JPH025710B2 - - Google Patents

Info

Publication number
JPH025710B2
JPH025710B2 JP60292559A JP29255985A JPH025710B2 JP H025710 B2 JPH025710 B2 JP H025710B2 JP 60292559 A JP60292559 A JP 60292559A JP 29255985 A JP29255985 A JP 29255985A JP H025710 B2 JPH025710 B2 JP H025710B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
carbon composite
phosphorus compound
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60292559A
Other languages
Japanese (ja)
Other versions
JPS62153164A (en
Inventor
Kenji Niijima
Ikufumi Maezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP60292559A priority Critical patent/JPS62153164A/en
Publication of JPS62153164A publication Critical patent/JPS62153164A/en
Publication of JPH025710B2 publication Critical patent/JPH025710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維強化炭素複合材料の製造法に
関するものである。更に詳しくは、宇宙航空用構
造材料、耐熱構造部材或はブレーキ摩擦材料に利
用可能な耐熱酸化性の優れた炭素繊維強化炭素複
合材料の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing carbon fiber reinforced carbon composite materials. More specifically, the present invention relates to a method for producing a carbon fiber-reinforced carbon composite material that has excellent heat oxidation resistance and can be used as a structural material for aerospace, a heat-resistant structural member, or a brake friction material.

〔従来技術及びその問題点〕[Prior art and its problems]

従来、炭素繊維強化炭素複合材料は、その耐熱
性、高強度、高弾性、耐薬品性及び軽量性故に宇
宙航空材料、耐熱構造材料等に広く利用されてい
る。しかしながら、炭素繊維強化炭素複合材料は
空気等の酸化性雰囲気中では、酸化消耗が著しく
その利用範囲で限られていた。
Conventionally, carbon fiber-reinforced carbon composite materials have been widely used as aerospace materials, heat-resistant structural materials, etc. due to their heat resistance, high strength, high elasticity, chemical resistance, and light weight. However, carbon fiber-reinforced carbon composite materials suffer from oxidative wear and tear in oxidizing atmospheres such as air, which limits their range of use.

この耐熱酸化性を改良するために、リン酸或は
有機リン化合物を炭素繊維強化炭素複合材料に含
浸或は塗布することが行われていた(特開昭56−
16575号公報、米国特許第2868672号明細書)。
In order to improve this thermal oxidation resistance, carbon fiber-reinforced carbon composite materials have been impregnated or coated with phosphoric acid or organic phosphorus compounds (Japanese Patent Application Laid-Open No. 1983-1999).
16575, U.S. Pat. No. 2,868,672).

しかし、このリン酸等による処理では、炭素繊
維強化炭素複合材料がポーラスなために処理液が
非処理面に浸透して非処理面を汚染し、摩擦材等
においては、その摩擦特性を劣化させることがあ
り、摩擦材の耐熱酸化処理としては適当ではなか
つた。
However, in this treatment with phosphoric acid, etc., since the carbon fiber-reinforced carbon composite material is porous, the treatment liquid penetrates into the untreated surface and contaminates the untreated surface, causing the friction properties of friction materials to deteriorate. Therefore, it was not suitable as a heat-resistant oxidation treatment for friction materials.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、炭素繊維強化炭素複合材料の
耐熱酸化性を改良するために、これにリン化合物
を付与する際、炭素繊維強化炭素複合材料の内部
への浸透を抑え、非処理部を汚染することなく、
耐熱酸化処理を行うことにある。
The purpose of the present invention is to suppress the penetration into the interior of the carbon fiber-reinforced carbon composite material and contaminate untreated parts when adding a phosphorus compound to the carbon fiber-reinforced carbon composite material in order to improve its thermal oxidation resistance. without doing,
The purpose is to perform heat-resistant oxidation treatment.

〔発明の構成及び作用〕[Structure and operation of the invention]

すなわち、本発明は、炭素繊維強化炭素複合材
料の外表面の一部或は全部に熱硬化性樹脂と有機
リン化合物の混合物を付与した後、該混合物を硬
化及び炭素化処理することを特徴とする耐熱酸化
性に優れた炭素繊維強化炭素複合材料の製造法で
ある。
That is, the present invention is characterized by applying a mixture of a thermosetting resin and an organic phosphorus compound to part or all of the outer surface of a carbon fiber-reinforced carbon composite material, and then curing and carbonizing the mixture. This is a method for producing carbon fiber-reinforced carbon composite materials with excellent thermal oxidation resistance.

本発明において炭素繊維強化炭素複合材料の強
化材とする炭素繊維は、レーヨン、ポリアクリロ
ニトリル、ピツチ等の繊維を夫々既知の方法で炭
素化した繊維、或は、それらを更に高温で熱処理
した黒鉛化繊維である。
In the present invention, the carbon fibers used as the reinforcing material of the carbon fiber-reinforced carbon composite material are fibers obtained by carbonizing fibers such as rayon, polyacrylonitrile, and pitucci by known methods, or graphitized fibers obtained by further heat-treating them at high temperatures. It is a fiber.

本発明における炭素繊維強化炭素複合材料の製
造は、炭素繊維にフエノール、フラン或はエポキ
シ等の熱硬化性樹脂を含浸し、所望の形状に成形
後、不活性雰囲気中で炭素化、或は必要により黒
鉛化処理して炭素繊維強化炭素複合材料とする。
又、必要により熱硬化性樹脂或はピツチ等を該炭
素繊維強化炭素複合材料に含浸させた後、炭素化
或は黒鉛化処理する、いわゆる緻密化処理を、所
要の機械的強度が得られるまで繰り返してもよ
い。この緻密化処理は高温に保持した該炭素繊維
強化炭素複合材料或は所定の形状に保持した炭素
繊維や黒鉛繊維に炭化水素ガスを加熱分解して炭
素を蒸着する、いわゆるケミカル・ベーパー・デ
イポジシヨン法(CVD法)によつて行つてもよ
い。
The production of carbon fiber-reinforced carbon composite materials in the present invention involves impregnating carbon fibers with a thermosetting resin such as phenol, furan, or epoxy, molding them into a desired shape, and then carbonizing them in an inert atmosphere, or by carbonizing them as necessary. The material is graphitized and made into a carbon fiber reinforced carbon composite material.
In addition, if necessary, after impregnating the carbon fiber reinforced carbon composite material with thermosetting resin or pitch, carbonization or graphitization treatment, so-called densification treatment, is performed until the required mechanical strength is obtained. May be repeated. This densification treatment is a so-called chemical vapor deposition method in which carbon is deposited by thermally decomposing hydrocarbon gas onto the carbon fiber-reinforced carbon composite material held at high temperature or carbon fibers or graphite fibers held in a predetermined shape. (CVD method).

又、本発明において使用される炭素繊維強化炭
素複合材料は、その製造工程において800〜3000
℃の熱処理を受けていることが望ましい。
In addition, the carbon fiber reinforced carbon composite material used in the present invention has a
It is desirable that the material has undergone heat treatment at ℃.

本発明において使用される有機リン化合物は、
リン酸或は亜リン酸のモノ、ジ或はトリアルキル
エステルが好ましい。又、アルキルホスフイン、
アルキルハロゲンホスフイン、酸化アルキルホス
フイン、アリールホスフイン、アリールリン酸、
アリール亜リン酸等も使用できる。
The organic phosphorus compound used in the present invention is
Mono-, di- or trialkyl esters of phosphoric acid or phosphorous acid are preferred. Also, alkylphosphine,
Alkylhalogenphosphine, alkylphosphine oxide, arylphosphine, aryl phosphoric acid,
Aryl phosphorous acids and the like can also be used.

本発明において有機リン化合物と混合して使用
される熱硬化性樹脂は、フエノール、フラン、エ
ポキシ、ポリイミド等の熱硬化性樹脂である。
The thermosetting resin used in combination with the organic phosphorus compound in the present invention is a thermosetting resin such as phenol, furan, epoxy, or polyimide.

熱硬化性樹脂と有機リン化合物との混合比は
1:0.2ないし1:1.4であることが望ましく、有
機リン化合物が0.2より小であると耐熱酸化性が
不足し、1.4より大であると硬化が困難になる。
有機リン化合物と熱硬化性樹脂が相溶性のある組
合せからなるほうが混合及び付与時に処理しやす
い。又、必要により溶剤或は硬化剤等を混合して
もよい。該混合物の粘度が低い場合には硬化剤の
添加、或は/及び加熱等の処理により粘度を上げ
ておくほうがよい。又、その後の硬化時におい
て、付与した面以外を汚染させないために硬化時
において著しく粘度の下がる樹脂は好ましくな
い。
The mixing ratio of the thermosetting resin and the organic phosphorus compound is preferably 1:0.2 to 1:1.4. If the ratio of the organic phosphorus compound is less than 0.2, thermal oxidation resistance will be insufficient, and if it is more than 1.4, hardening will occur. becomes difficult.
Compatible combinations of organic phosphorus compounds and thermosetting resins are easier to process during mixing and application. Further, a solvent, a curing agent, etc. may be mixed if necessary. If the viscosity of the mixture is low, it is better to increase the viscosity by adding a curing agent and/or by heating or the like. Furthermore, in order to avoid contaminating surfaces other than those to which it is applied during subsequent curing, resins whose viscosity decreases significantly during curing are not preferred.

炭素繊維強化炭素複合材料に対する有機リン化
合物と熱硬化性樹脂の混合物の付与は、該混合物
を炭素繊維強化炭素複合材料の表面の処理を必要
とする部分に対して行われる。次いで、加熱して
該混合物を硬化させ、更に窒素等の不活性雰囲気
中で500〜1500℃に加熱して混合物中の有機物を
炭素化させる。
The mixture of an organic phosphorus compound and a thermosetting resin is applied to the carbon fiber-reinforced carbon composite material on a portion of the surface of the carbon fiber-reinforced carbon composite material that requires treatment. Next, the mixture is cured by heating, and further heated to 500 to 1500° C. in an inert atmosphere such as nitrogen to carbonize the organic matter in the mixture.

〔発明の効果〕〔Effect of the invention〕

本発明によると、有機リン化合物と熱硬化性樹
脂との併用によつて、炭素繊維強化炭素複合材料
の非処理部でのリン化合物による汚染を防止し、
しかも炭素繊維強化炭素複合材料の表面の内、必
要とする部分に耐熱酸化性の優れた層を形成せし
めることができる。
According to the present invention, by using an organic phosphorus compound and a thermosetting resin in combination, contamination by the phosphorus compound in the untreated portion of the carbon fiber reinforced carbon composite material is prevented,
Moreover, a layer with excellent thermal oxidation resistance can be formed on the surface of the carbon fiber reinforced carbon composite material at a necessary portion.

〔実施例及び比較例〕[Examples and comparative examples]

実施例 東邦レーヨン(株)製ベスフアイト織物3101にレゾ
ール系フエノール樹脂を含浸して樹脂含有率38%
のプリプレグを作成し、積層後、加熱加圧硬化さ
せて、繊維体積含有率50%の炭素繊維強化炭素複
合材料(CFRP)とした。次いで、該複合材料を
窒素雰囲気中1000℃で炭素化した後、ピツチ含
浸・再炭素化の緻密化工程及び不活性雰囲気中
2400℃での処理を繰り返して嵩密度1.6g/cm3
炭素繊維強化炭素複合材料(CFRC)を得た。
Example: Besuphite fabric 3101 manufactured by Toho Rayon Co., Ltd. is impregnated with resol-based phenolic resin to obtain a resin content of 38%.
prepreg was created, laminated, and cured under heat and pressure to create a carbon fiber-reinforced carbon composite material (CFRP) with a fiber volume content of 50%. Next, the composite material was carbonized at 1000°C in a nitrogen atmosphere, followed by a densification process of pitch impregnation and recarbonization, and an inert atmosphere.
The treatment at 2400°C was repeated to obtain a carbon fiber reinforced carbon composite material (CFRC) with a bulk density of 1.6 g/cm 3 .

この炭素繊維強化炭素複合材料よりブレーキテ
スト用試料を切りだし、ダイナモメータにより動
摩擦特性を吸収エネルギー300Kgf・m/cm2、初
速度30m/sec、押付圧力10Kgf/cm2で測定した
ところ、摩擦係数0.3で安定していたが、摩耗量
は8×10-3mm/回/面であつた。
A brake test sample was cut from this carbon fiber-reinforced carbon composite material, and its dynamic friction characteristics were measured using a dynamometer at an absorbed energy of 300 Kgf・m/cm 2 , an initial velocity of 30 m/sec, and a pressing pressure of 10 Kgf/cm 2 . It was stable at 0.3, but the amount of wear was 8 x 10 -3 mm/time/surface.

該炭素繊維強化炭素複合材料の外表面の一部に
フラン樹脂とリン酸トリ−n−ブチルの混合物
(重量比1:1)を塗布し、170℃にて3時間加熱
硬化させた。次に、不活性雰囲気中1000℃で処理
して本発明の炭素繊維強化炭素複合材料を得た。
A mixture of furan resin and tri-n-butyl phosphate (weight ratio 1:1) was applied to a part of the outer surface of the carbon fiber-reinforced carbon composite material and cured by heating at 170°C for 3 hours. Next, the carbon fiber-reinforced carbon composite material of the present invention was obtained by processing at 1000° C. in an inert atmosphere.

このようにして得られた炭素繊維強化炭素複合
材料の諸特性は下記の通りである。
The properties of the carbon fiber-reinforced carbon composite material thus obtained are as follows.

(リンの付着状況) 前記混合物を塗布した外表面、塗布しない外表
面及び切削により塗布した面の1mm下の面を
EDXA(Energy Diffractive X−ray
Analysis:Philips社製装置)により、リンの付
着状況を調べたところ、処理した外表面以外では
リンは検出されなかつた。
(Status of adhesion of phosphorus) The outer surface to which the mixture was applied, the outer surface to which it was not applied, and the surface 1 mm below the surface to which it was applied by cutting.
EDXA (Energy Diffractive X-ray
Analysis: When the adhesion status of phosphorus was investigated using a Philips device, no phosphorus was detected on any areas other than the treated outer surface.

(耐熱酸化性) 前記混合物を塗布した外表面及び塗布しない外
表面より約40mgの試料を、炭素繊維強化炭素複合
材料から切りだし、TGA(Thermo Gravimetric
Analysis)にて昇温速度10℃/min、空気流量
100ml/minで測定したところ、重量減少10%時
の温度は塗布面の方が約50℃高かつた。
(Thermal oxidation resistance) Approximately 40 mg of samples were cut from the carbon fiber-reinforced carbon composite material from the outer surface coated with the above mixture and the outer surface not coated.
Analysis), heating rate 10℃/min, air flow rate
When measured at 100ml/min, the temperature at 10% weight loss was approximately 50°C higher on the coated surface.

(動摩擦特性) 前記混合物を塗布した面が非摺動面になるよう
にブレーキテスト用試料を、炭素繊維強化炭素複
合材料から切りだし、ダイナモメータにより動摩
擦特性を測定した。吸収エネルギー300Kgf・
m/cm2、初速度30m/sec、押付圧力10Kgf/cm2
で測定したところ、摩擦係数0.3で安定しており、
摩耗量10-3mm/回/面であり、摩擦特性は非常に
良好であつた。
(Dynamic Frictional Characteristics) A brake test sample was cut out from a carbon fiber-reinforced carbon composite material so that the surface coated with the mixture was a non-sliding surface, and its dynamic frictional characteristics were measured using a dynamometer. Absorbed energy 300Kgf・
m/cm 2 , initial speed 30m/sec, pressing pressure 10Kgf/cm 2
When measured, the friction coefficient was stable at 0.3.
The amount of wear was 10 -3 mm/time/surface, and the friction characteristics were very good.

比較例 東邦レーヨン(株)製ベスフアイト織物3101にレゾ
ール系フエノール樹脂を含浸して樹脂含有率38%
のプリプレグを作成し、積層後、加熱加圧硬化さ
せて、繊維体積含有率50%の炭素繊維強化樹脂複
合材料(CFRP)を得た。該複合材料を窒素雰囲
気中1000℃で炭素化した後、ピツチ含浸・再炭素
化の緻密化工程及び不活性雰囲気中2400℃での処
理を繰り返して嵩密度1.6g/cm3の炭素繊維強化
炭素複合材料(CFRC)を得た。
Comparative example: Besuphite fabric 3101 manufactured by Toho Rayon Co., Ltd. is impregnated with resol-based phenolic resin, resulting in a resin content of 38%.
prepreg was created, laminated, and cured under heat and pressure to obtain a carbon fiber reinforced resin composite material (CFRP) with a fiber volume content of 50%. After carbonizing the composite material at 1000°C in a nitrogen atmosphere, the densification process of pitch impregnation and recarbonization and treatment at 2400°C in an inert atmosphere were repeated to obtain carbon fiber-reinforced carbon with a bulk density of 1.6 g/ cm3. A composite material (CFRC) was obtained.

この炭素繊維強化炭素複合材料に10重量%のリ
ン酸水溶液を外表面の一部に塗布した後、不活性
雰囲気中1000mmで処理した。リン酸を塗布した外
表面、塗布しない外表面及び切削により塗布した
面の1mm下の面をEDXAにより、リンの付着状
況を調べたところ、全ての面でリンが検出され
た。該複合材料よりリン酸を塗布した面が非摺動
面になるようにブレーキテスト用試料を切りだ
し、実施例と同一の条件でダイナモメータにより
動摩擦特性を測定したところ、摩擦係数は0.02〜
0.2で不安定であつた。
After applying a 10% by weight aqueous phosphoric acid solution to a part of the outer surface of this carbon fiber-reinforced carbon composite material, it was treated at 1000 mm in an inert atmosphere. When the state of phosphorus adhesion was examined using EDXA on the outer surface coated with phosphoric acid, the outer surface without coating, and the surface 1 mm below the surface coated by cutting, phosphorus was detected on all surfaces. A brake test sample was cut from the composite material so that the surface coated with phosphoric acid was a non-sliding surface, and the dynamic friction characteristics were measured using a dynamometer under the same conditions as in the example, and the friction coefficient was 0.02 ~
It was unstable at 0.2.

Claims (1)

【特許請求の範囲】 1 炭素繊維強化炭素複合材料の外表面の一部或
は全部に熱硬化性樹脂と有機リン化合物の混合物
を付与した後、該混合物を硬化及び炭素化処理す
ることを特徴とする耐熱酸化性に優れた炭素繊維
強化炭素複合材料の製造法。 2 有機リン化合物がリン酸或は亜リン酸のモ
ノ、ジ或はトリアルキルエステルである特許請求
の範囲1記載の製造法。 3 熱硬化性樹脂と有機リン化合物の混合比が
1:0.2ないし1:1.4である特許請求の範囲1記
載の製造法。 4 熱硬化性樹脂がフラン樹脂、フエノール樹
脂、エポキシ樹脂、ポリイミド樹脂である特許請
求の範囲1記載の製造法。 5 熱硬化性樹脂と有機リン化合物が互いに相溶
性のある組合せからなる特許請求の範囲1記載の
製造法。
[Claims] 1. A mixture of a thermosetting resin and an organic phosphorus compound is applied to part or all of the outer surface of a carbon fiber-reinforced carbon composite material, and then the mixture is cured and carbonized. A method for producing carbon fiber-reinforced carbon composite materials with excellent heat and oxidation resistance. 2. The production method according to claim 1, wherein the organic phosphorus compound is a mono-, di-, or trialkyl ester of phosphoric acid or phosphorous acid. 3. The manufacturing method according to claim 1, wherein the mixing ratio of the thermosetting resin and the organic phosphorus compound is 1:0.2 to 1:1.4. 4. The manufacturing method according to claim 1, wherein the thermosetting resin is a furan resin, a phenol resin, an epoxy resin, or a polyimide resin. 5. The manufacturing method according to claim 1, wherein the thermosetting resin and the organic phosphorus compound are a mutually compatible combination.
JP60292559A 1985-12-27 1985-12-27 Manufacture of carbon fiber reinforced carbon composite material Granted JPS62153164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292559A JPS62153164A (en) 1985-12-27 1985-12-27 Manufacture of carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292559A JPS62153164A (en) 1985-12-27 1985-12-27 Manufacture of carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPS62153164A JPS62153164A (en) 1987-07-08
JPH025710B2 true JPH025710B2 (en) 1990-02-05

Family

ID=17783332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292559A Granted JPS62153164A (en) 1985-12-27 1985-12-27 Manufacture of carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPS62153164A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126002B2 (en) * 2011-06-30 2017-05-10 エドワーズ株式会社 Manufacturing method of cylindrical body and manufacturing method of vacuum pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868672A (en) * 1956-03-27 1959-01-13 Union Carbide Corp Oxidation resistant carbon and graphite bodies
JPS5616575A (en) * 1979-07-18 1981-02-17 Toho Rayon Co Ltd Friction material and its preparation
JPS5617311A (en) * 1979-07-20 1981-02-19 Hitachi Cable Ltd Manufacture of image guide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868672A (en) * 1956-03-27 1959-01-13 Union Carbide Corp Oxidation resistant carbon and graphite bodies
JPS5616575A (en) * 1979-07-18 1981-02-17 Toho Rayon Co Ltd Friction material and its preparation
JPS5617311A (en) * 1979-07-20 1981-02-19 Hitachi Cable Ltd Manufacture of image guide

Also Published As

Publication number Publication date
JPS62153164A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US7207424B2 (en) Manufacture of carbon/carbon composites by hot pressing
US4029829A (en) Friction member
US6878331B2 (en) Manufacture of carbon composites by hot pressing
RU2084425C1 (en) Method of manufacturing articles from carbon-silicon carbide composite material and carbon-silicon carbide composite material
CN108623320A (en) A kind of automobile brake C/C-SiC composite materials, preparation method and application
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
JPS6118951B2 (en)
EP0335736B1 (en) Process for producing carbon/carbon composites
US4100314A (en) Method for increasing the strength and density of carbonaceous products
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
CN110041089A (en) A kind of carbon/ceramic friction material and preparation method thereof
JP3520530B2 (en) Carbon fiber reinforced carbon composite and sliding material
JPH025710B2 (en)
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
KR960001004B1 (en) Method for carbon matrix using h3po4 and sib4
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH01239059A (en) Production of carbon composite material
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
JP3560768B2 (en) Method for producing carbon-based wet friction material
JPH10219002A (en) Production of carbonic wet type friction material
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite
JPH0798703B2 (en) Method for producing heat resistant oxidation resistant carbon fiber reinforced carbon composite material
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
JPH0426547A (en) Production of carbon reinforced carbon composite material