が劣るばかりか、鋳造性(湯流れ性)と展伸性が劣化し
、製造が困難となる。3iの好ましい添加範囲は、0.
4〜6%である。
3i further enhances the photographic attenuation properties originally possessed by Mg, and improves strength and ductility by making the crystal grains uniform and fine.
If it is less than 10%, the effect will be small, and if it exceeds 10%, the crystal grains will become too fine, resulting in poor vibration damping properties, as well as poor castability (flowability) and malleability. It deteriorates and becomes difficult to manufacture. The preferred addition range of 3i is 0.3i.
It is 4-6%.

また不可避的不純物としてはFe、A1゜2n等がある
が、何れも0.1%未満の範囲ならば、特に本発明の効
果を損なうものではない。
In addition, unavoidable impurities include Fe, A1°2n, etc., but if they are in a range of less than 0.1%, they do not particularly impair the effects of the present invention.

このような組成のMg−3i合金は常法に従って溶解鋳
造し、得られた鋳塊に均質化処理を施し、又は処理を施
すことなく熱間で圧延又は押出加工する。また必要に応
じて更に冷間で圧延を加える。
The Mg-3i alloy having such a composition is melted and cast according to a conventional method, and the resulting ingot is subjected to a homogenization treatment, or hot rolled or extruded without any treatment. Further, cold rolling is added if necessary.

鋳塊を必要に応じて均質化処理した債、圧延又は押出を
終了した段階では、結晶組織は第1図に示すように加工
方向に伸長したファイバー状の加工組織となる。このよ
うな状態では振動減衰性を表す尺度である損失係数ηは
鋳造材にくらべて1/10から1/20にまで低下し、
制振材としての機能を発揮することができない。しかる
に圧延又は押出を終了したのち、250〜500℃の温
度で24時間以内の焼鈍を施すと、結晶組織は第2図に
示すように平均粒径10μm以上の再結晶粒組織となり
、驚くべきことに撮動減衰性を回復し、鋳造材とほぼ同
等の損失係数ηを示す。これは焼鈍により、加工時に導
入された多数のからみあった転位が整理されて、転位の
不純物原子からの固着・離脱現象が起りやすくなり、内
部摩擦が増大した結果と思われる。
After the ingot has been homogenized as required, and after rolling or extrusion is completed, the crystal structure becomes a fibrous processed structure extending in the processing direction, as shown in FIG. Under such conditions, the loss coefficient η, which is a measure of vibration damping properties, decreases to 1/10 to 1/20 of that of cast materials.
It cannot perform its function as a vibration damping material. However, after completing rolling or extrusion, when annealing is performed at a temperature of 250 to 500°C within 24 hours, the crystal structure becomes a recrystallized grain structure with an average grain size of 10 μm or more as shown in Figure 2, which is surprising. It recovers the image damping property and shows a loss coefficient η almost equivalent to that of the cast material. This is thought to be the result of annealing, which organizes a large number of entangled dislocations introduced during processing, making it easier for dislocations to stick and detach from impurity atoms, increasing internal friction.

しかして平均粒径が10μm以上の再結晶粒組織とした
のは、再結晶粒組織であっても、その平均粒径が10μ
m未満の場合は、上記の転位の固着・離脱現象が結晶粒
界により妨げられるチャンスが増加するためか、それほ
ど大きい損失係数ηが得られないためである。
However, even if the recrystallized grain structure has an average grain size of 10 μm or more, the recrystallized grain structure has an average grain size of 10 μm or more.
If it is less than m, this is because there is an increased chance that the above-mentioned dislocation fixation/detachment phenomenon will be hindered by grain boundaries, or because a very large loss coefficient η cannot be obtained.

また焼鈍を250〜500℃の温度で24時間以内とし
たのは、250℃未満では10μm以上の再結晶粒を得
ることができず、500℃を越えると表面の酸化が著し
くなり不適当なためである。また焼鈍時間を24時間以
内としたのは、24時間を越えると表面及び結晶粒界の
酸化が進むうえ、操業上も非能率となるためでおる。
Furthermore, the reason why annealing was carried out at a temperature of 250 to 500°C within 24 hours is because recrystallized grains of 10 μm or more cannot be obtained at temperatures below 250°C, and excessive oxidation of the surface occurs when the temperature exceeds 500°C, which is inappropriate. It is. Further, the reason why the annealing time is set to within 24 hours is that if the annealing time exceeds 24 hours, oxidation of the surface and grain boundaries will proceed, and this will also result in operational inefficiency.

[実施例] 以下本発明を実施例により更に詳細に説明する。[Example] The present invention will be explained in more detail below with reference to Examples.

実施例(1) 第1表に示す組成の各種Mg合金を溶解・鋳造し、直径
150m、長さ300 mmの押出用ビレットを得た。
Example (1) Various Mg alloys having the compositions shown in Table 1 were melted and cast to obtain extrusion billets with a diameter of 150 m and a length of 300 mm.

これを470℃で8時間均質化処理した後、400℃で
熱間押出により厚さ2InM、幅30履の形材とした。
This was homogenized at 470°C for 8 hours and then hot extruded at 400°C to form a shape having a thickness of 2 InM and a width of 30 shoes.

これを320℃で1時間焼鈍して制振材とした。これ等
の制振材について複素弾性係数測定装置により、損失係
数ηを求めて振動減衰性を評価した。即ち厚さ2履1幅
30履。
This was annealed at 320° C. for 1 hour to obtain a vibration damping material. The vibration damping properties of these damping materials were evaluated by determining the loss coefficient η using a complex elastic coefficient measuring device. That is, 2 shoes in thickness and 30 shoes in width.

長さ200 mmの試験片を用い、片側をチャッキング
して発振器で強制的に撮動を与え、共振周波数frでの
損失係数ηを下記(1)式により求めた。
Using a test piece with a length of 200 mm, one side was chucked and an oscillator was used to forcibly image the sample, and the loss coefficient η at the resonance frequency fr was determined using the following equation (1).

また引張試験をおこない、引張強さと伸びを測定した。A tensile test was also conducted to measure tensile strength and elongation.

また形材表面を6%ピクリン酸アルコール溶液ioo 
Irdt、氷酢酸5mm滞溜水0m1の混合液で結晶粒
界を腐食した後、光学顕微鏡により再結晶粒の平均粒径
を求めた。これ等の結果を第2表に示す。
In addition, the surface of the shape was coated with 6% picric acid alcohol solution ioo.
After corroding the grain boundaries with a mixed solution of Irdt, 5 mm of glacial acetic acid, and 0 ml of accumulated water, the average grain size of the recrystallized grains was determined using an optical microscope. These results are shown in Table 2.

第1表 但しΔfは3db値幅 第1表及び第2表より明らかなように、本発明制振材N
α1〜3は10μm以上の再結晶粒を有し、振動減衰性
(損失係数η)、引張強ざ及び伸びが優れている。
Table 1 However, Δf has a 3 db value range.As is clear from Tables 1 and 2, the damping material of the present invention N
α1 to α3 have recrystallized grains of 10 μm or more and are excellent in vibration damping properties (loss coefficient η), tensile strength, and elongation.

これに対し3i含有量が少ない比較制振材Nα4及びS
i含有量は適量なるも再結晶粒の平均粒径が10μmよ
り小さい比較制振材Nα5は撮動減衰性が劣り、特に3
i含有量が15,9%と多い比較制振?JNα6では押
出加工性が劣ることが判る。
On the other hand, comparative damping materials Nα4 and S with low 3i content
Although the i content is appropriate, the comparative damping material Nα5 with an average grain size of recrystallized grains smaller than 10 μm has poor imaging damping properties, especially 3
Comparative damping with high i content of 15.9%? It can be seen that JNα6 has poor extrusion processability.

実施例(2) 第1表中Nα2に示す組成のM9合金を溶解・鋳造して
厚さ100s、幅500 mの鋳塊とし、450℃で4
時間均熱化処理した後、390℃で熱間圧延し、厚さ3
mの板に仕上げた。これについて第3表に示す焼鈍を施
して制振材とし、実施例(1)と同様にして撮動減衰性
(損失係数η)と再結晶粒の平均粒径を測定した。これ
等の結果を第3表に併記した。
Example (2) An M9 alloy having the composition shown in Nα2 in Table 1 was melted and cast to form an ingot with a thickness of 100 s and a width of 500 m.
After soaking for an hour, it was hot rolled at 390℃ to a thickness of 3.
Finished on a board of m. This material was annealed as shown in Table 3 to obtain a vibration damping material, and the photographic damping property (loss coefficient η) and the average grain size of recrystallized grains were measured in the same manner as in Example (1). These results are also listed in Table 3.

第3表より明らかなように、本発明制振材Nα7〜9は
10μm以上の再結晶粒を有し、良好な振動減衰性を示
す。これに対し熱間圧延後焼鈍を行なわないファイバー
組織の比較制振材Nα10及び焼鈍温度が220℃と低
い比較制振材Nα11は撮動減衰性が劣り、焼鈍温度が
530℃と高い比較制振材Nα12は振動減衰性は良好
だが、表面の酸化がはなはだしく、実用上不適であった
As is clear from Table 3, the vibration damping materials Nα7 to Nα9 of the present invention have recrystallized grains of 10 μm or more and exhibit good vibration damping properties. On the other hand, the comparative damping material Nα10, which has a fiber structure that is not annealed after hot rolling, and the comparative damping material Nα11, which has a low annealing temperature of 220°C, have inferior vibration damping properties and have a high annealing temperature of 530°C. Although the material Nα12 had good vibration damping properties, the surface was severely oxidized, making it unsuitable for practical use.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、撮動減衰性に優れ、かつ大
量生産性1強度や延性などの機械特性、成形加工性1寸
法精度及び表面性状など、多くの点で鋳物よりも優れた
展伸材からなるM9合金制振材が得られる等工業上顕著
な効果を奏するものである。
As described above, according to the present invention, it is possible to produce a molded metal that is superior to cast metals in many respects, such as excellent damping properties, mass productivity, mechanical properties such as strength and ductility, formability, dimensional accuracy, and surface texture. This provides remarkable industrial effects, such as the ability to obtain M9 alloy vibration damping material made of elongated material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加工組織(ファイバー状組織)の模式図、第2
図は再結晶組織の模式図である。
Figure 1 is a schematic diagram of processed structure (fibrous structure), Figure 2
The figure is a schematic diagram of the recrystallized structure.

Claims (2)

【特許請求の範囲】[Claims] (1)Si0.2〜10重量%を含み、残部Mgと不可
避的不純物からなるMg合金の圧延材又は押出材であっ
て、平均粒径が10μm以上の再結晶粒組織を有するこ
とを特徴とするMg合金制振材。
(1) A rolled or extruded Mg alloy material containing 0.2 to 10% by weight of Si, the balance being Mg and unavoidable impurities, characterized by having a recrystallized grain structure with an average grain size of 10 μm or more. Mg alloy vibration damping material.
(2)Si0.2〜10重量%を含み、残部Mgと不可
避的不純物からなるMg合金鋳塊を均質化処理し又は処
理することなく圧延又は押出加工した後、250〜50
0℃の温度で24時間以内の焼鈍を施すことにより、平
均粒径が10μm以上の再結晶粒組織とすることを特徴
とするMg合金制振材の製造方法。
(2) After rolling or extruding a Mg alloy ingot containing 0.2 to 10% by weight of Si and the remainder Mg and unavoidable impurities, a 250 to 50%
A method for manufacturing a Mg alloy vibration damping material, characterized in that it is annealed at a temperature of 0° C. for up to 24 hours to form a recrystallized grain structure with an average grain size of 10 μm or more.
JP20727188A 1988-08-23 1988-08-23 High damping material of mg alloy and its manufacture Pending JPH0257657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20727188A JPH0257657A (en) 1988-08-23 1988-08-23 High damping material of mg alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20727188A JPH0257657A (en) 1988-08-23 1988-08-23 High damping material of mg alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH0257657A true JPH0257657A (en) 1990-02-27

Family

ID=16537032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20727188A Pending JPH0257657A (en) 1988-08-23 1988-08-23 High damping material of mg alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH0257657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062439B2 (en) 2002-06-05 2011-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy plate and method for production thereof
JP2012025982A (en) * 2010-07-20 2012-02-09 Sumitomo Electric Ind Ltd Magnesium alloy coil material, and method for producing the same
JP2012136727A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Ind Ltd Magnesium alloy for damping and damping material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247238A (en) * 1988-08-08 1990-02-16 Nippon Telegr & Teleph Corp <Ntt> High-damping alloy and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247238A (en) * 1988-08-08 1990-02-16 Nippon Telegr & Teleph Corp <Ntt> High-damping alloy and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062439B2 (en) 2002-06-05 2011-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy plate and method for production thereof
JP2012025982A (en) * 2010-07-20 2012-02-09 Sumitomo Electric Ind Ltd Magnesium alloy coil material, and method for producing the same
JP2012136727A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Ind Ltd Magnesium alloy for damping and damping material

Similar Documents

Publication Publication Date Title
JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
KR101088666B1 (en) Cu-Zn ALLOY WITH HIGH STRENGTH AND EXCELLENT BENDABILITY
JPWO2015155911A1 (en) High-strength aluminum alloy plate excellent in bending workability and shape freezing property and method for producing the same
JP4012845B2 (en) 70/30 brass with refined crystal grains and method for producing the same
JP2007186741A (en) Aluminum alloy sheet having excellent high-temperature and high-speed formability, and its production method
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JPH0257657A (en) High damping material of mg alloy and its manufacture
JPH0257658A (en) High damping material of mg and its manufacture
JPH0247237A (en) High-damping material of mg alloy and its production
JPH04120237A (en) Aluminum base high damping material and its manufacture
US3940290A (en) Process for preparing copper base alloys
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture
JPH02104644A (en) Production of high damping material of aluminum alloy
JP2002285277A (en) Composite roll for rolling made by centrifugal casting
JP3326748B2 (en) Manufacturing method of aluminum foil
US3953249A (en) Copper base alloy
JP3099911B2 (en) Damping alloy
JPS5853702B2 (en) Aluminum alloy for tough die casting
JP3965760B2 (en) Low Young&#39;s modulus steel sheet for processing and manufacturing method thereof
JPH03107439A (en) Aluminum alloy for warm forming
JPH0625781A (en) Aluminum foil and its manufacture
JP2018184640A (en) High strength aluminum alloy sheet excellent in moldability, flexure processability and shape freezing property, and manufacturing method therefor
JPH062063A (en) Al alloy sheet excellent in hardenability in coating/ baking
JPH0681088A (en) Production of al-mg alloy rolled sheet for forming at very low temperature