JPH0256587B2 - - Google Patents

Info

Publication number
JPH0256587B2
JPH0256587B2 JP29396985A JP29396985A JPH0256587B2 JP H0256587 B2 JPH0256587 B2 JP H0256587B2 JP 29396985 A JP29396985 A JP 29396985A JP 29396985 A JP29396985 A JP 29396985A JP H0256587 B2 JPH0256587 B2 JP H0256587B2
Authority
JP
Japan
Prior art keywords
furnace
atmospheric gas
pressure
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29396985A
Other languages
Japanese (ja)
Other versions
JPS62153683A (en
Inventor
Kyoshi Kimura
Tatsuo Suzuki
Susumu Ito
Hiroshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP29396985A priority Critical patent/JPS62153683A/en
Publication of JPS62153683A publication Critical patent/JPS62153683A/en
Publication of JPH0256587B2 publication Critical patent/JPH0256587B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバツチ式電気炉の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in batch type electric furnaces.

〔従来の技術〕[Conventional technology]

従来、バツチ式電気炉の雰囲気を空気から雰囲
気ガスに置換するには、炉内へ例えば窒素ガスを
供給する方式を採用されている。また、炉内の冷
却は、炉内に外気を導入すると雰囲気を維持する
ことができないので、炉外壁を水冷するか、又は
炉内へ例えば窒素ガスを供給することにより行な
われている。
Conventionally, in order to replace the atmosphere of a batch-type electric furnace from air with atmospheric gas, a method has been adopted in which, for example, nitrogen gas is supplied into the furnace. Furthermore, since the atmosphere cannot be maintained if outside air is introduced into the furnace, the inside of the furnace is cooled by water-cooling the outer wall of the furnace or by supplying, for example, nitrogen gas into the furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のように窒素ガスを供給する置換
方式で置換能力を向上させるためには、多量の窒
素ガスを流す必要がある。また、この方式では濃
度差による拡散現象を利用して炉内の酸素濃度を
低減させるため、多量の窒素ガスを流しても完全
に置換を行なうためには長時間を要するという欠
点がある。
However, in order to improve the replacement ability with the conventional replacement method that supplies nitrogen gas, it is necessary to flow a large amount of nitrogen gas. Furthermore, since this method uses diffusion phenomena caused by concentration differences to reduce the oxygen concentration in the furnace, it has the disadvantage that even if a large amount of nitrogen gas is passed through, it takes a long time to completely replace the nitrogen gas.

一方、炉内の冷却については、従来は自然冷却
であるため、500℃以下の温度で200℃/hr以上の
急冷を行なうことは困難であり、しかも最適なプ
ログラムに従つて降温を行なうことは不可能であ
つた。また、窒素ガスを供給して冷却する場合に
はやはり多量の窒素ガスを必要とするという欠点
もある。
On the other hand, since the cooling inside the furnace has traditionally been natural cooling, it is difficult to perform rapid cooling of more than 200°C/hr at a temperature of 500°C or less, and furthermore, it is difficult to cool down the temperature according to the optimal program. It was impossible. Furthermore, when cooling by supplying nitrogen gas, there is also a drawback that a large amount of nitrogen gas is still required.

本発明は上記欠点を解消するためになされたも
のであり、短時間で炉内雰囲気を置換することが
でき、しかもプログラム降温を行なうことができ
るバツチ式電気炉を提供しようとするものであ
る。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a batch-type electric furnace that can replace the atmosphere in the furnace in a short time and can perform programmed temperature reduction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のバツチ式電気炉は、炉内に載置された
被処理物を所定雰囲気下、常圧で電気加熱するバ
ツチ式電気炉において、炉内の空気を真空吸引す
る機構と、炉内の雰囲気ガスを導入する機構と、
炉内の雰囲気ガスを加熱するヒーターと、炉内の
雰囲気ガスを炉外へ引出してクーラー内に通し、
被処理物の支持台の下部の位置から冷却された雰
囲気ガスを炉内へ循環させる機構と、前記ヒータ
ーに供給される電力及び雰囲気ガスの循環量を制
御して炉内温度をプログラム制御する機構と、炉
内圧力が設定圧力から変動した場合に雰囲気ガス
を供給又は排出する機構とを具備したことを特徴
とするものである。
The batch-type electric furnace of the present invention is a batch-type electric furnace that electrically heats a workpiece placed in the furnace at normal pressure in a predetermined atmosphere. a mechanism for introducing atmospheric gas;
A heater heats the atmospheric gas inside the furnace, and the atmospheric gas inside the furnace is drawn out of the furnace and passed through a cooler.
A mechanism for circulating the cooled atmospheric gas into the furnace from a position below the support stand for the workpiece, and a mechanism for programmatically controlling the temperature in the furnace by controlling the electric power supplied to the heater and the circulation amount of the atmospheric gas. and a mechanism for supplying or discharging atmospheric gas when the pressure inside the furnace fluctuates from the set pressure.

〔作用〕[Effect]

このようなバツチ式電気炉によれば、炉内の空
気を真空吸引した後、雰囲気ガスと置換する真空
置換方式であるので、従来のように雰囲気ガスを
多量に流す必要がなく、しかも炉内の酸素濃度を
短時間で低減することができる。また、炉内の雰
囲気ガスを炉外へ引出し、クーラー内に通して冷
却した後炉内へ循環させる冷却方式であり、しか
も雰囲気ガスの循環量を制御することができるの
で、炉内雰囲気を維持したまま急冷及びプログラ
ム降温が可能となる。
According to such batch-type electric furnaces, the air inside the furnace is vacuum-suctioned and then replaced with atmospheric gas, so there is no need to flow a large amount of atmospheric gas as in the conventional method, and there is no need to flow inside the furnace. can reduce the oxygen concentration in a short time. In addition, this cooling method draws the atmospheric gas inside the furnace outside the furnace, passes it through a cooler to cool it, and then circulates it back into the furnace.Moreover, the amount of atmospheric gas circulated can be controlled, so the atmosphere inside the furnace can be maintained. It is possible to perform rapid cooling and program temperature reduction while maintaining the temperature.

また、被処理物の支持台の下部の位置から冷却
された雰囲気ガスを炉内へ循環させるので、被処
理物に冷却ガスが直接吹き付けられることがな
く、しかも支持台の下面から炉壁方向へガスが流
れ、更に上方へのガス流が生じる。このため、被
処理物に冷却ガスを吹き付ける場合と異なり、局
所的な冷却により被処理物にクラツクなどの損傷
を与えるという問題がなく、しかも前述したガス
流により迅速な冷却が可能となる。
In addition, since the cooled atmospheric gas is circulated into the furnace from the lower part of the support stand for the workpiece, the cooling gas is not sprayed directly onto the workpiece, and moreover, it flows from the bottom of the support stand towards the furnace wall. Gas flows and further upward gas flow occurs. Therefore, unlike the case where cooling gas is sprayed onto the object to be processed, there is no problem of damage such as cracks to the object due to local cooling, and the aforementioned gas flow enables rapid cooling.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

図において、電気炉本体1内に設けられた支持
台2上には被処理物3が載置される。
In the figure, a workpiece 3 is placed on a support stand 2 provided within an electric furnace main body 1 .

最初に、常温時における電気炉本体1内の雰囲
気の置換操作について説明する。まず、他の電磁
弁を閉じ、電磁弁12を開いて真空ポンプ13を
作動させる。炉内の空気は水冷式のクーラー11
中の配管、電磁弁12及び真空ポンプ13を通つ
て排気される。なお、電気炉1とクーラー11と
の間の配管には大気圧検知器14が設けられてい
る。この排気の際、クーラー11は冷却機能を有
する必要はないので、開閉弁15を開いてクーラ
ー11内部に水を流す操作は行なわなくてもよ
い。炉内圧力が5Torr以下になれば、電磁弁12
を閉じ、電磁弁25を開いてボンベ21から減圧
弁22、均圧弁23、流量計24及び電磁弁25
を通して炉内へ窒素ガスを供給する。大気圧検知
器14で大気圧+αの炉内圧力を検知した後、電
磁弁31及び32を開いて一定流量の窒素ガスを
炉内を通して外部に排出して炉内酸素濃度を
100ppm以下に下げる。また、真空排気操作のみ
で炉内酸素濃度を100ppm以下にするには、上記
操作で大気圧検知器14作動後に一旦全ての電磁
弁を閉じ、再度電磁弁12を開いて真空ポンプ1
3を作動させるという操作を2〜3回繰り返して
行なえばよい。
First, the operation of replacing the atmosphere inside the electric furnace main body 1 at room temperature will be explained. First, other solenoid valves are closed, solenoid valve 12 is opened, and vacuum pump 13 is operated. The air inside the furnace is supplied by a water-cooled cooler 11.
The air is evacuated through internal piping, a solenoid valve 12 and a vacuum pump 13. Note that an atmospheric pressure detector 14 is provided in the pipe between the electric furnace 1 and the cooler 11. At the time of this exhaustion, since the cooler 11 does not need to have a cooling function, there is no need to open the on-off valve 15 to flow water into the cooler 11. When the pressure inside the furnace becomes 5 Torr or less, the solenoid valve 12
, and open the solenoid valve 25 to remove the pressure from the cylinder 21 to the pressure reducing valve 22, pressure equalizing valve 23, flow meter 24, and solenoid valve 25.
Nitrogen gas is supplied into the furnace through. After the atmospheric pressure detector 14 detects the pressure inside the furnace of atmospheric pressure + α, the electromagnetic valves 31 and 32 are opened to discharge a constant flow of nitrogen gas through the furnace to the outside to reduce the oxygen concentration inside the furnace.
Reduce to below 100ppm. In addition, in order to reduce the oxygen concentration in the furnace to 100 ppm or less with only the vacuum evacuation operation, once the atmospheric pressure detector 14 has been activated in the above operation, close all the solenoid valves, open the solenoid valve 12 again, and then open the vacuum pump 1.
The operation of activating step 3 may be repeated two or three times.

次に、炉内の昇温・保温操作について説明す
る。炉内にはヒーター41が設置され、このヒー
ター41には、電源42からサイリスタ43を介
して電力が供給される。炉内の温度は炉壁から挿
入された熱電対44により検出される。熱電対4
4からの信号はプログラム温度調節計45で判定
され連続コントロール信号がパルス発生器46に
送られ、更にパルス発生器46からのパルス信号
がサイリスタ43に送られてフイードバツク制御
が行なわれることにより、炉内温度がプログラム
通りに昇温・保温される。なお、昇温中に炉内の
圧力が上昇した場合には電磁バルブ31を開き、
均圧弁33から窒素ガスを排出することにより炉
内圧力を一定にする。
Next, the temperature raising and heat retention operations inside the furnace will be explained. A heater 41 is installed in the furnace, and power is supplied to this heater 41 from a power source 42 via a thyristor 43. The temperature inside the furnace is detected by a thermocouple 44 inserted from the furnace wall. thermocouple 4
The signal from 4 is judged by the program temperature controller 45 and a continuous control signal is sent to the pulse generator 46. Furthermore, the pulse signal from the pulse generator 46 is sent to the thyristor 43 to perform feedback control. The internal temperature is raised and kept warm according to the program. In addition, if the pressure inside the furnace increases during temperature rise, the solenoid valve 31 is opened,
By discharging nitrogen gas from the pressure equalization valve 33, the pressure inside the furnace is made constant.

次いで、炉内の冷却操作について説明する。冷
却は電磁弁31,51,54を開き、ブロア52
をモーター55で、ダンパー53をモーター56
でそれぞれ作動させることにより、炉内の窒素ガ
スをクーラー11内の配管を通過させ、更に電磁
弁31、電磁弁51、ブロア52、ダンパー53
及び電磁弁54を通して炉内へ循環させて行な
う。この際、クーラー11内には開閉弁15から
水が流される。
Next, the cooling operation inside the furnace will be explained. For cooling, open the solenoid valves 31, 51, 54 and turn on the blower 52.
to the motor 55, and the damper 53 to the motor 56.
By operating each of
And it is circulated into the furnace through the solenoid valve 54. At this time, water is flowed into the cooler 11 from the on-off valve 15.

この冷却操作において、ブロア52の風量及び
ダンパー53の開度の制御は以下のようにして行
なわれる。すなわち、熱電対44からの信号及び
プログラム温度調節器45からの信号はそれぞれ
偏差調節器57に送られ、両者の間に一定値以上
の偏差が生じた場合に偏差調節器57からの信号
に基づいてコントローラ58,59によりそれぞ
れモーター55,56の制御が行なわれ、窒素ガ
スの循環量が増減される。なお、偏差調節器57
における熱電対44からの信号とプログラム温度
調節器45からの信号との偏差は、温度に対応さ
せて100℃以下で任意の値に設定することができ
る。
In this cooling operation, the air volume of the blower 52 and the opening degree of the damper 53 are controlled as follows. That is, the signal from the thermocouple 44 and the signal from the program temperature controller 45 are each sent to the deviation controller 57, and when a deviation of more than a certain value occurs between the two, the signal from the deviation controller 57 is sent to the deviation controller 57. Controllers 58 and 59 control motors 55 and 56, respectively, to increase and decrease the amount of nitrogen gas circulated. In addition, the deviation adjuster 57
The deviation between the signal from the thermocouple 44 and the signal from the program temperature controller 45 can be set to any value below 100° C. in correspondence with the temperature.

また、冷却操作において、炉内圧力が設定圧力
よりも低下した場合には、電磁弁25を開くこと
により、均圧弁23で常に炉内圧力を一定に保持
することができる。
Further, in the cooling operation, when the furnace pressure drops below the set pressure, by opening the electromagnetic valve 25, the pressure equalizing valve 23 can always maintain the furnace pressure constant.

このようなバツチ式の電気炉によれば、真空置
換方式により炉内雰囲気を置換することができる
ので、置換操作に要する時間を非常に短縮するこ
とができる。例えば、炉内容積1.4m3(断熱材を
含む)の電気炉について酸素濃度を100ppmまで
低減させるのに要する置換時間を比較した。その
結果、従来の方式により3m3/hrの流量で窒素ガ
スを流した場合、常温で2時間、1000℃でも1時
間かかつたのに対し、本発明に係る電気炉では6
分間しかかからなかつた。なお、この例では使用
したロータリー式の真空ポンプは容量が1200/
hrのものであるが、炉の大きさあるいは置換時間
の長短によつては容量600〜120000/hrの種々
のポンプを使用することができる。
According to such a batch type electric furnace, the atmosphere inside the furnace can be replaced by a vacuum replacement method, so that the time required for the replacement operation can be significantly shortened. For example, we compared the replacement time required to reduce the oxygen concentration to 100 ppm in an electric furnace with an internal furnace volume of 1.4 m 3 (including insulation material). As a result, when nitrogen gas was flowed at a flow rate of 3 m 3 /hr using the conventional method, it took 2 hours at room temperature and 1 hour at 1000°C, but with the electric furnace according to the present invention, it took 6 hours.
It only took a minute. In this example, the rotary vacuum pump used has a capacity of 1200/cm.
hr, but depending on the size of the furnace or the length of the replacement time, various pumps with a capacity of 600 to 120,000/hr can be used.

また、炉内の窒素ガスをクーラー11を通して
冷却し、被処理物の支持台の下部の位置から再び
炉内へ循環させる冷却方式であり、しかも窒素ガ
スの循環量を制御することができるので、500℃
以下の温度でも200℃/hr以上の急冷を行なうこ
とができ、かつプログラム通りの降温を行なうこ
とができる。したがつて、降温時間を短縮すると
ともに、最適な降温により良好な特性を有する製
品を得ることができる。
In addition, this cooling method cools the nitrogen gas in the furnace through the cooler 11 and circulates it back into the furnace from the lower part of the support for the object to be treated, and the amount of nitrogen gas circulated can be controlled. 500℃
Rapid cooling of 200°C/hr or more can be performed even at temperatures below, and the temperature can be lowered according to the program. Therefore, it is possible to shorten the temperature lowering time and obtain a product having good characteristics due to the optimum temperature lowering.

なお、上記実施例ではヒーター、熱電対及び冷
却用の配管がそれぞれ1つづつであつたが、炉の
容積が大きくなつた場合にはヒーター、熱電対及
び冷却用の配管を複数設け、それに伴なつて制御
回路等も複数系統としてもよいことは勿論であ
る。
In the above example, there was one heater, one thermocouple, and one cooling pipe each, but if the volume of the furnace increases, multiple heaters, thermocouples, and cooling pipes may be installed. Of course, the control circuits etc. may also be provided in multiple systems.

また、上記実施例ではクーラーとして水冷式の
ものを用いたが、水冷式と空冷式のものを併用し
て高温時には空冷式クーラーを、低温時には水冷
式クーラーをそれぞれ使用するように使いわけを
行なつてもよい。
In addition, in the above example, a water-cooled type cooler was used, but a water-cooled type and an air-cooled type can be used together, and the air-cooled type cooler is used when the temperature is high, and the water-cooled type cooler is used when the temperature is low. It's okay to get old.

更に、上記実施例ではブロアとダンパーを用い
て炉内の窒素ガスの循環風量を変化させたが、ダ
ンパーをなくし、インバーターによりブロア用の
モーターの回転数を変化させて循環風量を変化さ
せるようにしてもよい。
Furthermore, in the above embodiment, a blower and a damper were used to change the circulating air volume of nitrogen gas in the furnace, but the damper was eliminated and the circulating air volume was changed by changing the rotation speed of the blower motor using an inverter. It's okay.

〔効果〕〔effect〕

以上詳述した如く本発明によれば、短時間で炉
内雰囲気を置換することができ、しかもプログラ
ム降温を行なうことができるバツチ式電気炉を提
供することができ、ひいてはコストを低減できる
とともに良好な特性を有する製品を製造すること
ができる等顕著な効果を奏するものである。
As described in detail above, according to the present invention, it is possible to provide a batch-type electric furnace that can replace the atmosphere in the furnace in a short period of time and also perform programmed temperature reduction, which can reduce costs and provide a good performance. It has remarkable effects such as being able to manufacture products with unique characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における電気炉の構成図で
ある。 1……電気炉本体、2……支持台、3……被処
理物、11……クーラー、12……電磁弁、13
……真空ポンプ、14……大気圧検知器、15…
…開閉弁、21……ボンベ、22……減圧弁、2
3……均圧弁、24……流量計、25……電磁
弁、31,32……電磁弁、33……均圧弁、4
1……ヒーター、42……電源、43……サイリ
スタ、44……熱電対、45……プログラム温度
調節器、46……パルス発生器、51……電磁
弁、52……ブロア、53……ダンパー、54…
…電磁弁、55,56……モーター、57……偏
差調節器、58,59……コントローラ。
The figure is a configuration diagram of an electric furnace in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Electric furnace main body, 2...Support stand, 3...Workpiece, 11...Cooler, 12...Solenoid valve, 13
...Vacuum pump, 14...Atmospheric pressure detector, 15...
...Opening/closing valve, 21...Cylinder, 22...Pressure reducing valve, 2
3...Pressure equalization valve, 24...Flowmeter, 25...Solenoid valve, 31, 32...Solenoid valve, 33...Pressure equalization valve, 4
1... Heater, 42... Power supply, 43... Thyristor, 44... Thermocouple, 45... Program temperature controller, 46... Pulse generator, 51... Solenoid valve, 52... Blower, 53... Damper, 54...
... Solenoid valve, 55, 56 ... Motor, 57 ... Deviation adjuster, 58, 59 ... Controller.

Claims (1)

【特許請求の範囲】[Claims] 1 炉内に載置された被処理物を所定雰囲気下、
常圧で電気加熱するバツチ式電気炉において、炉
内の空気を真空吸引する機構と、炉内に雰囲気ガ
スを導入する機構と、炉内の雰囲気ガスを加熱す
るヒーターと、炉内の雰囲気ガスを炉外へ引出し
てクーラー内に通し、被処理物の支持台の下部の
位置から冷却された雰囲気ガスを炉内へ循環させ
る機構と、前記ヒーターに供給される電力及び雰
囲気ガスの循環量を制御して炉内温度をプログラ
ム制御する機構と、炉内圧力が設定圧力から変動
した場合に雰囲気ガスを供給又は排出する機構と
を具備したことを特徴とするバツチ式電気炉。
1. The workpiece placed in the furnace is heated under a specified atmosphere.
In a batch-type electric furnace that electrically heats at normal pressure, there is a mechanism for vacuum suction of the air inside the furnace, a mechanism for introducing atmospheric gas into the furnace, a heater that heats the atmospheric gas inside the furnace, and an atmospheric gas inside the furnace. A mechanism for pulling the gas out of the furnace and passing it into a cooler, and circulating the cooled atmospheric gas into the furnace from a position below the support stand for the workpiece, and a mechanism for controlling the electric power supplied to the heater and the circulation amount of the atmospheric gas. What is claimed is: 1. A batch-type electric furnace comprising: a mechanism for programmatically controlling the furnace temperature; and a mechanism for supplying or discharging atmospheric gas when the furnace pressure fluctuates from the set pressure.
JP29396985A 1985-12-26 1985-12-26 Batch type electric furnace Granted JPS62153683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29396985A JPS62153683A (en) 1985-12-26 1985-12-26 Batch type electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29396985A JPS62153683A (en) 1985-12-26 1985-12-26 Batch type electric furnace

Publications (2)

Publication Number Publication Date
JPS62153683A JPS62153683A (en) 1987-07-08
JPH0256587B2 true JPH0256587B2 (en) 1990-11-30

Family

ID=17801535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29396985A Granted JPS62153683A (en) 1985-12-26 1985-12-26 Batch type electric furnace

Country Status (1)

Country Link
JP (1) JPS62153683A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203299A (en) * 1989-02-01 1990-08-13 Power Reactor & Nuclear Fuel Dev Corp Method for cooling batch operated external heat type electric furnace of globe box connection
RU2476797C2 (en) * 2008-09-26 2013-02-27 Улвак, Инк. Melting furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191598A (en) * 1978-08-21 1980-03-04 Midland-Ross Corporation Jet recirculation method for vacuum carburizing
JPS565998U (en) * 1979-06-28 1981-01-20

Also Published As

Publication number Publication date
JPS62153683A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US5360336A (en) Forced cooling apparatus for heat treatment apparatus
JP2002075890A (en) Heat treatment system and control method of decreasing temperature rate thereof
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
TW201738963A (en) Heat treatment device capable of uniformly carrying out temperature change of the processed article even when the temperature control conditions are changed
KR100559820B1 (en) Thermal treatment apparatus and thermal treatment method
JPH0256587B2 (en)
JP2808632B2 (en) Method of cooling workpiece in vacuum furnace and vacuum furnace
JP3111395B2 (en) Heat treatment equipment
JPH0379985A (en) Controlling method for temperature of electric furnace
JP2572017B2 (en) Cooling method of treated material in Matsufuru furnace
JP2005183596A (en) Manufacturing method of heat treatment apparatus and semiconductor device
JP2968062B2 (en) Semiconductor heat treatment equipment
JP2570201B2 (en) Heat treatment furnace
JPH031066A (en) Cooling system in heat treatment furnace
JP3525074B2 (en) Batch oven
RU2705186C1 (en) Method of workpiece cooling in vacuum heating chamber of vacuum furnace and vacuum furnace
JPH06101378B2 (en) Closed heating furnace
CN109468449B (en) Heat treatment furnace with speed-controlled cooling function
JPH05121344A (en) Vertical furnace and temperature control method
JP3208836B2 (en) Starting the heat treatment furnace
JPS59159927A (en) Heat treating device
JPH0633946B2 (en) Continuous heat treatment furnace
JPS59159926A (en) Method and device for heat treatment
JPH0529261A (en) Stage temperature control device
JPH0293019A (en) Heat treatment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees