JPH0256959B2 - - Google Patents

Info

Publication number
JPH0256959B2
JPH0256959B2 JP61158486A JP15848686A JPH0256959B2 JP H0256959 B2 JPH0256959 B2 JP H0256959B2 JP 61158486 A JP61158486 A JP 61158486A JP 15848686 A JP15848686 A JP 15848686A JP H0256959 B2 JPH0256959 B2 JP H0256959B2
Authority
JP
Japan
Prior art keywords
mercury
wastewater
temperature
liquid
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61158486A
Other languages
Japanese (ja)
Other versions
JPS62294490A (en
Inventor
Saburo Hayashi
Mitsukazu Mukai
Masahiro Inoe
Hiroo Tsucha
Akira Ootsuji
Takeo Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP15848686A priority Critical patent/JPS62294490A/en
Publication of JPS62294490A publication Critical patent/JPS62294490A/en
Publication of JPH0256959B2 publication Critical patent/JPH0256959B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、廃液中の微量水銀の除去法に関し、
詳しくは廃液、特に焼却炉廃水中の水銀をストリ
ツプせしめた後の廃水にスピネル化合物を生成さ
せ分離した廃液に含まれる微量の水銀を除去し完
全に無害化する方法に関するものである。 焼却炉からの廃ガス、特に都市ゴミ焼却炉から
の廃ガス中には種々雑多な有害物質が含まれてい
るため、通常これらの廃ガスは洗浄処理されてか
ら大気中へ放出されるが、用いた洗浄廃液の処理
が問題となる。 例えば、塵芥に加えて、ゴム、プラスチツクス
その他の可燃物を含む都市ゴミを焼却した場合に
は、その廃ガス中に炭酸ガス、水蒸気のほか硫黄
酸化物、窒素酸化物、塩素、塩化水素等の有害ガ
スに加えて有機金属塩粉末を含む場合が多く、ま
た当然、電池、螢光灯などに含まれる水銀が焼却
中に前記塩化水素や硫黄酸化物などと化合した塩
化物、硫黄酸化物との化合物などとなつて含まれ
てくる。これらを水またはアルカリ性溶液等の洗
浄液で処理すれば廃ガスは浄化されるが、有害物
を吸収した洗浄廃液の無害化処理が難しい問題と
なつている。廃液中に含まれる一般の硫黄酸化
物、硫化物、塩化物等は化学的ないしは物理的手
段によつて安全無害なものに返還して分離回収、
もしくは希釈放流処理することは比較的容易であ
るが、有害な重金属化合物は希薄な濃度であつて
もこれを海域、河川等に放流することは許され
ず、従つて有害な重金属を分離回収し、廃水を無
害化することはきわめて困難な問題であつた。 重金属類ことに水銀含有廃水から水銀などの重
金属を固定分離する方法は、従来より多数提案さ
れているが、工業的な規模で実施しうる方法は
種々問題があり、充分確立されるには至つていな
い。 本発明者らは焼却炉廃ガス洗浄廃液をスピネル
化反応を利用して処理するに際し、酸化反応のた
めに空気を吹き込むと液中に含有される水銀の大
部分が蒸気となつて空気中に同伴されることを見
い出し、さらに詳細な検討を加え積極的に廃水中
の水銀を回収し、廃水を無害化する方法を発見
し、さきに特願昭57―10385号「廃水中の水銀回
収法」として特許出願した。即ち該発明は水銀含
有廃水を第1鉄イオンの存在下、15℃以上の温度
で処理し水銀を分離することを特徴とする廃水中
の水銀回収法である。 該発明にあつては、ストリツプ後の廃水を、
0.02〜1.0mol/のNO3 -の存在下、苛性アルカ
リにて中和した後、PHを6.5〜11.5に保持し、必
要に応じて50℃以上に保つてスピネル化合物を生
成させ生成物を分離させることも可能である。焼
却炉廃ガス洗浄廃水には通常この程度のNO3 -
含まれているので改めて添加する必要はないが、
NO3 -の含まれていない廃水を処理する場合には
硝酸ソーダのごとき硝酸塩を添加する。この時、
廃水が酸性であれば、苛性ソーダ、苛性カリ等の
苛性アルカリで中和し、PHを6.5〜11.5に保持し、
要すれば加熱して50℃以上に保ちながら、さらに
酸素含有ガスを吹き込んで酸化し、スピネル化反
応を行つてスピネル化合物を生成させ生成した沈
澱を常法により分離する。このときの条件は廃水
に含まれる水銀以外のカドミウム、クロム、コバ
ルト、錫、鉛、ニツケル、マンガン、亜鉛、銅な
どの重金属ならびに砒素などの有害物質の種類に
より適宜選定されるべきである。もちろん水銀除
去のために用いられたFe++はそのままスピネル
化反応にも利用されるが、なお不足する場合は硫
酸第1鉄、塩化第1鉄などの第1鉄塩を追加する
必要がある。 また水銀を回収するためのストリツピングがス
ピネル化の前処理として役に立つ場合もあり、後
の酸化が少なくてすむこともある。従つて該発明
の廃水中の水銀除去回収法と重金属無害化処理と
を組み合わせて連続して行う方法が効率もよく経
済的に処理できる場合が多い。このようにすれば
各種の廃水中に含まれるクロム、コバルト、ニツ
ケル、鉛、亜鉛、砒素、銀、カドミウム、錫など
の有害重金属は一挙にスピネル化合物中に移行し
て水不溶性の沈澱を生ずる。この場合、他の雑多
な塩類が液中に存在してもこれらがスピネル化反
応に実質的に支障をあたえないばかりでなく操作
域を広げて工業的規模での実施を可能にし得たこ
とはまた該発明の効果である。 このようにして生成したスピネル化合物の沈澱
は濾別または遠心分離によつて液と分離され、電
波障害防止材料、埋立材料などに有効利用するこ
とができる。 スピネル化合物の沈澱を分離した廃液は無害化
されていて、通常はそのまま排出することができ
るが、さらに水銀の量を少なくする必要のある場
合、例えば0.0001mg/以下とする必要がある場
合には、前記のように分離したのちの廃液をPH4
〜5、温度70±5℃に調節しながらオゾンを含ん
だ空気を前記廃液1に対しオゾンが50〜120mg
の範囲になるように添加して反応させ、次いで当
該液をPH9.5〜10.5、温度70±5℃に調節しなが
らヒドラジンを30〜80mgの範囲で添加して、空気
を吹き込んで反応処理すれば当該液中に含まれる
水銀を0.0001mg/以下とすることができる。オ
ゾンの添加量が50mgより少ない量では充分な効果
が得られず、また120mgより多く添加したとして
も吹き抜け量が増加するのみでそれに見合う効果
が得られず得策でない。 ヒドラジンの添加量についても30mgより少ない
量では充分な効果が得られず、また80mgより多く
添加したとしてもそれに見合うな効果が得られ
ず、かえつてアンモニア臭を発するため得策でな
い。 本発明で用いるヒドラジンは、塩酸塩、水和物
等特に限定されるものではないが、一般的には水
和物として市販されている水溶液のものを用いる
のが好適である。 本発明によれば都市ゴミ焼却炉洗煙廃水中の微
量水銀除去処理が装置を大型化することなく極め
て効果的に工業化することができ、その工業的価
値は大きい。以下、本発明を実施例に基づいて具
体的に説明する。 比較例 1 焼却能力300T/Dの都市ゴミ焼却炉からの廃
ガス70000Nm3/H(乾きガス)を70000Kg/Hの
洗浄液が循環され、24%苛性ソーダ水溶液によつ
てPHが7前後に調節された湿式洗浄装置の塔底に
送入し洗浄した。この洗浄の結果廃ガス中の塩化
水素は1000ppmから10ppmに減少した。洗浄液の
大部分を循環しつつその一部を抜き出した。 液中の塩濃度は18%で、抜出し液量は1005Kg/
Hである。この洗浄廃水のほかに、灰汚水50Kg/
H、ボイラー洗浄廃水100Kg/H、イオン交換樹
脂再生廃液200Kg/Hが混入し、合計1355Kg/H
の廃水が焼却炉廃水として排出された。この廃水
中には水銀を89mg/含有していた。これを連続
調整槽に導き硫酸第1鉄7水塩を35Kg/Hの割合
で添加し、24%苛性ソーダ水溶液でPHを10に調整
し、温度を70℃に保持して撹拌しながら約1時間
処理した。その後反応槽に導入し、ブロワーより
41Nm3/Hの空気を吹き込んだ。出口空気中には
70℃の飽和水蒸気と金属水銀が蒸気となつて11.5
g/H含有されていた。これを冷却器により10℃
まで冷却することにより11.2g/Hの液状金属水
銀を回収した。 一方水銀を除去した焼却炉廃水中には水銀以外
の各種有害重金属が含まれているので、これに硝
酸ナトリウムを1Kg/Hの割合で添加し、PH10、
温度70℃を保持しながら空気を吹き込み、スピネ
ル化合物を生成させ、濾別した。このようにして
第1表に示すとおり焼却炉廃水中の重金属は処理
濾液欄のごとく減少し、処理濾液中の残存重金属
濃度は法定規制を充分満足するものであつた。
The present invention relates to a method for removing trace amounts of mercury in waste liquid,
More specifically, the present invention relates to a method for removing trace amounts of mercury contained in waste liquid by generating a spinel compound in the waste water after stripping the mercury in waste liquid, particularly incinerator waste water, and completely rendering the waste liquid harmless. Waste gas from incinerators, especially municipal waste incinerators, contains various harmful substances, so these waste gases are normally cleaned and then released into the atmosphere. The problem is how to dispose of the used cleaning waste liquid. For example, when municipal waste containing garbage, rubber, plastics, and other combustible materials is incinerated, the waste gas contains carbon dioxide, water vapor, and sulfur oxides, nitrogen oxides, chlorine, hydrogen chloride, etc. In addition to the harmful gases of It is included as a compound with. Although waste gases can be purified by treating them with a cleaning liquid such as water or an alkaline solution, it is difficult to detoxify cleaning waste liquids that have absorbed harmful substances. General sulfur oxides, sulfides, chlorides, etc. contained in waste liquid are separated and recovered by chemical or physical means to return them to safe and harmless substances.
Alternatively, it is relatively easy to perform dilution and discharge treatment, but harmful heavy metal compounds are not allowed to be discharged into sea areas, rivers, etc. even at dilute concentrations.Therefore, harmful heavy metals must be separated and recovered. Making wastewater harmless has been an extremely difficult problem. Many methods have been proposed to fix and separate heavy metals, especially mercury, from mercury-containing wastewater, but methods that can be implemented on an industrial scale have various problems and have yet to be fully established. It's not on. When the present inventors treat incinerator waste gas cleaning waste liquid using a spinel reaction, when air is blown in for the oxidation reaction, most of the mercury contained in the liquid turns into vapor and enters the air. After discovering that mercury is present in wastewater, he conducted further detailed studies and discovered a method to actively recover mercury in wastewater and make wastewater harmless. ” and applied for a patent. That is, the present invention is a method for recovering mercury in wastewater, which is characterized by treating mercury-containing wastewater at a temperature of 15° C. or higher in the presence of ferrous ions to separate mercury. In the invention, the wastewater after stripping is
After neutralizing with caustic alkali in the presence of 0.02 to 1.0 mol/NO 3 - , maintain the pH between 6.5 and 11.5, and if necessary keep the temperature above 50°C to generate a spinel compound and separate the product. It is also possible to do so. Incinerator waste gas cleaning wastewater usually contains this amount of NO 3 - , so there is no need to add it again.
When treating wastewater that does not contain NO 3 - , nitrates such as sodium nitrate are added. At this time,
If the wastewater is acidic, neutralize it with a caustic alkali such as caustic soda or caustic potash to maintain the pH between 6.5 and 11.5.
If necessary, it is heated and kept at 50° C. or above, and further oxidized by blowing in an oxygen-containing gas to perform a spinelization reaction to produce a spinel compound, and the resulting precipitate is separated by a conventional method. Conditions at this time should be selected appropriately depending on the types of heavy metals other than mercury contained in the wastewater, such as cadmium, chromium, cobalt, tin, lead, nickel, manganese, zinc, and copper, as well as hazardous substances such as arsenic. Of course, the Fe ++ used to remove mercury can be used as is for the spinelization reaction, but if it is still insufficient, it is necessary to add ferrous salts such as ferrous sulfate and ferrous chloride. . Also, stripping to recover mercury may be useful as a pretreatment for spinelization, and may require less subsequent oxidation. Therefore, in many cases, the method of continuously performing a combination of the mercury removal and recovery method in wastewater and the heavy metal detoxification treatment of the present invention is efficient and economical. In this way, harmful heavy metals such as chromium, cobalt, nickel, lead, zinc, arsenic, silver, cadmium, and tin contained in various wastewaters are transferred all at once into the spinel compound, forming water-insoluble precipitates. In this case, even if other miscellaneous salts were present in the solution, they not only did not substantially impede the spinelization reaction, but also expanded the operating range and made it possible to carry out the process on an industrial scale. This is also an effect of the invention. The spinel compound precipitate thus produced is separated from the liquid by filtration or centrifugation, and can be effectively used as a radio interference prevention material, a landfill material, and the like. The waste liquid from which the spinel compound precipitate is separated is rendered harmless and can normally be discharged as is, but if the amount of mercury needs to be further reduced, for example to 0.0001mg/or less, , the waste liquid after separation as described above is PH4
~5. While adjusting the temperature to 70±5℃, add ozone-containing air to 50 to 120 mg of ozone per 1 of the waste liquid.
Then, add hydrazine in the range of 30 to 80 mg while adjusting the pH of the liquid to 9.5 to 10.5 and the temperature of 70 ± 5°C, and react by blowing air. For example, the mercury contained in the liquid can be reduced to 0.0001 mg/or less. If the amount of ozone added is less than 50 mg, a sufficient effect will not be obtained, and even if more than 120 mg is added, the amount of blow-through will only increase and no commensurate effect will be obtained, which is not a good idea. Regarding the amount of hydrazine added, if the amount is less than 30 mg, a sufficient effect will not be obtained, and if it is added in an amount greater than 80 mg, a commensurate effect will not be obtained, and on the contrary, an ammonia odor will be emitted, which is not a good idea. The hydrazine used in the present invention is not particularly limited, such as hydrochloride or hydrate, but it is generally preferable to use an aqueous solution commercially available as a hydrate. According to the present invention, the process for removing trace amounts of mercury from wastewater from cleaning smoke from municipal waste incinerators can be industrialized very effectively without increasing the size of the equipment, and its industrial value is great. Hereinafter, the present invention will be specifically explained based on Examples. Comparative Example 1 Waste gas of 70000Nm 3 /H (dry gas) from a municipal waste incinerator with an incineration capacity of 300T/D was circulated with a cleaning solution of 70000Kg/H, and the pH was adjusted to around 7 with a 24% caustic soda aqueous solution. It was sent to the bottom of a wet cleaning device for cleaning. As a result of this cleaning, hydrogen chloride in the waste gas was reduced from 1000ppm to 10ppm. While most of the cleaning solution was being circulated, a portion of it was extracted. The salt concentration in the liquid is 18%, and the amount of liquid extracted is 1005 kg/
It is H. In addition to this washing wastewater, ash wastewater 50kg/
100Kg/H of boiler cleaning wastewater and 200Kg/H of ion exchange resin regeneration wastewater mixed in, totaling 1355Kg/H
of wastewater was discharged as incinerator wastewater. This wastewater contained 89mg/mercury. This was led to a continuous adjustment tank, where ferrous sulfate heptahydrate was added at a rate of 35 kg/h, the pH was adjusted to 10 with a 24% caustic soda aqueous solution, and the temperature was maintained at 70°C for about 1 hour with stirring. Processed. After that, it is introduced into the reaction tank, and from the blower.
Air was blown at 41 Nm 3 /H. In the exit air
Saturated water vapor at 70°C and metallic mercury turn into steam and produce 11.5
g/H. This is heated to 10℃ using a cooler.
11.2 g/H of liquid metallic mercury was recovered by cooling to 11.2 g/H. On the other hand, incinerator wastewater from which mercury has been removed contains various harmful heavy metals other than mercury, so sodium nitrate is added to it at a rate of 1 kg/H, and the pH is 10.
While maintaining the temperature at 70°C, air was blown into the solution to generate a spinel compound, which was filtered out. In this way, as shown in Table 1, the heavy metals in the incinerator wastewater were reduced as shown in the treated filtrate column, and the residual heavy metal concentration in the treated filtrate fully satisfied the legal regulations.

【表】【table】

【表】 この第1表に示す処理濾液について、さらに含
有水銀をすべて除去回収すべく、PH11、温度70℃
に調整し、2塩酸ヒドラジンを230g/Hの割合
で添加しながらブロワーにより空気を50Nm3/H
の割合で吹き込むことによつて処理し、液中の含
有水銀を0.0005mg/に減少させた。 比較例 2 比較例1の第1表に示す処理濾液に、酸化剤と
して次亜塩素酸ナトリウムを500g/Hの割合で
添加し、PH10、温度70℃に調整して撹拌混合して
反応させ、次いで亜硫酸ナトリウムを添加して酸
化還元電位を±0に調整し、引き続き塩酸ヒドロ
キシルアミン680g/Hの割合で添加しながら空
気を50Nm3/Hの割合で吹き込むことによつて処
理し、液中の含有水銀を0.0004mg/に減少する
ことができた。 実施例 1 比較例1、表1の濾液1にオゾンを60mg添加
し、PH5、温度70℃で酸化反応を行い、次いでPH
10、温度70℃で54%水和ヒドラジンを120mg(ヒ
ドラジン41.5mgに相当)添加し、空気を1/
minの割合で吹き込みながら反応させたところ処
理液中のHgが0.0001mg/となつた。
[Table] Regarding the treated filtrate shown in this Table 1, in order to further remove and recover all the mercury contained, PH11, temperature 70℃
While adding hydrazine dihydrochloride at a rate of 230g/H, air was blown at 50Nm 3 /H using a blower.
The mercury content in the liquid was reduced to 0.0005 mg/ml. Comparative Example 2 To the treated filtrate shown in Table 1 of Comparative Example 1, sodium hypochlorite was added as an oxidizing agent at a rate of 500 g/H, the pH was adjusted to 10, the temperature was adjusted to 70°C, and the mixture was stirred and mixed to react. Next, sodium sulfite was added to adjust the redox potential to ±0, and treatment was continued by blowing air at a rate of 50Nm 3 /H while adding hydroxylamine hydrochloride at a rate of 680g/H. We were able to reduce the mercury content to 0.0004mg/. Example 1 60 mg of ozone was added to Comparative Example 1, filtrate 1 in Table 1, and an oxidation reaction was carried out at pH 5 and temperature of 70°C.
10. Add 120 mg of 54% hydrated hydrazine (equivalent to 41.5 mg of hydrazine) at a temperature of 70°C, and reduce the air to 1/2.
When the reaction was carried out while blowing at a rate of min., the Hg content in the treated solution was 0.0001 mg/min.

Claims (1)

【特許請求の範囲】[Claims] 1 都市ゴミ焼却炉の洗煙水をフエライト化処理
し、生成したスピネル化合物を分離した廃液であ
つて、多くとも0.01mg/の微量水銀を含有する
前記廃液をPH4〜5、温度70±5℃に調節しなが
らオゾンを含んだ空気を前記廃液1に対し、オ
ゾンが50〜120mgの範囲になるよう添加して反応
させ、次いで当該液をPH9.5〜10.5、温度70±5
℃に調節しながらヒドラジンを30〜80mgの範囲で
添加して空気を吹き込んで反応処理し、当該液中
に含まれる水銀を0.0001mg/以下とすることを
特徴とする廃液中の微量水銀の除去方法。
1 Waste liquid obtained by ferrite treatment of smoke washing water from a municipal waste incinerator and separation of the spinel compound produced, which contains a trace amount of mercury of at most 0.01 mg/ml, at a pH of 4 to 5 and a temperature of 70 ± 5°C. Ozone-containing air is added to the waste liquid 1 so that the ozone concentration is in the range of 50 to 120 mg while adjusting the temperature to react.Then, the liquid is heated to a pH of 9.5 to 10.5 and a temperature of 70±5.
Removal of trace amounts of mercury in waste liquid, characterized by adding hydrazine in the range of 30 to 80 mg while controlling the temperature at °C, and performing a reaction treatment by blowing air to reduce the mercury contained in the liquid to 0.0001 mg/or less. Method.
JP15848686A 1986-07-04 1986-07-04 Removal of trace amount of mercury from waste liquid Granted JPS62294490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15848686A JPS62294490A (en) 1986-07-04 1986-07-04 Removal of trace amount of mercury from waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15848686A JPS62294490A (en) 1986-07-04 1986-07-04 Removal of trace amount of mercury from waste liquid

Publications (2)

Publication Number Publication Date
JPS62294490A JPS62294490A (en) 1987-12-21
JPH0256959B2 true JPH0256959B2 (en) 1990-12-03

Family

ID=15672791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15848686A Granted JPS62294490A (en) 1986-07-04 1986-07-04 Removal of trace amount of mercury from waste liquid

Country Status (1)

Country Link
JP (1) JPS62294490A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065052A (en) * 1973-10-16 1975-06-02
JPS5140560A (en) * 1974-10-02 1976-04-05 Matsushita Electric Ind Co Ltd SURUHOORUPURINTOHAISENBAN NO SEIZOHOHO
JPS5395169A (en) * 1977-01-31 1978-08-19 Mitsubishi Electric Corp Treating apparatus for solution containing heavy metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065052A (en) * 1973-10-16 1975-06-02
JPS5140560A (en) * 1974-10-02 1976-04-05 Matsushita Electric Ind Co Ltd SURUHOORUPURINTOHAISENBAN NO SEIZOHOHO
JPS5395169A (en) * 1977-01-31 1978-08-19 Mitsubishi Electric Corp Treating apparatus for solution containing heavy metals

Also Published As

Publication number Publication date
JPS62294490A (en) 1987-12-21

Similar Documents

Publication Publication Date Title
KR860001247B1 (en) Reclamation method of merwry in wast water
US5948269A (en) Process for the removal and suppression of dissolved hydrogen sulfide and other malodorous compounds and reduction of acidity in liquid and sludge wastewater systems
US4070281A (en) Method for treating waste water
US4846978A (en) Recovery of metals from solutions containing chelants
US6503471B1 (en) Process for malodorous gas treatment
CN112225234A (en) Resource utilization method of high-salinity salty mud containing sodium chloride and sodium sulfate
JP2778964B2 (en) Detoxification of wastewater containing elemental mercury
JPH0256959B2 (en)
JPH05345189A (en) Method for treating organic halogen compound-containing waste water
JPH11514962A (en) Composition containing sodium bicarbonate, its preparation and its use
JPS6211634B2 (en)
RU2390500C1 (en) Method of purifying aqueous solutions from arsenic and concomitant heavy metals
JP4106415B2 (en) Treatment method of wastewater containing cyanide
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
JP3680742B2 (en) Method for treating wastewater containing dioxins
KR100495764B1 (en) Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
JPH1133571A (en) Wastewater treatment method
JPS58224134A (en) Method for recovering mercury from waste water
JPS63291690A (en) Treatment of waste water separated from metal cyanide
JPS58126940A (en) Recovery of mercury in waste water
JPS5952582A (en) Removal of trace amount of mercury from liquid waste
JPS6116494B2 (en)
JPS6216153B2 (en)
JP2004314005A (en) Cleaning method of sludge polluted with organic halogen compound, and its apparatus
JPS5846353B2 (en) Heavy metal treatment method in municipal waste incineration ash