JPH0257329B2 - - Google Patents

Info

Publication number
JPH0257329B2
JPH0257329B2 JP28060484A JP28060484A JPH0257329B2 JP H0257329 B2 JPH0257329 B2 JP H0257329B2 JP 28060484 A JP28060484 A JP 28060484A JP 28060484 A JP28060484 A JP 28060484A JP H0257329 B2 JPH0257329 B2 JP H0257329B2
Authority
JP
Japan
Prior art keywords
capacitor
electrolytic
capacitor element
electrolytic capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28060484A
Other languages
Japanese (ja)
Other versions
JPS61156717A (en
Inventor
Yutaka Yokoyama
Takahito Ito
Ikuhiko Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP28060484A priority Critical patent/JPS61156717A/en
Publication of JPS61156717A publication Critical patent/JPS61156717A/en
Publication of JPH0257329B2 publication Critical patent/JPH0257329B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は電解コンデンサの改良に係り、特に
電解コンデンサの耐腐食特性の改善に関する。 〔従来の技術〕 電解コンデンサは、アルミニウム、タンタルな
どの皮膜形成性金属を陽極に用い、この陽極表面
に誘電体となる絶縁性の酸化皮膜を陽極酸化処理
等により形成し、陰極として酸化皮膜のない同種
もしくは他の金属を対抗配置し、これら電極間に
紙、多孔質プラスチツクなどのセパレータを介在
させて巻回あるいは、層状に重ね合わせてコンデ
ンサ素子を形成している。 図面は、一般的な巻回構造のアルミニウム電解
コンデンサの素子構造を例示したもので、帯状の
アルミニウム陽極箔2はその表面が拡面化のため
のエツチング処理が施されるとともに、その上面
に陽極酸化処理により、誘電体酸化皮膜層が形成
されている。 そして、この陽極箔2に対抗させて、同様に帯
状のアルミニウム陰極箔3が配置され、これら陽
極箔2、陰極箔3の間に前記電極箔より僅かに幅
の広いセパレータ紙4が挟み込まれて円筒状に巻
回されてコンデンサ素子1が形成されている。な
おリード5は、コンデンサ素子1の電極箔2,3
と外部との電気的接続をおこなうために、各々の
電極箔に取りつけられ、コンデンサ素子1の巻回
端面から引き出されたものである。 そして、このコンデンサ素子に電解液を含浸
し、外部への電極引出し手段を設けたうえ、金
属、樹脂等の外装ケースあるいは、樹脂モールド
等の手段で外装が施され、電解コンデンサとな
る。 電解コンデンサは、誘電体が陽極の皮膜形成性
金属の表面に形成された酸化皮膜であり、電解液
がこの酸化皮膜と接触して、コンデンサの機能を
持つことになる。つまり、電解液が真の陰極とし
て機能している。また、電解液はこの酸化皮膜の
劣化部分に作用して、皮膜を修復させる機能を有
している。このことは、酸化皮膜と電解液の接触
面で常に局所的に陽極酸化反応が常におこなわれ
ているといえる。 ところが、この陽極酸化反応の部位に塩素イオ
ンが存在すると、アルミニウムは塩素と化合し塩
化アルミニウムとなり、さらに加水分解して水酸
化アルミニウムが形成される。そして塩素イオン
はあたかも触媒のように作用してアルミニウムの
腐食を進行させ、漏れ電流の増加、内圧上昇等に
始まり、ついには内部リードに断線等により電解
コンデンサの機能を全く損ねてしまうことにな
る。 電解コンデンサは、アルミニウム、タンタルな
どの皮膜形成性金属を陽極に用い、この陽極表面
に誘電体となる絶縁性の酸化皮膜を陽極酸化処理
等により形成し、陰極として酸化皮膜のない同種
もしくは他の金属を対抗配置し、これら電極間に
紙、多孔質プラスチツクなどのセパレータを介在
させて巻回あるいは、層状に重ね合わせてコンデ
ンサ素子を形成している。 図面は、一般的な巻回構造のアルミニウム電解
コンデンサの素子構造を例示したもので、帯状の
アルミニウム陽極箔2はその表面が拡面化のため
のエツチング処理が施されるとともに、その上面
に陽極酸化処理により、誘電体酸化皮膜層が形成
されている。 そして、この陽極箔2に対抗させて、同様に帯
状のアルミニウム陰極箔3が配置され、これら陽
極箔2、陰極箔3の間に前記電極箔より僅かに幅
の広いセパレータ紙4が挟み込まれて円筒状に巻
回されてコンデンサ素子1が形成されている。な
おリード5は、コンデンサ素子1の電極箔2,3
と外部との電気的接続をおこなうために、各々の
電極箔に取りつけられ、コンデンサ素子1の巻回
端面から引き出されたものである。 そして、このコンデンサ素子に電解液を含浸
し、外部への電極引出し手段を設けたうえ、金
属、樹脂等の外装ケースあるいは、樹脂モールド
等の手段で外装が施され、電解コンデンサとな
る。 電解コンデンサは、誘電体が陽極の皮膜形成性
金属の表面に形成された酸化皮膜であり、電解液
がこの酸化皮膜と接触して、コンデンサの機能を
持つことになる。つまり、電解液が真の陰極とし
て機能している。また、電解液はこの酸化皮膜の
劣化部分に作用して、皮膜を修復させる機能を有
している。このことは、酸化皮膜と電解液の接触
面で常に局所的に陽極酸化反応が常におこなわれ
ているといえる。 ところが、この陽極酸化反応の部位に塩素イオ
ンが存在すると、アルミニウムは塩素と化合し塩
化アルミニウムとなり、さらに加水分解して水酸
化アルミニウムが形成される。そして塩素イオン
はあたかも触媒のように作用してアルミニウムの
腐食を進行させ、漏れ電流の増加、内圧上昇等に
始まり、ついには内部リードに断線等により電解
コンデンサの機能を全く損ねてしまうことにな
る。 このため、電解コンデンサの内部は、塩素の存
在を極力排除しなければならない。しかしなが
ら、塩素は電極箔のエツチング処理を、塩酸ある
いは塩化ナトリウム水溶液中でおこなうので、完
全な塩素の除去は極めて難しい。また製造工程中
で塩素イオンの侵入する可能性もある。さらには
電解コンデンサは、印刷配線基板上に半田により
取り付けられるが、この半田付け後の基板洗浄
に、トリクロロエタン等のハロゲン系洗浄剤を使
用するので、残存洗浄剤が電解コンデンサの封口
部分やリード引き出し部分から内部に浸透し、腐
食発生の原因となることもある。従つて、信頼度
の高い電解コンデンサを得るには、腐食を抑制す
るための手段が必要となる。 〔発明が解決しようとする問題点〕 この発明の目的は、従来のこのような技術背景
に対し、内部残存あるいは外部から侵入する塩素
による腐食発生を防止し、信頼度の高い電解コン
デンサを得ることにある。 〔問題点を解決するための手段〕 この発明は、陽極電極、陰極電極間にセパレー
タを介在させ、電解液を含浸してなるコンデンサ
において、前記コンデンサ素子にビスマス酸塩と
アンチモン酸の混合物を含有させたことを特徴と
している。 〔作用〕 ビスマス酸は、その詳細な理由は明らかではな
いが、塩素等の陰イオンを吸着する能力に優れ
る。 また、アンチモン酸は、陽イオン殊にナトリウ
ムイオンをはじめとするアルカリ金属イオンに対
し選択的に吸着をおこなうことが知られている。 そこで、発明者はこれらの2つの化合物の特性
に着目し、双方を混合して存在させることによ
り、例えば塩化ナトリウムのような形でコンデン
サ内に存在する塩素分に対し、陽イオン、陰イオ
ン双方から選択的に吸着をおこなうことで、塩素
イオン捕捉の効率を高めようとするものである。 まず、ビスマス酸塩とアンチモン酸の混合物が
塩素イオンの捕捉をおこなう能力の確認をおこな
つた実験例を示す。 実験は、N,N―ジメチルフオルムアミドにマ
レイン酸およびトリエチルアミンを溶解した電解
コンデンサ用電解液に、一定量の塩素イオンに存
在させ、ここにビスマス酸塩とアンチモン酸の混
合物を入れて所定時間放置後の塩素イオンの濃度
変化を調べた。 実験条件は、前記の電解液の塩素イオン濃度が
100ppmになるように塩化ナトリウムを添加し、
この中に第1表に示すビスマス酸塩とアンチモン
酸を表中の割合で混合し、60℃で20時間放置後の
塩素イオン残量を測定したものである。なお、混
合したビスマス酸塩とアンチモン酸はいずれも電
解液に不溶のため、2時間毎に撹拌をおこなつ
た。
[Industrial Field of Application] This invention relates to improvement of electrolytic capacitors, and particularly to improvement of corrosion resistance properties of electrolytic capacitors. [Prior art] Electrolytic capacitors use a film-forming metal such as aluminum or tantalum as an anode, and an insulating oxide film that serves as a dielectric is formed on the surface of the anode by anodizing treatment, and the oxide film is used as a cathode. A capacitor element is formed by arranging metals of the same type or other metals and winding or layering them with a separator such as paper or porous plastic interposed between these electrodes. The drawing shows an example of the element structure of an aluminum electrolytic capacitor with a general winding structure.A strip-shaped aluminum anode foil 2 is etched on its surface to enlarge its surface, and an anode is placed on its upper surface. A dielectric oxide film layer is formed by the oxidation treatment. A strip-shaped aluminum cathode foil 3 is similarly arranged opposite to the anode foil 2, and a separator paper 4 slightly wider than the electrode foil is sandwiched between the anode foil 2 and the cathode foil 3. A capacitor element 1 is formed by winding it into a cylindrical shape. Note that the lead 5 is connected to the electrode foils 2 and 3 of the capacitor element 1.
It is attached to each electrode foil and pulled out from the winding end surface of the capacitor element 1 in order to make an electrical connection between the capacitor element 1 and the outside. Then, this capacitor element is impregnated with an electrolytic solution, provided with means for extending electrodes to the outside, and then covered with an outer case made of metal, resin, or the like, or with a means such as resin molding, thereby forming an electrolytic capacitor. In an electrolytic capacitor, the dielectric is an oxide film formed on the surface of a film-forming metal as an anode, and when the electrolyte comes into contact with this oxide film, it functions as a capacitor. In other words, the electrolyte functions as a true cathode. Furthermore, the electrolytic solution has the function of acting on the deteriorated portions of this oxide film and repairing the film. This means that an anodic oxidation reaction is always occurring locally at the contact surface between the oxide film and the electrolyte. However, when chlorine ions are present at the site of this anodic oxidation reaction, aluminum combines with chlorine to form aluminum chloride, which is further hydrolyzed to form aluminum hydroxide. The chlorine ions then act as if they were a catalyst, accelerating the corrosion of aluminum, causing an increase in leakage current, an increase in internal pressure, etc., and eventually breaking the internal leads, completely impairing the functionality of the electrolytic capacitor. . Electrolytic capacitors use a film-forming metal such as aluminum or tantalum as an anode, and an insulating oxide film that becomes a dielectric is formed on the surface of this anode by anodizing, and a similar or other material without an oxide film is used as a cathode. A capacitor element is formed by arranging metals facing each other and winding or stacking them in layers with a separator such as paper or porous plastic interposed between these electrodes. The drawing shows an example of the element structure of an aluminum electrolytic capacitor with a general winding structure.A strip-shaped aluminum anode foil 2 is etched on its surface to enlarge its surface, and an anode is placed on its upper surface. A dielectric oxide film layer is formed by the oxidation treatment. A strip-shaped aluminum cathode foil 3 is similarly arranged opposite to the anode foil 2, and a separator paper 4 slightly wider than the electrode foil is sandwiched between the anode foil 2 and the cathode foil 3. A capacitor element 1 is formed by winding it into a cylindrical shape. Note that the lead 5 is connected to the electrode foils 2 and 3 of the capacitor element 1.
It is attached to each electrode foil and pulled out from the winding end surface of the capacitor element 1 in order to make an electrical connection between the capacitor element 1 and the outside. Then, this capacitor element is impregnated with an electrolytic solution, provided with means for extending electrodes to the outside, and then covered with an outer case made of metal, resin, or the like, or with a means such as resin molding, thereby forming an electrolytic capacitor. In an electrolytic capacitor, the dielectric is an oxide film formed on the surface of a film-forming metal as an anode, and when the electrolyte comes into contact with this oxide film, it functions as a capacitor. In other words, the electrolyte functions as a true cathode. Furthermore, the electrolytic solution has the function of acting on the deteriorated portions of this oxide film and repairing the film. This means that an anodic oxidation reaction is always occurring locally at the contact surface between the oxide film and the electrolyte. However, when chlorine ions are present at the site of this anodic oxidation reaction, aluminum combines with chlorine to form aluminum chloride, which is further hydrolyzed to form aluminum hydroxide. The chlorine ions then act as if they were a catalyst, accelerating the corrosion of aluminum, causing an increase in leakage current, an increase in internal pressure, etc., and eventually breaking the internal leads, completely impairing the functionality of the electrolytic capacitor. . Therefore, the presence of chlorine must be eliminated as much as possible inside the electrolytic capacitor. However, since the electrode foil is etched with chlorine in hydrochloric acid or an aqueous sodium chloride solution, it is extremely difficult to completely remove chlorine. There is also a possibility that chlorine ions may enter during the manufacturing process. Furthermore, electrolytic capacitors are attached to printed wiring boards by soldering, but since a halogen-based cleaning agent such as trichloroethane is used to clean the board after soldering, the remaining cleaning agent may be left behind on the sealing part of the electrolytic capacitor or on the lead drawer. It can also penetrate into the interior and cause corrosion. Therefore, in order to obtain a highly reliable electrolytic capacitor, a means for suppressing corrosion is required. [Problems to be Solved by the Invention] Against this conventional technical background, the purpose of the present invention is to prevent corrosion caused by chlorine remaining inside or entering from the outside, and to obtain a highly reliable electrolytic capacitor. It is in. [Means for Solving the Problems] The present invention provides a capacitor in which a separator is interposed between an anode electrode and a cathode electrode and impregnated with an electrolytic solution, in which the capacitor element contains a mixture of bismuthate and antimonic acid. It is characterized by the fact that [Function] Although the detailed reason is not clear, bismuth acid has an excellent ability to adsorb anions such as chlorine. Furthermore, antimonic acid is known to selectively adsorb cations, particularly alkali metal ions including sodium ions. Therefore, the inventor focused on the characteristics of these two compounds, and by making them exist in a mixture, both cations and anions can be removed from the chlorine present in the capacitor in the form of sodium chloride. The aim is to increase the efficiency of chloride ion capture by selectively adsorbing chloride ions. First, we will show an experimental example in which the ability of a mixture of bismuthate and antimonic acid to capture chloride ions was confirmed. In the experiment, a certain amount of chlorine ions were added to an electrolytic solution for electrolytic capacitors in which maleic acid and triethylamine were dissolved in N,N-dimethylformamide, and a mixture of bismuthate and antimonic acid was added thereto and left for a predetermined period of time. The subsequent change in chloride ion concentration was investigated. The experimental conditions were such that the chloride ion concentration of the electrolyte was
Add sodium chloride to 100ppm,
The bismuthate and antimonic acid shown in Table 1 were mixed in the mixture in the proportions shown in the table, and the remaining amount of chlorine ions was measured after the mixture was left at 60°C for 20 hours. Note that since both the mixed bismuthate and antimonic acid were insoluble in the electrolytic solution, stirring was performed every 2 hours.

【表】【table】

〔実施例〕〔Example〕

次に、実際の電解コンデンサを製作して腐食の
抑制について調べた結果を示す。 製作した電解コンデンサは、帯状のアルミニウ
ム電極をセパレータ紙とともに巻回した通常の電
解コンデンサで、定格電圧63V、静電容量10μF、
外形寸法10φ×12.5mmのものである。そしてこの
発明の実施例については、マニラ繊維紙からなる
セパレータ紙の表面に、ビスマス酸塩とアンチモ
ン酸とを等量混合し、水を加えてスラリー状にし
たものを塗布し、乾燥させてから電極箔とともに
巻回してコンデンサ素子とした。 使用電解液は、N,N―ジメチルフオルムアミ
ド―マレイン酸系の電解液で、組成は次のとおり
である。 N,N―ジメチルフオルムアミド 84wt% マレイン酸 9wt% トリエチルアミン 7wt% この電解液に塩化ナトリウムを溶解して、塩素
イオンで100ppmの濃度になるように調整した。
この電解液を前記コンデンサ素子に含浸後、外装
ケースに収納し、開口部を封口部材で密封して電
解コンデンサを完成させた。 この電解コンデンサを110℃で63Vの電圧を印
加して寿命試験をおこない、腐食の発生割合をみ
た。なお比較例として、ビスマス酸塩とアンチモ
ン酸との混合物を塗布しない通常のセパレータ紙
で巻回したコンデンサ素子に同じ電解液を含浸し
て同様に寿命試験をおこなつた。この結果を、第
2表に示す。
Next, we will present the results of an investigation into corrosion suppression using actual electrolytic capacitors manufactured. The manufactured electrolytic capacitor is a normal electrolytic capacitor made by winding a band-shaped aluminum electrode with separator paper, and has a rated voltage of 63V, a capacitance of 10μF,
It has external dimensions of 10φ x 12.5mm. In an embodiment of the present invention, a slurry made by mixing equal amounts of bismuthate and antimonic acid and adding water is applied to the surface of a separator paper made of Manila fiber paper, and after drying. It was wound together with electrode foil to form a capacitor element. The electrolytic solution used was an N,N-dimethylformamide-maleic acid based electrolytic solution and had the following composition. N,N-dimethylformamide 84 wt% Maleic acid 9 wt% Triethylamine 7 wt% Sodium chloride was dissolved in this electrolyte and adjusted to a concentration of 100 ppm with chlorine ions.
After impregnating the capacitor element with this electrolytic solution, it was housed in an exterior case, and the opening was sealed with a sealing member to complete an electrolytic capacitor. A lifespan test was performed on this electrolytic capacitor by applying a voltage of 63V at 110°C, and the rate of corrosion was observed. As a comparative example, a capacitor element wound with ordinary separator paper not coated with a mixture of bismuthate and antimonic acid was impregnated with the same electrolyte and subjected to the same life test. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば、電解コ
ンデンサの塩素による腐食を抑制するので、腐食
による漏れ電流の増加、内部リードの断線、封口
部の開弁等の電解コンデンサにとつて致命的な事
故の発生を防止することができ、極めて信頼度の
高い電解コンデンサを得ることができる。
As described above, according to the present invention, corrosion caused by chlorine in electrolytic capacitors is suppressed, thereby preventing fatal problems for electrolytic capacitors such as an increase in leakage current due to corrosion, disconnection of internal leads, and opening of valves in the sealing part. Accidents can be prevented from occurring, and an extremely reliable electrolytic capacitor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、巻回構造の電解コンデンサ素子をあら
わした、説明図である。 1……コンデンサ素子、2……陽極箔、3……
陰極箔、4……セパレータ紙、5……リード。
The drawing is an explanatory diagram showing an electrolytic capacitor element having a wound structure. 1... Capacitor element, 2... Anode foil, 3...
Cathode foil, 4... separator paper, 5... lead.

Claims (1)

【特許請求の範囲】 1 陽極電極、陰極電極間にセパレータを介在さ
せ、電解液を含浸したコンデンサ素子を、外装ケ
ース内部に収納してなる電解コンデンサにおい
て、前記コンデンサ素子にビスマス酸塩とアンチ
モン酸との混合物を含有させたことを特徴とする
電解コンデンサ。 2 ビスマス酸塩とアンチモン酸の混合物は、コ
ンデンサ素子の電極またはセパレータに塗布され
ているところの特許請求の範囲第1項記載の電解
コンデンサ。 3 ビスマス酸塩とアンチモン酸の混合物は、コ
ンデンサ素子中の電解液に混合されているところ
の特許請求の範囲第1項記載の電解コンデンサ。
[Scope of Claims] 1. An electrolytic capacitor in which a separator is interposed between an anode electrode and a cathode electrode, and a capacitor element impregnated with an electrolyte is housed inside an outer case, wherein the capacitor element contains bismuthate and antimonic acid. An electrolytic capacitor characterized by containing a mixture of. 2. The electrolytic capacitor according to claim 1, wherein the mixture of bismuthate and antimonic acid is applied to an electrode or a separator of a capacitor element. 3. The electrolytic capacitor according to claim 1, wherein the mixture of bismuthate and antimonic acid is mixed in the electrolyte in the capacitor element.
JP28060484A 1984-12-27 1984-12-27 Electrolytic capacitor Granted JPS61156717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28060484A JPS61156717A (en) 1984-12-27 1984-12-27 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28060484A JPS61156717A (en) 1984-12-27 1984-12-27 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS61156717A JPS61156717A (en) 1986-07-16
JPH0257329B2 true JPH0257329B2 (en) 1990-12-04

Family

ID=17627343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28060484A Granted JPS61156717A (en) 1984-12-27 1984-12-27 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61156717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073000A1 (en) * 2003-02-12 2004-08-26 Sanyo Electric Co., Ltd. Solid electrolytic capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567234B2 (en) * 1987-01-16 1996-12-25 日本ケミコン 株式会社 Manufacturing method of solid electrolytic capacitor
JPH0746389Y2 (en) * 1991-01-16 1995-10-25 日特産業有限会社 Filtration device
KR100573448B1 (en) * 2001-09-26 2006-04-26 루비콘 가부시키가이샤 Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073000A1 (en) * 2003-02-12 2004-08-26 Sanyo Electric Co., Ltd. Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS61156717A (en) 1986-07-16

Similar Documents

Publication Publication Date Title
KR100366551B1 (en) Electrolytic Capacitors
EP1962308B1 (en) Electric double layer capacitor
US3622843A (en) Aluminum electrode electrolytic capacitor construction
JPH0257329B2 (en)
US4159927A (en) Anodizing aluminum in boric acid bath containing hydroxy organic acid
JPH0257328B2 (en)
JP4835488B2 (en) Electrolytic capacitor and electrolytic capacitor manufacturing method
US3654523A (en) Wet electrolytic capacitors
JPH0785461B2 (en) Capacitor
JP4082404B2 (en) Aluminum electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
JP4082405B2 (en) Aluminum electrolytic capacitor
JPH0240208B2 (en) DENKAIKONDENSA
JP2538292B2 (en) Electrolytic capacitor
GB2056774A (en) Bipolar electrolytic capacitor
JP4082406B2 (en) Aluminum electrolytic capacitor
JP4082407B2 (en) Aluminum electrolytic capacitor
JPS61158134A (en) Electrolytic capacitor
JPH0774055A (en) Electrolytic capacitor and its tab terminal
JPH031817B2 (en)
JP3483681B2 (en) Method of manufacturing tab terminal for electrolytic capacitor
JPH08148390A (en) Electrolytic capacitor
JPH01143319A (en) Electrolytic capacitor
JPS60224213A (en) Aluminum electrolytic condenser
JP2005051273A (en) Aluminum electrolytic capacitor