JPH0257609A - Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound - Google Patents

Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound

Info

Publication number
JPH0257609A
JPH0257609A JP63206704A JP20670488A JPH0257609A JP H0257609 A JPH0257609 A JP H0257609A JP 63206704 A JP63206704 A JP 63206704A JP 20670488 A JP20670488 A JP 20670488A JP H0257609 A JPH0257609 A JP H0257609A
Authority
JP
Japan
Prior art keywords
injection
powder
metal powder
compound
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63206704A
Other languages
Japanese (ja)
Inventor
Kazuo Sakurada
桜田 一男
Hiroshi Otsubo
宏 大坪
Sadakimi Kiyota
禎公 清田
Junichi Ota
純一 太田
Masakazu Matsushita
松下 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63206704A priority Critical patent/JPH0257609A/en
Publication of JPH0257609A publication Critical patent/JPH0257609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the title injection-molding metal powder capable of stably providing a high-density metal powder sintered body having excellent dimensional precision by specifying the diameter range and shape factor of the particles. CONSTITUTION:The mean particle diameter of the injection-molding metal powder is controlled to 5-15mum. The particle shape factor is defined by the equation SF=L<2>/A.pi/4 (SF is the shape factor of the powder particle cross section, L is the maximum length of the particle cross section, and A is the particle cross-sectional area), and the shape factor of >=50% of the powder is controlled to 1.0-1.5. The powder can be formed by the water atomization process for the molten metal. The injection-molding compd. having good fluidity and orientational property is obtained from 95-85wt.% of the metal powder and 5-15wt.% org. binder. The org. binder contains 40-80% thermoplastic resin, 6-13% plasticizer, and 20-50% paraffin wax or beeswax. The compound is injection-molded at 400-2,000kgf/cm<2> pressure and at 120-170 deg.C. The molded body is heated to 450-600 deg.C at the temp. increasing rate of <=200 deg.C/hr to remove the binder, and then sintered.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、射出成形用の金属粉末およびコンパウンドと
、そのコンパウンドを用いて金属焼結部品を製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a metal powder and compound for injection molding, and a method for manufacturing metal sintered parts using the compound.

〈従来の技術〉 般に焼結機械部品は、鉄系粉末を主体として合金粉末と
欄滑剤を添加して、プレス成形した後に非酸化性雰囲気
中で焼結して製造される。
<Prior Art> Generally, sintered mechanical parts are produced by press-forming a mixture of iron-based powder as a main ingredient, adding alloy powder and a lubricant, and then sintering it in a non-oxidizing atmosphere.

しかし、この方法は金型中で上下パンチで成形するため
に三次元形状の複雑部品が製造できない。
However, this method cannot produce complex three-dimensional parts because the mold is formed using upper and lower punches in a mold.

一方、セラミック製品はセラミック原料粉とバインダー
を混合し、押し出し成形や射出成形をしたのちに、脱バ
インダー焼成することにより複雑形状や薄肉・小型部品
の製品を製造している。
On the other hand, ceramic products are manufactured by mixing ceramic raw material powder and a binder, extrusion molding or injection molding, and then firing to remove the binder, resulting in products with complex shapes, thin walls, and small parts.

近年、従来の粉末冶金法を超える技術として、金属粉末
を用いた射出成形技術が複雑形状の製品を量産できるこ
とから注目を浴び、一部工業化されている。
In recent years, injection molding technology using metal powder has attracted attention as a technology that surpasses conventional powder metallurgy because it can mass-produce products with complex shapes, and has been partially industrialized.

金属粉末射出成形方法は、金属粉末を有機バインダーと
混練して原料を得る混練工程、原料をプラスチックの成
形の場合と同様に射出成形し成形体を得る射出成形工程
、成形体に熱処理などを施して成形体よりバインダーを
除去する脱脂工程、脱脂した成形体を焼結する焼結工程
を順次行う方法であり、特開昭57−16103、特開
昭59−229403により公知となっている。
The metal powder injection molding method consists of a kneading process in which metal powder is kneaded with an organic binder to obtain a raw material, an injection molding process in which the raw material is injection-molded to obtain a molded body in the same way as in the case of plastic molding, and a heat treatment is applied to the molded body. This is a method in which a degreasing step of removing the binder from the molded body and a sintering step of sintering the degreased molded body are carried out in sequence, and is known from JP-A-57-16103 and JP-A-59-229403.

〈発明が解決しようとする課題〉 しかし、上記の方法は、通常の金型成形で用いられる金
属粉末のやや細かい粉末を用いており、射出成形特有の
コンパウンドの流動性や、金属粉末の金型内における配
向性を考慮していないため、金属粉末焼結体の密度比(
理論密度に対する焼結密度の割合)を安定して93%以
上とすることがよいことは公知であるが93%以上とす
ることができないばかりか、製品として最も重要視され
る部品の寸法精度に何等考慮がされていない。
<Problems to be Solved by the Invention> However, the above method uses a rather fine metal powder used in ordinary mold molding, and the fluidity of the compound peculiar to injection molding and the metal powder mold The density ratio of the metal powder sintered body (
It is well known that it is better to stably maintain the sintered density (ratio of sintered density to theoretical density) at 93% or higher, but it is not only impossible to maintain it at 93% or higher, but also the dimensional accuracy of parts, which is the most important part of the product, is No consideration was given.

そこで、本発明は上記従来技術の問題点を解決し、93
%以上の密度比と寸法精度の優れた金属粉末焼結体を安
定して得ることのできる射出成形用金属粉末、およびコ
ンパウンド、ならびに前記コンパウンドを用いた射出焼
結部品の製造方法を得ることを目的とする。
Therefore, the present invention solves the problems of the prior art described above, and
An object of the present invention is to obtain a metal powder for injection molding, a compound, and a method for manufacturing injection sintered parts using the compound, which can stably obtain a metal powder sintered body having a density ratio of 1.9% or more and excellent dimensional accuracy. purpose.

く課題を解決するための手段〉 そこで、本発明者らは上述した目的を達成するために射
出成形用金属粉末の平均粒径が5〜15μmで、かつ下
記で定義される粒子形状係数が、1.0〜1.5の範囲
の粉末が50%以上であることを特徴とする射出成形用
金属粉末を提供する。
Means for Solving the Problems> Therefore, in order to achieve the above-mentioned object, the present inventors have created a metal powder for injection molding that has an average particle size of 5 to 15 μm and a particle shape coefficient defined below. Provided is a metal powder for injection molding, characterized in that 50% or more of the powder is in the range of 1.0 to 1.5.

SF:粉末粒子断面の形状係数 L :粒子断面の最大長さ A :粒子断面積 また、前記金属粉末95〜855〜85重量機バインダ
ー5〜15重量%とを有する射出成形用コンパウンドで
あって、前記有機バインダーの構成が熱可塑性樹脂40
〜80m′¥8:%、可塑剤が6〜13重量%およびパ
ラフィンワックス、密ろうのうち1種または2種を20
〜500〜50重量ることを特徴とした射出成形用コン
パウンドを提供する。
SF: Shape factor of powder particle cross section L: Maximum length of particle cross section A: Particle cross sectional area Further, an injection molding compound comprising 95 to 855 to 85 of the metal powder and 5 to 15% by weight of a mechanical binder, The composition of the organic binder is a thermoplastic resin 40
~80m'¥8:%, 6 to 13% by weight of plasticizer and 20% of one or two of paraffin wax and beeswax.
An injection molding compound having a weight of ~500 to 50% is provided.

そして、前記射出成形用コンパウンドを用いて、射出成
形する際、 射出圧力400〜2000  kgf/am2、成形温
度120〜170℃の条件で成形し、 ついでこの射出成形体を非酸化性雰囲気で、昇温速度2
00℃/ h r以下、加熱温度450〜600℃の条
件で加熱して脱パインダーを行い、 その後、焼結することを特徴とする射出焼結部品の製造
方法を提供する。
Then, when injection molding is performed using the injection molding compound, the injection molding is performed under conditions of an injection pressure of 400 to 2000 kgf/am2 and a molding temperature of 120 to 170°C, and then this injection molded product is heated in a non-oxidizing atmosphere. Temperature speed 2
Provided is a method for manufacturing an injection sintered part, characterized in that depinder is performed by heating at a heating temperature of 450 to 600°C at a temperature of 00°C/hr or less, and then sintering.

以下本発明について、詳細に説明する。The present invention will be explained in detail below.

本発明に用いる、射出成形用金属粉末に於いて、その金
属の種類は、鉄、SUSをはじめ、一般的な金属であれ
ばよい。
In the metal powder for injection molding used in the present invention, the type of metal may be any common metal, including iron and SUS.

本発明において射出成形用金属粉末の適正な粒子径は平
均粒径で5〜15μmである。
In the present invention, the appropriate particle size of the metal powder for injection molding is an average particle size of 5 to 15 μm.

般的な粉末製造方法としては、水アトマイズ法、粉砕法
等がある。 しかし水アトマイズ法等で平均粒径が5μ
m未満の金属粉末を得るのは難しく、粉砕後に分級によ
り供することも可能ではあるが、歩止まりが低下し、コ
スト高になる。 さらに焼結部の密度の上昇についても
、期待するほどの効果が得られない。
Common powder manufacturing methods include water atomization, pulverization, and the like. However, with the water atomization method etc., the average particle size is 5 μm.
It is difficult to obtain metal powder with a particle size of less than m, and although it is possible to provide it by classification after pulverization, the yield decreases and costs increase. Furthermore, the expected effect of increasing the density of the sintered part cannot be obtained.

また、15μm超では、バインダー量を多くしないと射
出成形時の流動性が悪く、かつ、焼結部品の密度も低い
ので本発明において適当でない。
Further, if the diameter exceeds 15 μm, the fluidity during injection molding will be poor unless the amount of binder is increased, and the density of the sintered part will be low, so it is not suitable for the present invention.

また、本発明に於いて、下記式[1]で定義される粒子
形状係数(SF)が1.0〜1.5の範囲で、かつこの
範囲の粉末を50%以上含有するのがよい。
Further, in the present invention, it is preferable that the particle shape factor (SF) defined by the following formula [1] is in the range of 1.0 to 1.5, and that 50% or more of powder in this range is contained.

SF:粉末粒子断面の形状係数 L :粒子断面の最大長さ A :粒子断面積 これは、焼結体の寸法精度に影17を及ぼすためである
SF: Shape factor of powder particle cross section L: Maximum length of particle cross section A: Particle cross-sectional area This is because it affects the dimensional accuracy of the sintered body.

つまり、粒子形状係数か1.0〜15の範囲の粉末を、
50%未満しか含んでいないと粒子が不規則状のため、
コンパウドの流動性が悪く、また、不規則な金属粉末粒
子同士か接触するので配向性が悪くなり、焼結時に均一
な収縮とならず、寸法精度も悪くなるので不適である。
In other words, powder with a particle shape coefficient in the range of 1.0 to 15,
If it contains less than 50%, the particles will be irregular,
It is unsuitable because the fluidity of the compound is poor, and the irregular metal powder particles come into contact with each other, resulting in poor orientation, resulting in uneven shrinkage during sintering and poor dimensional accuracy.

次に、有機バインダーの成分・ 組成において、熱可塑
性樹脂を40〜80重量%、可塑剤が6〜13重景%、
そしてワックス剤を20〜50重二%を含有するのがよ
い。
Next, in the components/composition of the organic binder, 40 to 80% by weight of thermoplastic resin, 6 to 13% by weight of plasticizer,
It is preferable that the wax agent is contained in an amount of 20 to 50% by weight.

熱可塑性樹脂としては特に限定されないか、エチレン酢
酸ビニル共重合体(以下EVAと記す)ポリスチレン(
以下PSと記す)、ポリプロピレン(以下PPと記す)
ポリメタクリル酸エステル(P M E )等のうち1
f!!または2種以上の混合物から選択する方が好まし
い。
The thermoplastic resin is not particularly limited, and may include ethylene vinyl acetate copolymer (hereinafter referred to as EVA), polystyrene (
(hereinafter referred to as PS), polypropylene (hereinafter referred to as PP)
1 of polymethacrylic acid esters (P M E ), etc.
f! ! Alternatively, it is preferable to select from a mixture of two or more types.

特にEVAは流動性および脱脂性が優れていることから
含有することがより好ましい。
In particular, it is more preferable to include EVA because it has excellent fluidity and degreasing properties.

バインダーを構成する熱可塑性樹脂か40%未満では成
形体の強度が弱く、部品製造上ハンドリングが困難とな
る。 また80%越えると脱バインダーが困難となり、
焼結体中のC量が高くなり焼結体特性を損なうため好ま
しくない。
If the amount of thermoplastic resin constituting the binder is less than 40%, the strength of the molded product will be weak, making it difficult to handle in the production of parts. Moreover, if it exceeds 80%, it becomes difficult to remove the binder.
This is not preferable because the amount of C in the sintered body becomes high and the properties of the sintered body are impaired.

可塑剤としてはジブチルフタレート(以下DBPと記す
) ジエチルフタレート(DEP)のいずれか1種ある
いは2種以上を用いることが好ましい。 これら可塑剤
は、バインターを構成する各成分の相溶性を向上させて
、バインダーの均質化をはかると4tに、射出成形時に
おける配合物の流動性を向上させる作用がある。
As the plasticizer, it is preferable to use one or more of dibutyl phthalate (hereinafter referred to as DBP) and diethyl phthalate (DEP). These plasticizers improve the compatibility of the components constituting the binder, homogenize the binder, and improve the fluidity of the compound during injection molding.

またその配合量は6%未満では前記作用の効果か得られ
ず、13%を越えて混合すると成形体が脆化するため好
ましくない。
Further, if the amount is less than 6%, the above-mentioned effect cannot be obtained, and if the amount is more than 13%, the molded product becomes brittle, which is not preferable.

またワックス類としては、パラフィンワックス、蜜ろう
等のうち1種または2種以上を用いることが好ましい。
As the wax, it is preferable to use one or more of paraffin wax, beeswax, etc.

 これらは、射出成形時における混合物の流動性を向上
させ、かつ原料粉末とバインダーのぬれ性を向上させて
配合物を均質化する作用をもつ。 これらの作用が詔め
られる添加量は20%以上であり、50%を越えると成
形体の強度が低下するので好ましくない。
These have the effect of improving the fluidity of the mixture during injection molding and improving the wettability between the raw material powder and the binder to homogenize the compound. The amount added to achieve these effects is 20% or more, and if it exceeds 50%, the strength of the molded product will decrease, which is not preferable.

次に有機バインダーの前記金属粉末への添加量は、金属
粉末95〜85wt%に対し、5〜15wt%であるこ
とが好ましい。
Next, the amount of the organic binder added to the metal powder is preferably 5 to 15 wt% relative to 95 to 85 wt% of the metal powder.

有機バインダーの添加量が5%未満では粉末充填剤の隙
間を埋めるためのみのバインダー量しかなく、流動性を
付与するに必要な量が不足してしまうため、成形時に流
動性が低下し射出成形できなくなる。
If the amount of organic binder added is less than 5%, there is only enough binder to fill the gaps between the powder fillers, and the amount necessary to provide fluidity is insufficient, resulting in decreased fluidity during molding and injection molding. become unable.

一方、15%を越えて混合すると、バインダーの量が多
すぎて、焼結体の密度が低下してしまうために好ましく
ない。
On the other hand, if the amount exceeds 15%, the amount of binder is too large and the density of the sintered body decreases, which is not preferable.

前記、金属粉末と有機バインダーは一般的な方法を用い
て混練1ノ、コンパウンドとする。
The metal powder and organic binder are kneaded to form a compound using a conventional method.

そして次に射出成形される。 本発明に於いて射出成形
時の圧力は、400〜2000kgf/cm2が好まし
い。
Then it is injection molded. In the present invention, the pressure during injection molding is preferably 400 to 2000 kgf/cm2.

射出圧力が400 kgf/cm’未満では満足な射出
成形体を得ることはできない。 また射出圧力が2 、
000 kgf/cm’であれは、十分複雑形状の部品
も射出成形が可能であり、コスト、設備の面を考慮する
と2000 kgf/cm2をこえて圧力をかける利点
はない。
If the injection pressure is less than 400 kgf/cm', a satisfactory injection molded article cannot be obtained. Also, the injection pressure is 2,
If the pressure is 000 kgf/cm2, it is possible to injection mold parts with sufficiently complex shapes, and there is no advantage in applying a pressure exceeding 2000 kgf/cm2 in terms of cost and equipment.

また、成形温度は、120〜170℃で行なうのが好ま
しい。 成形温度が120℃未満では、満足な射出成形
体を得ることができず、170℃を超えるとバインダー
からのガスの発生が著しくなり、成形体の外観不良とな
る。
Further, the molding temperature is preferably 120 to 170°C. If the molding temperature is less than 120°C, a satisfactory injection molded product cannot be obtained, and if it exceeds 170°C, gas generation from the binder becomes significant, resulting in poor appearance of the molded product.

所望の成形を行なった後、脱脂を行なう。After the desired molding is performed, degreasing is performed.

本発明における脱脂工程は不活性ガス雰囲気中、昇温速
度200℃/ h r以下、加熱温度450〜600℃
で加熱し、脱バインダーを行なうのが良い。
The degreasing process in the present invention is performed in an inert gas atmosphere, at a heating rate of 200°C/hr or less, and at a heating temperature of 450 to 600°C.
It is best to remove the binder by heating it.

昇温速度が、200℃/ h r超では、成形体に割れ
やふくれなどが生じ、満足な成形体か得がたいので、不
適である。
If the heating rate exceeds 200° C./hr, cracks or blisters may occur in the molded product, making it difficult to obtain a satisfactory molded product, which is not suitable.

また脱バインダーの加熱温度が450℃未満では、完全
な脱バインダーが行われず、焼結体中に炭素として残留
して寸法精度の不良などの原因となる。  また、60
0℃を越える脱バインダーは成形体の反りが生じるよう
になり好ましくない。
Furthermore, if the heating temperature for binder removal is less than 450° C., complete binder removal will not be performed and carbon will remain in the sintered body, causing poor dimensional accuracy. Also, 60
Removal of the binder at a temperature exceeding 0°C is undesirable because the molded product may warp.

この後、一般的な方法を用いて、焼結を行ない、射出焼
結部品を得ることができる。
After this, sintering can be carried out using conventional methods to obtain injection sintered parts.

〈実施例〉 以下、実施例に基づいて本発明を具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained based on Examples.

(実施例) 水アトマイズ鉄粉または5US316ステンレス鋼粉お
よびバインダーとを第1表に示す成分・組成に従い加圧
ニーダによって混練し、本発明例および比較例の原料を
作製した。
(Example) Water atomized iron powder or 5US316 stainless steel powder and a binder were kneaded using a pressure kneader according to the components and compositions shown in Table 1 to produce raw materials for inventive examples and comparative examples.

本発明の鉄粉とステンレス鋼粉は所望の粒径を得るため
に、水圧800〜1000kgf/cm2で水溶調比を
25〜30kg/分の範囲で調節して水アトマイズを行
い平均粒径と粒子形状の異なる粉末を用意した。
In order to obtain the desired particle size, the iron powder and stainless steel powder of the present invention are water atomized by adjusting the water solubility ratio in the range of 25 to 30 kg/min at a water pressure of 800 to 1000 kgf/cm2 to determine the average particle size and particle size. Powders of different shapes were prepared.

比較例の鉄粉およびステンレス鋼粉は水圧400 kg
f/cm”以下で水アトマイズを行い、その後分級して
得た。
Comparative examples of iron powder and stainless steel powder had a water pressure of 400 kg.
It was obtained by water atomization at a temperature of less than f/cm'' and then classification.

平均粒径はマイクロトラック法により求め、粒子形状は
、使用した粉末の代表サンプルを樹脂に埋め込み、粉末
の断面を200倍に拡大して1200〜1400個の粉
末を画像処理して次式て求め、定義した。
The average particle diameter was determined by the microtrack method, and the particle shape was determined by the following formula by embedding a representative sample of the powder used in resin, enlarging the cross section of the powder 200 times, and processing images of 1200 to 1400 powders. , defined.

SF;粉末粒子断面の形状係数 L 1粒子断面の最大長ざ A :粒子断面積 前記形状係数が1のときは真円球を示し、値か1より大
きくなる程不規則形状の粉末を意味する。
SF: Shape factor L of powder particle cross section Maximum length of 1 particle cross section A: Particle cross sectional area When the shape factor is 1, it indicates a perfect round sphere, and as the value becomes larger than 1, it means an irregularly shaped powder. .

各々の成形原料を、第2表に示される射出成形条件にて
、厚さが4mm、幅が15mm、長さが30mmの板状
の試験片を成形した。 これをステンレスの網の上に並
べてArカスW 121El気中で同様に第2表に示す
条件で脱パイングーを行った後、さらに鉄粉成形体は分
解アンモニアガスで1150℃×30分間、ステンレス
成形体は真空中で1350℃X60分間焼結を行った。
Each molding raw material was molded into a plate-shaped test piece with a thickness of 4 mm, a width of 15 mm, and a length of 30 mm under the injection molding conditions shown in Table 2. After arranging this on a stainless steel mesh and depineurizing it in Ar scum W 121El air under the conditions shown in Table 2, the iron powder compact was further molded into stainless steel using decomposed ammonia gas at 1150°C for 30 minutes. The body was sintered in vacuum at 1350°C for 60 minutes.

得られた試験片の焼結密度を測定し、理論密度との割合
で密度比を、寸法変化は各10個の試験片の幅方向にお
ける焼結前後の寸法変化を測定し、その標準偏差を求め
た。
The sintered density of the obtained test pieces was measured, and the density ratio was calculated as a percentage of the theoretical density.The dimensional change was calculated by measuring the dimensional change before and after sintering in the width direction of each 10 test pieces, and the standard deviation was calculated. I asked for it.

なお第1図に本発明例2に用いた鉄粉の、第2図に比較
例1に用いた鉄粉のSEM像を示す。 本発明に用いた
金属粉末の大半の粒子形状は球状に近く、形状係数が1
〜1.5の範囲の粉末が50%以上であり、射出成形時
の流動性に優れかつ金属粉末の配向性にも冨んでいるた
め、焼結体の密度比が93%以上と高く、かつ、寸法精
度も優れている。
Note that FIG. 1 shows an SEM image of the iron powder used in Inventive Example 2, and FIG. 2 shows an SEM image of the iron powder used in Comparative Example 1. The particle shape of most of the metal powders used in the present invention is close to spherical, and the shape factor is 1.
The powder in the range of ~1.5 is 50% or more, has excellent fluidity during injection molding, and has good orientation of the metal powder, so the density ratio of the sintered body is as high as 93% or more, and , dimensional accuracy is also excellent.

〈発明の効果〉 金属粉末射出成形方法を使用して焼結部品をBU 造す
るに当り、本発明の金属粉末およびコンパウンドならび
にその前記コンパウンドを用いて製造した射出焼結部品
は93%以上の密度比と、寸法精度の高い焼結部品が得
られ、製品小止りの向上か可能となる。
<Effects of the Invention> When producing a sintered part using the metal powder injection molding method, the metal powder and compound of the present invention and the injection sintered part manufactured using the compound have a density of 93% or more. It is possible to obtain sintered parts with high ratio and dimensional accuracy, and it is possible to improve the product holding capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は粒子の構造を示す図面代用写真で
ある。 第1図は発明例1に用いた鉄粉の倍率500のSEM写
真である。 第2図は比較例2に用いた鉄粉の倍率500のSEM写
真である。
FIGS. 1 and 2 are photographs substituted for drawings showing the structure of particles. FIG. 1 is a SEM photograph at a magnification of 500 of the iron powder used in Invention Example 1. FIG. 2 is a SEM photograph of the iron powder used in Comparative Example 2 at a magnification of 500.

Claims (3)

【特許請求の範囲】[Claims] (1)射出成形用金属粉末の平均粒径が5〜15μmで
、かつ下記で定義される粒子形状係数が、1.0〜1.
5の範囲の粉末が50%以上であることを特徴とする射
出成形用金属粉末。 SF=L^2/A・π/4[ I ] SF:粉末粒子断面の形状係数 L:粒子断面の最大長さ A:粒子断面積
(1) The average particle size of the metal powder for injection molding is 5 to 15 μm, and the particle shape factor defined below is 1.0 to 1.
A metal powder for injection molding, characterized in that 50% or more of the powder falls within the range of 5. SF=L^2/A・π/4 [I] SF: Shape factor of powder particle cross section L: Maximum length of particle cross section A: Particle cross sectional area
(2)前記金属粉末95〜85重量%と、有機バインダ
ー5〜15重量%とを有する射出成形用コンパウンドで
あって、前記有機バインダーの構成が熱可塑性樹脂40
〜80重量%、可塑剤が6〜13重量%およびパラフィ
ンワックス、密ろうのうち1種または2種を20〜50
重量%含有することを特徴とした射出成形用コンパウン
ド。
(2) An injection molding compound comprising 95 to 85% by weight of the metal powder and 5 to 15% by weight of the organic binder, wherein the organic binder has a composition of 40% by weight of a thermoplastic resin.
-80% by weight, 6-13% by weight of plasticizer and 20-50% of one or two of paraffin wax and beeswax.
An injection molding compound characterized by containing % by weight.
(3)前記射出成形用コンパウンドを用いて、射出成形
する際、 射出圧力400〜2000kgf/cm^2、成形温度
120〜170℃の条件で成形し、 ついでこの射出成形体を非酸化性雰囲気で、昇温速度2
00℃/hr以下、加熱温度450〜600℃の条件で
加熱して脱バインダーを行い、 その後焼結することを特徴とする射出焼結部品の製造方
法。
(3) When injection molding is performed using the injection molding compound, the injection pressure is 400 to 2000 kgf/cm^2 and the molding temperature is 120 to 170°C, and the injection molded product is then placed in a non-oxidizing atmosphere. , heating rate 2
A method for manufacturing an injection sintered part, characterized in that the binder is removed by heating at a heating temperature of 450 to 600°C at a temperature of 00°C/hr or less, and then sintering.
JP63206704A 1988-08-20 1988-08-20 Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound Pending JPH0257609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206704A JPH0257609A (en) 1988-08-20 1988-08-20 Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206704A JPH0257609A (en) 1988-08-20 1988-08-20 Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound

Publications (1)

Publication Number Publication Date
JPH0257609A true JPH0257609A (en) 1990-02-27

Family

ID=16527736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206704A Pending JPH0257609A (en) 1988-08-20 1988-08-20 Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound

Country Status (1)

Country Link
JP (1) JPH0257609A (en)

Similar Documents

Publication Publication Date Title
KR920003625B1 (en) Starting material for injection molding of metal powder method of producing sintered parts
JPH0647684B2 (en) Degreasing method for injection molded products
US6761852B2 (en) Forming complex-shaped aluminum components
JP2004525264A (en) Manufacture of structural members by metal injection molding
JPH0257609A (en) Injection-molding metal powder, its compound, and production of sintered injection-molded part using said compound
JPH093510A (en) Copper powder for injection-molding of metallic powder and production of injection-molded product using the same
JPS59229403A (en) Production of sintered metallic member and binder for injection molding
JPH0353003A (en) Composition for injection molding
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
JPH02107703A (en) Composition for injection molding
JPH0987775A (en) Production of molded article made of copper-chromium family metal alloy
JP2980209B2 (en) Noble metal sintered body and method for producing the same
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JPH01184203A (en) Alloy powder for injected-compacting
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH04285141A (en) Manufacture of ferrous sintered body
JP2756287B2 (en) Method for producing composition for injection molding powder metallurgy
JP2799064B2 (en) Manufacturing method of sintered body
JP2022542020A (en) Porous sintered membrane and method of preparing porous sintered membrane
JPH01212702A (en) Manufacture of magnetic material
JPH01215907A (en) Manufacture of metal sintered compact
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it
JPH01212706A (en) Manufacture of magnetic material
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same