JPH0257142B2 - - Google Patents

Info

Publication number
JPH0257142B2
JPH0257142B2 JP19957182A JP19957182A JPH0257142B2 JP H0257142 B2 JPH0257142 B2 JP H0257142B2 JP 19957182 A JP19957182 A JP 19957182A JP 19957182 A JP19957182 A JP 19957182A JP H0257142 B2 JPH0257142 B2 JP H0257142B2
Authority
JP
Japan
Prior art keywords
discharge
cathode
lab
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19957182A
Other languages
Japanese (ja)
Other versions
JPS5989762A (en
Inventor
Joshin Uramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19957182A priority Critical patent/JPS5989762A/en
Publication of JPS5989762A publication Critical patent/JPS5989762A/en
Publication of JPH0257142B2 publication Critical patent/JPH0257142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明者は、主陰極LaB6と、これに近接配置
された熱容量の小さい補助陰極とを有し、該補助
陰極に初期放電を集中させ、それを利用して主陰
極LaB6を加熱し、気体中で大電流放電を可能と
したプラズマ生成用複合型LaB6陰極を提案した
(特願昭54−57395号、特開昭55−148337号参照)。
このプラズマ生成用複合型LaB6陰極によつて生
成されたプラズマを、永久磁石又は鉄芯入り電磁
石と、空心コイルの磁場により拡げ、曲げ、絞り
且つ器壁へのプラズマ損失を軽減してイオンプレ
ーテングに適用することもできる(特願昭56−
172338号、特開昭58−73770号参照)。かかる
LaB6陰極によるガス放電を行うとき、放電段階
としてはグロー放電(放電開始)、準定常アーク
放電(陰極加熱)、定常アーク放電(大電流放電)
の3段階がある。先づ最初の放電開始段階ではパ
ツシエンの法則から決定されるような高電圧(〜
600V)を必要とするが小電流(<0.5A)でよく、
次の陰極加熱段階では中間電圧(〜200V)と中
間電流(〜1.5V)を必要とする。最終段階の定
常アーク放電でイオンプレーテングを順調に行う
には150A以上で、放電々圧は100V前後必要であ
る(ガスの種類に依存)。この3段階を一つの電
源で行い直列抵抗によつて電圧を垂下させると、
電力損失が著しく大きくなり電力効率が悪化し、
電源コストも大きくなる。そこで図面のような三
電源方式にすれば、即ち、高電圧低電流電源
(PT)、中間電圧中間電流電源(PH)、低電圧大電
流電源(P0)を併用すれば直列抵抗による電力
損失を最小にして電力効率を上げることができ
る。また、図面のようにダイオードを利用すれば
三電源の推移を自動的に行うことができる。
DETAILED DESCRIPTION OF THE INVENTION The present inventor has a main cathode LaB 6 and an auxiliary cathode with a small heat capacity placed close to the main cathode, concentrates the initial discharge on the auxiliary cathode, and utilizes it to generate a main cathode. We proposed a composite LaB 6 cathode for plasma generation that heats the cathode LaB 6 and enables large current discharge in gas (see Japanese Patent Application No. 54-57395 and Japanese Patent Application Laid-open No. 55-148337).
The plasma generated by this composite LaB 6 cathode for plasma generation is spread, bent, and constricted by the magnetic field of a permanent magnet or an electromagnet with an iron core and an air-core coil, reducing plasma loss to the vessel wall and forming an ion beam. It can also be applied to the proboscis (patent application 1986-
No. 172338, JP-A-58-73770). It takes
When performing gas discharge using a LaB 6 cathode, the discharge stages are glow discharge (discharge start), quasi-steady arc discharge (cathode heating), and steady arc discharge (large current discharge).
There are three stages. First, at the initial discharge initiation stage, a high voltage (~
600V), but only a small current (<0.5A) is required.
The next cathode heating step requires an intermediate voltage (~200V) and an intermediate current (~1.5V). In order to smoothly perform ion plating in the final stage of steady arc discharge, a current of 150A or higher and a discharge pressure of around 100V are required (depending on the type of gas). If these three stages are performed with one power supply and the voltage is dropped by a series resistor,
Power loss becomes significantly large, power efficiency deteriorates,
Power supply costs also increase. Therefore, if we use a three-power supply system as shown in the drawing, i.e., a high-voltage, low-current power supply (P T ), an intermediate-voltage, intermediate-current power supply (P H ), and a low-voltage, high-current power supply (P 0 ), the series resistance Power efficiency can be increased by minimizing power loss. Furthermore, if diodes are used as shown in the drawing, the transition of the three power sources can be performed automatically.

次に重要なことは陰極を含めた放電々極の永年
変化と放電開始から準定常アークへの移行の関係
である。経験的に放電々極の新しい中は表面の荒
い状態で電場が強くかゝりこの移行は容易であ
り、図面のPTは500V、10mA程度で充分である。
しかしながら長時間大電流放電を行うと表面の荒
さがなくなり初期電場が小さくなるので放電開始
から陰極加熱段階に移行するには0.5A程度迄上
げなければならない場合も生じて来る(陰極の損
傷を小さくするには最初の段階の電流はできるだ
け小さい方がよいのであるが)。以上のように放
電々極の永年変化に応じて放電開始から陰極加熱
段階への移行対策を行つた点も本電源の特徴であ
る。即ち、図面でPTの電圧、電流が可変である。
The next important thing is the relationship between the secular change of the discharge electrodes, including the cathode, and the transition from the start of discharge to a quasi-steady arc. Experience has shown that the inside of a new discharge electrode has a rough surface and the electric field is strong, so this transition is easy, and PT of about 500V and 10mA in the drawing is sufficient.
However, if a large current discharge is performed for a long time, the roughness of the surface will disappear and the initial electric field will become smaller, so it may be necessary to increase the current to about 0.5A in order to move from the start of discharge to the cathode heating stage (to minimize damage to the cathode). To achieve this, it is better to keep the current in the first stage as small as possible). As mentioned above, another feature of this power supply is that it takes measures to transition from the start of discharge to the cathode heating stage in response to secular changes in the discharge electrodes. That is, in the drawing, the voltage and current of P T are variable.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はイオンプレーテング用LaB6陰極のため
の電源の原理回路と放電々極への接続図である。
図面で1は放電開始用可変型高電圧低電流電源
(PT)。2は陰極加熱用中間電圧中間電流電源
(PH)。3は定常大電流放電用低電圧大電流電源
(P0)。4は可変抵抗。5は固定抵抗。6は大型
可変抵抗。7はダイオード。8と9は放電中間電
極負荷抵抗。10はLaB6陰極。11は第1中間
電極。12は第2中間電極。13は放電陽極兼イ
オンプレーテングハース。14は放電開始スイツ
チ(数秒以下のオン)。
The drawing shows the basic circuit of the power supply for the LaB 6 cathode for ion plating and the connection diagram to the discharge electrode.
In the drawing, 1 is a variable high-voltage, low-current power supply (P T ) for starting discharge. 2 is an intermediate voltage intermediate current power supply (P H ) for heating the cathode. 3 is a low-voltage, large-current power supply (P 0 ) for steady-state large-current discharge. 4 is a variable resistor. 5 is a fixed resistance. 6 is a large variable resistor. 7 is a diode. 8 and 9 are discharge intermediate electrode load resistances. 10 is LaB 6 cathode. 11 is a first intermediate electrode. 12 is a second intermediate electrode. 13 is a discharge anode and ion plating hearth. 14 is a discharge start switch (on for several seconds or less);

Claims (1)

【特許請求の範囲】 1 主陰極LaB6と、これに近接配置された熱容
量の小さい補助陰極とを有し、該補助陰極に初期
放電を集中させ、それを利用して主陰極LaB6
加熱し、気体中で大電流放電を可能としたプラズ
マ生成用複合型LaB6陰極のための電源であつて、
放電開始用の高電圧低電流電源と、上記主陰極
LaB6加熱用の中間電圧中間電流電源と、大電流
放電用の低電圧大電流電源の三電源を有し、放電
開始、主陰極LaB6加熱、大電流放電の各段階に
おいて上記三電源のうち1又は2以上の適宜の電
源を選択的に使用可能な回路構成とし、放電開始
から大電流放電への移行を高電力効率で行えるよ
うにしたことを特徴とする複合型LaB6陰極のた
めの電源。 2 放電開始用の高電圧低電流電源の電圧及び電
流を可変としたことを特徴とする特許請求の範囲
第1項記載の複合型LaB6陰極のための電源。 3 主陰極LaB6と、これに近接配置された熱容
量の小さい補助陰極とを有し、該補助陰極に初期
放電を集中させ、それを利用して主陰極LaB6
加熱し、気体中で大電流放電を可能としたプラズ
マ生成用複合型LaB6陰極を用いてプラズマを生
成する方法であつて、高電圧低電流電源を用いて
グロー放電により放電を開始し、次に中間電圧中
間電流電源を用いて準定常アーク放電を行つて主
陰極LaB6を加熱し、次いで、低電圧大電流電源
を用いて定常アーク放電による大電流放電を行う
ことによつて、放電開始から大電流放電への移行
を高電力効率で行うことを特徴とするプラズマ生
成方法。
[Claims] 1. The main cathode LaB 6 has a main cathode LaB 6 and an auxiliary cathode with a small heat capacity placed close to the main cathode, and the initial discharge is concentrated on the auxiliary cathode and is used to heat the main cathode LaB 6 . A power source for a composite LaB 6 cathode for plasma generation that enables large current discharge in gas,
High voltage, low current power supply for starting discharge and the above main cathode
It has three power supplies: an intermediate voltage, intermediate current power supply for LaB 6 heating , and a low voltage, large current power supply for large current discharge. For a composite LaB 6 cathode characterized by having a circuit configuration that allows selective use of one or more appropriate power sources, and making it possible to transition from the start of discharge to high current discharge with high power efficiency. power supply. 2. A power source for a composite LaB 6 cathode according to claim 1, characterized in that the voltage and current of the high-voltage, low-current power source for starting discharge are variable. 3 It has a main cathode LaB 6 and an auxiliary cathode with a small heat capacity placed close to it, and the initial discharge is concentrated on the auxiliary cathode and used to heat the main cathode LaB 6 to generate a large amount of heat in the gas. A method of generating plasma using a composite LaB 6 cathode for plasma generation that enables current discharge, in which discharge is started by glow discharge using a high voltage, low current power supply, and then an intermediate voltage and intermediate current power supply is used. The main cathode LaB 6 is heated by a quasi-steady arc discharge using a low-voltage, high-current power source, and then a high-current discharge is performed by a steady-state arc discharge using a low-voltage, high-current power supply, thereby transitioning from the start of discharge to a high-current discharge. A plasma generation method characterized by performing with high power efficiency.
JP19957182A 1982-11-12 1982-11-12 Power source for lab6 cathode for ion plating Granted JPS5989762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19957182A JPS5989762A (en) 1982-11-12 1982-11-12 Power source for lab6 cathode for ion plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19957182A JPS5989762A (en) 1982-11-12 1982-11-12 Power source for lab6 cathode for ion plating

Publications (2)

Publication Number Publication Date
JPS5989762A JPS5989762A (en) 1984-05-24
JPH0257142B2 true JPH0257142B2 (en) 1990-12-04

Family

ID=16410040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19957182A Granted JPS5989762A (en) 1982-11-12 1982-11-12 Power source for lab6 cathode for ion plating

Country Status (1)

Country Link
JP (1) JPS5989762A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086861B2 (en) * 2008-03-28 2012-11-28 新明和工業株式会社 Plasma device
JP5357695B2 (en) * 2009-10-20 2013-12-04 株式会社Sumco Quartz glass crucible manufacturing equipment

Also Published As

Publication number Publication date
JPS5989762A (en) 1984-05-24

Similar Documents

Publication Publication Date Title
WO1994009560A1 (en) Energy conversion system
GB1601243A (en) Method and apparatus for the thermochemical treatment of metals
JP3738712B2 (en) High pressure discharge lamp lighting device
JPH0257142B2 (en)
JPH07192882A (en) Circuit device for both ignition and lighting of discharge lamp
JP3454388B2 (en) Arc discharge method for ion beam generator
US1534251A (en) Electric light
EP3720255A1 (en) Plasma torch having multi-electrode front electrode and button-type rear electrode
US2900548A (en) Plasma generator
JP3254819B2 (en) Ion source device
RU2775741C1 (en) Ignition and electronic discharge circuit for electric propulsion plant containing unheated dispenser cathode
KR102194893B1 (en) Drive circuit for blow-out coil and DC circuit breaker using the same
RU2395865C1 (en) Device for power supply to heating of gas-discharge chamber cathodes in stationary ion source and method of its operation
JPS5856961B2 (en) Kuushin Reactor Tsukidenriyuuhenkanki
JP4924793B2 (en) Arc electric furnace equipment
US2248625A (en) Electric valve control circuit
US2234117A (en) Welding control system
JP2017008336A (en) Power supply system for sputter device
SU886091A1 (en) Inductive energy accumulator
JPS6459747A (en) Ion beam shaping device
US2201007A (en) Vapor electric device
SU1450086A1 (en) Voltage pulse generator
JPH0793082B2 (en) Vacuum interrupter formation method
JP2021152364A (en) System and method used for boosted non-linear ignition coil
SU1063555A1 (en) A.c.power supply for dual-arc welding (its versions)