JPH02203299A - Method for cooling batch operated external heat type electric furnace of globe box connection - Google Patents

Method for cooling batch operated external heat type electric furnace of globe box connection

Info

Publication number
JPH02203299A
JPH02203299A JP2341289A JP2341289A JPH02203299A JP H02203299 A JPH02203299 A JP H02203299A JP 2341289 A JP2341289 A JP 2341289A JP 2341289 A JP2341289 A JP 2341289A JP H02203299 A JPH02203299 A JP H02203299A
Authority
JP
Japan
Prior art keywords
cooling
gas
inner container
vessel
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2341289A
Other languages
Japanese (ja)
Inventor
Giichi Aoki
義一 青木
Yutaka Kurihara
豊 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP2341289A priority Critical patent/JPH02203299A/en
Publication of JPH02203299A publication Critical patent/JPH02203299A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the cooling time for a treating object by passing air from the outside of an inside vessel and a cooling gas in the inside vessel as well to cool the treating object and further, cooling the high-temp. gas emitted from a furnace by a heat exchange and recycling the gas to the inside of the inside vessel as well. CONSTITUTION:While the cooling gas is supplied from a piping 33 for supplying the gas by closing valves 14, 15 and 30 and opening valves 24 and 31 upon ending of heating of the treating object 1 in the inside vessel 1, the gas is passed into the vessel 2 by a pump 34 to cool the treating object 1. The gas which is made into the high temp. in the vessel 2 and is emitted from the vessel is cooled by the heat exchanger 27 and is circulated again as the cooling gas into the inside vessel 2. The air in the atm. is simultaneously passed by a pump 18 to the outside space 20 of the vessel 2 and the air heated to the high temp. by the heat exchanger 19 is released to the atm. and the vessel 2 is cooled from the outside to accelerate the cooling of the treating object 1. The treating object is cooled form the inside and outside of the vessel 2 in such a manner, by which the cooling rate is increased and the cooling gas in the vessel 2 is recycled into the vessel. The cost of the gas is thus reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1.グローブボックスを接続したバッチ式外熱
型電気炉の冷却方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention comprises 1. This invention relates to a cooling method for a batch type external heating electric furnace connected to a glove box.

〔従来の技術〕[Conventional technology]

一般に、電気炉はその運転形態から連続炉とバッチ炉と
がある。連続炉とは炉に入口、出口が設けられ、モリブ
デン等の金属の合板上に処理物を載せて人口側から炉に
装荷し、炉内をベルト、チェーン、プッシャー等で合板
を移動させ、所定の加熱を行わせ、冷却後出口から取り
出す方式のもので、セラミックス、半導体規模の大量生
産に向いている。一方、バッチ炉は、連続炉が常に温度
を一定に保持し、内部を処理物が移動することにより、
処理物の加熱、冷却を行うのに対し、処理物の装荷毎に
炉自体を加熱、冷却するものであり、大量生産には向か
ないが処理物に対してきめ細かな制御が可能であり、高
真空下、あるいは加圧下などの特殊条件下の処理はバッ
チ炉でないとできない。
In general, electric furnaces are divided into continuous furnaces and batch furnaces depending on their operation mode. A continuous furnace is a furnace with an inlet and an outlet, and the material to be treated is placed on plywood made of metal such as molybdenum, loaded into the furnace from the artificial side, and the plywood is moved inside the furnace using belts, chains, pushers, etc. This method heats the material and takes it out from the outlet after cooling, making it suitable for mass production on the scale of ceramics and semiconductors. On the other hand, in a batch furnace, a continuous furnace always maintains a constant temperature and the material to be processed moves inside.
The furnace itself is heated and cooled each time the material to be processed is loaded, and although it is not suitable for mass production, it allows fine control over the material to be processed and is highly efficient. Processing under special conditions such as under vacuum or under pressure is only possible in a batch furnace.

また、電気炉は加熱の方式から、発熱体が気密容器の外
に位置している外熱加熱炉と、発熱体が気密容器の内部
に位置している内熱加熱炉とに分類される。外熱炉は内
容器の構造が簡単であり、発熱体、熱反射板等の部品が
破損した場合に外側のケーシング、断熱材を外すだけで
容易に交換できるなど保守性に優れているために、多(
の分野で利用されている。このような電気炉でプルトニ
ウムのような核物質を加熱処理する場合には、加熱炉を
グローブボックスに接続し、グローブボックスから核物
質の出し入れとを行い、外界と遮断して処理することが
行われている。
Further, electric furnaces are classified based on the heating method into external heating furnaces in which the heating element is located outside the airtight container, and internal heating furnaces in which the heating element is located inside the airtight container. External heat furnaces have a simple inner container structure, and if parts such as the heating element or heat reflector are damaged, they can be easily replaced by simply removing the outer casing or insulation material, making them highly maintainable. , many (
It is used in the field of When heating nuclear material such as plutonium in such an electric furnace, it is possible to connect the heating furnace to a glove box, take the nuclear material in and take it out from the glove box, and process it in isolation from the outside world. It is being said.

これらの電気炉のうち、本発明はバッチ式外熱型電気炉
を対象とするものである。
Among these electric furnaces, the present invention is directed to batch type external heat type electric furnaces.

第2図は従来のグローブボックス接続バッチ式外熱型電
気炉を示す図、第3図は各種冷却方法による処理物の温
度変化を示す図で、図中、1は処理物、2は内容器、3
は発熱体、4は熱反射板、5は断熱材、6はケーシング
、7は水冷パイプ、8は蓋、9はグローブボックス、1
0% 11は開口部、12.13.16.17.25.
26は配管、14.15.24はバルブ、18.23は
ポンプ、19.27は熱交換器、20は外側空間、21
はフィルタ、22はブロワ−である。
Figure 2 is a diagram showing a conventional batch type external heating electric furnace connected to a glove box, and Figure 3 is a diagram showing temperature changes of the processed material due to various cooling methods. In the figure, 1 is the processed material, and 2 is the inner container. ,3
is a heating element, 4 is a heat reflector, 5 is a heat insulator, 6 is a casing, 7 is a water cooling pipe, 8 is a lid, 9 is a glove box, 1
0% 11 is the opening, 12.13.16.17.25.
26 is piping, 14.15.24 is a valve, 18.23 is a pump, 19.27 is a heat exchanger, 20 is an outside space, 21
is a filter, and 22 is a blower.

図において、グローブボックス接続バッチ式外熱型電気
炉は、処理物1を収納i−で加熱する気密性を有する内
容器2が炉の中央に位置し、その外側に処理物lを加熱
する発熱体3、熱輻射を防ぐ熱反射板(リフレクタ)4
、断熱材5、ケーシング6及び水冷パイプ7等の順に構
成されている。
In the diagram, a glove box-connected batch type externally heated electric furnace has an airtight inner container 2 that heats the processed material 1 in the center of the furnace, and a heat generating part that heats the processed material 1 on the outside. body 3, heat reflective plate (reflector) 4 to prevent heat radiation
, a heat insulating material 5, a casing 6, a water cooling pipe 7, etc., in this order.

この場合、発熱体は、通常ニクロム、カンタル等が使用
される。熱反射板は0. 1〜0.3mの金属板を多層
に組み合わせたものであり、発熱体の外側や蓋の近くに
取りつけられ、熱輻射を防ぐと同時に、熱のロスや熱に
対する保護用に使用される。断熱材は、アルミナ煉瓦、
シリカ煉瓦、石綿等が使用される。
In this case, the heating element is usually made of nichrome, kanthal, or the like. The heat reflector is 0. It is a multilayer combination of 1 to 0.3 m metal plates, and is attached to the outside of the heating element or near the lid, and is used to prevent heat radiation and at the same time to protect against heat loss and heat. The insulation material is alumina brick,
Silica bricks, asbestos, etc. are used.

グローブボックス9は炉の一側面にフランジ(図示せず
)を介して接続されており、内容器2には処理物1を出
入する蓋8がフランジ内に取り付けられている。蓋8と
これに対向した内容器2の側面には開口部lO及び11
を設け、内部を真空又は所定のガスを流入するための配
管12及び13とそれらにそれぞれ接続するバルブ14
及び15がそれぞれ開口部10及び11に設けられてい
る。また、バルブ15は真空系(図示せず)へ接続され
ている。
The glove box 9 is connected to one side of the furnace via a flange (not shown), and the inner container 2 has a lid 8 attached to the flange through which the processed material 1 is taken in and taken out. Openings 10 and 11 are provided on the side surface of the lid 8 and the inner container 2 opposite thereto.
pipes 12 and 13 for vacuuming the inside or for introducing a predetermined gas, and valves 14 connected to the pipes 12 and 13, respectively.
and 15 are provided in the openings 10 and 11, respectively. Further, the valve 15 is connected to a vacuum system (not shown).

内容器2の外側空間20に冷却時空気を流すための2個
の開口部を熱反射板4、断熱材5を貫通してケーシング
6に設け、一方の開口部には配管16を介して空気圧送
用のポンプ18を、他方の開口部には配管17を介して
熱交換器19が取り付けられている。
Two openings for flowing air during cooling into the outer space 20 of the inner container 2 are provided in the casing 6 through the heat reflecting plate 4 and the heat insulating material 5, and air pressure is supplied to one opening through the piping 16. A pump 18 for feeding is attached to the other opening, and a heat exchanger 19 is attached to the other opening via piping 17.

グローブボックス9は炉において放射性物質を取り扱う
ため、フィルタ21及びブロワ−22を設は内部を外気
に対して約30mmAqの負圧に維持して、万一グロー
ブボックス9のグローブ等が破損した場合、内部の核物
質がグローブボックス9の外に漏れないようにしである
Since the glove box 9 handles radioactive materials in the furnace, a filter 21 and a blower 22 are installed to maintain the inside at a negative pressure of about 30 mmAq with respect to the outside air. This is to prevent the nuclear material inside from leaking out of the glove box 9.

処理物lは内容器2内の架台に装荷され、蓋8で密閉さ
れる。処理物lを装荷した内容器2はバルブ15から真
空系で真空にするか、ポンプ23で配管12及びバルブ
14を介して所定のガス、例えば水素−窒素混合ガスを
内容器2内に流しながら加熱する。ガスを内容器2内に
流しながら加熱する場合はガスと処理物1が反応したり
、処理物から分解物を放出したりして組成や純度が劣化
するため、内容器2から出た高温ガスは配管13に接続
された配管25を介して熱交換器27で冷却後、再び配
管26を介してグローブボックス9に排気される。この
排気ガスの放出のためグローブボックス9内の負圧は乱
れを生じる。この負圧の乱れはフィルタ21を介してブ
ロワ−22で排気ガスを大気中に放出することにより吸
収し、正常な負圧を維持している。
The material to be processed 1 is loaded onto a pedestal within the inner container 2 and sealed with a lid 8. The inner container 2 loaded with the material to be treated 1 is evacuated with a vacuum system through the valve 15, or a predetermined gas, for example, a hydrogen-nitrogen mixed gas, is flowed into the inner container 2 with a pump 23 through the piping 12 and the valve 14. Heat. When heating gas while flowing into the inner container 2, the gas and the processed material 1 may react or decomposed products are released from the processed material, resulting in deterioration of the composition and purity. is cooled by a heat exchanger 27 via a pipe 25 connected to the pipe 13, and then exhausted to the glove box 9 via a pipe 26 again. Due to the release of this exhaust gas, the negative pressure within the glove box 9 is disturbed. This disturbance in the negative pressure is absorbed by discharging the exhaust gas into the atmosphere by the blower 22 via the filter 21, thereby maintaining a normal negative pressure.

所定の加熱終了後、炉は次のような冷却方法で処理物1
が酸化しない50〜60℃程度まで冷却して炉外に取り
出される。
After the prescribed heating is completed, the furnace cools the processed material 1 using the following cooling method.
It is cooled to about 50 to 60°C, at which point it does not oxidize, and then taken out of the furnace.

Ca5elの冷却方法は、内容器2を加熱時に密閉した
状態で内容器2の外側空間20にポンプ18で空気を流
し、熱交換器19を介して大気中に放出して冷却する方
法である。
The cooling method for Ca5el is to cool the inner container 2 by flowing air into the outer space 20 of the inner container 2 with a pump 18 in a sealed state during heating, and releasing it into the atmosphere via a heat exchanger 19.

Ca5e2の冷却方法は、内容器2の内部に処理物1と
反応しない熱伝導性の良いヘリウムガス等を封入、密閉
し、Ca5elと同様に内容器2の外側空間20に空気
を流して冷却する方法である。
The cooling method for Ca5e2 is to fill the interior of the inner container 2 with helium gas, etc., which has good thermal conductivity and does not react with the processed material 1, and seal it, and cool it by flowing air into the outer space 20 of the inner container 2, similar to Ca5el. It's a method.

(:ase3の冷却方法は、前述のように内容器2の外
側空間20に空気を流して冷却するとともに、内容器内
部にも処理物1と反応しない窒素ガス等をポンプ23で
流して熱交換器27を介してグローブボックス9内に放
出し、グローブボックス9内の負圧を適正に保持しなが
らフィルタ21を介してブロワ−22で大気中に窒素ガ
スを放出して処理物1を冷却する方法である。
(The cooling method for ase3 is to cool it by flowing air into the outer space 20 of the inner container 2 as described above, and also to flow nitrogen gas, etc., which does not react with the processed material 1 inside the inner container with the pump 23, for heat exchange. Nitrogen gas is discharged into the glove box 9 through a container 27, and nitrogen gas is discharged into the atmosphere through a filter 21 and a blower 22 while maintaining an appropriate negative pressure in the glove box 9 to cool the processed material 1. It's a method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、外熱型電気炉は発熱体と処理物との間に内
容器が存在し、この付近に最も冷却に寄与する水冷パイ
プがないため、冷却に長時間を必要とし、特に処理容量
の大きい大型炉になると、処理物及び内容器の熱容遣が
大きくなり非常に冷却し難くなる。従って、炉の運転時
間が長期化し、前後の工程のみならず工程全体への影響
が大きくなる欠点を有する。
In this way, an external heat type electric furnace has an inner container between the heating element and the processed material, and there is no water cooling pipe near this area that contributes most to cooling, so cooling takes a long time, especially when processing capacity If the furnace is large in size, the heat capacity of the processed material and the inner container will be large, making it extremely difficult to cool it. Therefore, there is a drawback that the operating time of the furnace becomes long, and the influence not only on the preceding and succeeding processes but also on the entire process becomes large.

処理物及び内容器等を同一の条件とし、Ca5e1〜3
の方法によって冷却した場合の冷却速度をコンピュータ
でシュミレーションして第3図に示すような結果が得ら
れた。第3図において、処理物を取り出す温度50〜6
0℃になるまで、Ca5e 1では約45時間、Ca5
e2では約30時間を必要とする。
Under the same conditions for the processed material and inner container, etc., Ca5e1-3
The cooling rate when cooling was performed using the method described above was simulated on a computer, and the results shown in FIG. 3 were obtained. In Figure 3, the temperature at which the processed material is taken out is 50 to 6.
Ca5e 1 takes about 45 hours to reach 0°C.
e2 requires approximately 30 hours.

これに対してCa5e3の場合は10時間前後であり、
冷却速度が大幅に改善されていることが分かる。しかし
ながら、Ca5e3は内容器内部の冷却ガスをそのまま
廃棄する使い揄でのワンスル一方式で行うと、冷却ガス
のコストが膨大になり、また、プルトニウムを含む核物
質を処理する炉では、排ガスはグローブボックス内に排
気しなければならないが、この場合、大量のガスがグロ
ーブボックスに出るため、ガスを流しながら加熱する場
合と同様にグローブボックスの負圧は大きく変動し、正
常な負圧を維持するためフィルタを介してブロワ−で圧
力制御をする繁雑な作業が必要となる。
On the other hand, in the case of Ca5e3, it is around 10 hours,
It can be seen that the cooling rate has been significantly improved. However, if Ca5e3 is used as a one-time method in which the cooling gas inside the inner vessel is discarded as it is, the cost of cooling gas will be enormous, and in reactors that process nuclear materials including plutonium, exhaust gas is It must be vented into the box, but in this case, a large amount of gas exits the glove box, so the negative pressure in the glove box fluctuates greatly, just as when heating with gas flowing, and normal negative pressure must be maintained. Therefore, the complicated work of controlling the pressure with a blower via a filter is required.

本発明は上記問題点を解決するためのもので、冷却速度
の大幅な向上をはかり、冷却ガスのコストを低減し、排
ガスによるグローブボックス内の負圧の変動から解放す
ることのできるグローブボックス接続バッチ式外熱型電
気炉の冷却方法を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and is capable of significantly increasing the cooling rate, reducing the cost of cooling gas, and relieving the glove box of negative pressure fluctuations caused by exhaust gas. The purpose of the present invention is to provide a cooling method for a batch type external heat type electric furnace.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明;よ、負圧管理されたグローブボック
スに接続され、周囲に発熱体、熱反射板、断熱材、冷却
パイプを設けた内容器内で処理物を加熱処理するバッチ
式外熱型電気炉において、内容器の外側に冷却用空気を
流し、高温となって内容器の外側から出た空気を熱交換
器で除熱して大気中に放出すると共に、内容器内に冷却
用がスを流し、高温となって内容器から出たガスを熱交
換器で冷却し、再び冷却用ガスとして内容器内に間通さ
せるようにしたことを特徴とする。
To that end, the present invention is a batch type external heating type that heats the processed material in an inner container connected to a negative pressure controlled glove box and surrounded by a heating element, a heat reflector, a heat insulating material, and a cooling pipe. In an electric furnace, cooling air is passed outside the inner container, and the hot air that comes out from the outside of the inner container is removed by a heat exchanger and released into the atmosphere. The gas which reaches high temperature and comes out of the inner container is cooled by a heat exchanger, and then passed through the inner container again as cooling gas.

〔作用〕[Effect]

本発明はバッチ式外熱型電気炉において、内容器の外部
に空気を流して外部から処理物を冷却するとともに、内
容器の内部にも冷却用のガスを流し、高温となって内容
器から出たガスを熱交換器で冷却し、再び冷却用ガスと
して内容器内にリサイクルさせることにより内容器内の
処理物の冷却速度を速くし、また冷却用ガスの経費を大
幅に軽減し、さらにグローブボックス内ヘリサイクルガ
スの放出を行わないので、グローブボックス内における
負圧管理の負担を大幅に軽減することができる。
The present invention is a batch type external heat type electric furnace, in which air is flowed outside the inner container to cool the processed material from the outside, and cooling gas is also flowed inside the inner container, so that the material is heated to a high temperature and is removed from the inner container. By cooling the emitted gas in a heat exchanger and recycling it back into the inner container as cooling gas, the cooling rate of the processed material in the inner container is increased, and the cost of cooling gas is significantly reduced. Since the helicycle gas inside the glove box is not released, the burden of negative pressure management inside the glove box can be significantly reduced.

〔実施例〕〔Example〕

以下、図面を参照しつつ本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のグローブボックス接続バッチ式外熱型
電気炉の冷却方法の一実施例を示す説胡図で、図中第2
図と同一番号は同一内容を示している。なお、30.3
1はバルブ、32.33は配管、34はポンプである。
FIG. 1 is an explanatory diagram showing an embodiment of the cooling method for a glove box-connected batch type external heating electric furnace of the present invention.
The same numbers as in the figure indicate the same contents. In addition, 30.3
1 is a valve, 32, 33 is a pipe, and 34 is a pump.

図のグローブボックス接続バッチ式外熱型電気炉におい
て、ポンプ18、熱交換器19及び接続の配管16.1
7等から構成される内容器2の外側空間20の冷却空気
の給排気系、また、処理物1の加熱の際に内容器2を真
空又はガスを給排気するポンプ23、熱交換器27及び
これらに接続する配管12.13.25.26、バルブ
14.15.24等から構成される給排気系及びフィル
タ21とブロワ−22を備えたグローブボックス9の構
造は第2図の場合と同様である。
In the glove box connected batch type external heating electric furnace shown in the figure, the pump 18, the heat exchanger 19 and the connecting piping 16.1
7, etc., a cooling air supply/exhaust system for the outer space 20 of the inner container 2, a pump 23 for supplying and exhausting vacuum or gas to the inner container 2 when heating the processed material 1, a heat exchanger 27, and The structure of the glove box 9, which is equipped with an air supply and exhaust system consisting of pipes 12, 13, 25, 26, valves 14, 15, 24, etc. connected to these, and a filter 21 and a blower 22, is the same as that shown in Fig. 2. It is.

なお、本実施例において、配管26の解放端に設けたバ
ルブ30、熱交換器27と蓋8との間のバルブ31、内
容器2に開口する配管32が増設され、配管32に冷却
用ガスの供給用配管33、及び冷却ガス循環用のポンプ
34が設けられている。
In this embodiment, a valve 30 provided at the open end of the pipe 26, a valve 31 between the heat exchanger 27 and the lid 8, and a pipe 32 opening into the inner container 2 are added, and cooling gas is supplied to the pipe 32. A supply pipe 33 and a pump 34 for circulating cooling gas are provided.

このような炉において、処理物lを内容器2内の架台に
装荷し蓋8で密閉後、バルブ14.24及び31を閉状
態にしてバルブ15から真空系で内容器2を真空状態に
維持して処理物1を加熱処理するか、バルブ15及び3
1を閉状態にし、バルブ14.24及び30を開状態に
して、ポンプ23から内容器2内に水素−窒素混合ガス
等を流しながら熱交換器27を介してグローブボックス
9に排気して処理物lを加熱処理する。この際のグロー
ブボックス9内の負圧管理は前述と同様である。
In such a furnace, the material to be treated 1 is loaded onto the frame inside the inner container 2 and sealed with the lid 8, and then the valves 14, 24 and 31 are closed, and the inner container 2 is maintained in a vacuum state using the vacuum system from the valve 15. to heat-treat the material 1, or to heat the material 1
1 is closed, valves 14, 24 and 30 are opened, and hydrogen-nitrogen mixed gas, etc. is allowed to flow into the inner container 2 from the pump 23 while being exhausted to the glove box 9 via the heat exchanger 27 for processing. Heat treat the material. Negative pressure management within the glove box 9 at this time is the same as described above.

所定の加vA終了後、バルブ14.15及び30が閉状
態、バルブ24及び31が開状態でガス供給用配管33
から冷却用ガスの窒素ガス等を供給しながらポンプ34
で内容器2内に流し、処理物1を冷却する。内容器2内
で高温となって内容器2から出たガスは熱交換器27で
冷却し、再び冷却ガスとして内容器2内にflfflす
る。
After the predetermined VA is completed, the gas supply pipe 33 is opened with the valves 14, 15 and 30 in the closed state and the valves 24 and 31 in the open state.
pump 34 while supplying cooling gas such as nitrogen gas from
The processed material 1 is cooled by flowing into the inner container 2. The gas that reaches a high temperature in the inner container 2 and exits from the inner container 2 is cooled by a heat exchanger 27 and flfffl into the inner container 2 again as cooling gas.

冷却用ガスの内容器2内の冷却と同時にポンプ18によ
り大気中の空気を内容器2の外側空間20に流し、熱交
換器19を介して高温となった空気を冷却して大気中に
放出し、内容器2を外側から冷却し、処理物1の冷却を
促進する。
Simultaneously with the cooling of the cooling gas inside the inner container 2, air from the atmosphere is caused to flow into the outer space 20 of the inner container 2 by the pump 18, and the high temperature air is cooled through the heat exchanger 19 and released into the atmosphere. Then, the inner container 2 is cooled from the outside to promote cooling of the processed material 1.

こうして、内容器の内部と外部とから冷却することによ
り、冷却速度を速くすると同時に、内容器の内部の冷却
ガスを内容器内にリサイクルして使用し、ガス経費の節
減とグローブボックスの負圧管理の負担を軽減すること
ができる。
In this way, by cooling from the inside and outside of the inner container, the cooling rate is increased, and at the same time, the cooling gas inside the inner container is recycled and used inside the inner container, reducing gas costs and negative pressure in the glove box. Management burden can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、処理物を内容器の外側か
ら空気を流して冷却すると同時に内容器内においても冷
却用ガスを流して冷却し、さらに、炉から出た高温ガス
を熱交換して冷却し、再び冷却用ガスとして内容器内に
リサイクル方法により、処理物の冷却時間を短くするこ
とができ、併せて冷却用ガスのリサイクル使用によるガ
ス経費の大幅な軽減とワンスルー式でグローブボックス
内に使い捨てによる負圧の管理のt、!!滅をすること
ができる。
As described above, according to the present invention, the processed material is cooled by flowing air from the outside of the inner container, cooling gas is also flowed inside the inner container at the same time, and the high temperature gas discharged from the furnace is further cooled by heat exchange. By recycling the cooling gas into the inner container, the cooling time for the processed material can be shortened.In addition, by recycling the cooling gas, gas costs can be significantly reduced, and the one-through type glove Management of negative pressure by disposable inside the box! ! can be destroyed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のグローブボックス接続バッチ式外熱型
電気炉の冷却方法の一実施例を示す説明図、第2図は従
来のグローブボックス接続バッチ式外熱型電気炉、第3
図は各種冷却方法による処理物の冷却速度を示す図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the cooling method for a glove box-connected batch type external heat type electric furnace of the present invention, and FIG.
The figure is a diagram showing the cooling rate of the processed material by various cooling methods.

Claims (1)

【特許請求の範囲】[Claims] (1)負圧管理されたグローブボックスに接続され、周
囲に発熱体、熱反射板、断熱材、冷却パイプを設けた内
容器内で処理物を加熱処理するバッチ式外熱型電気炉に
おいて、内容器の外側に冷却用空気を流し、高温となっ
て内容器の外側から出た空気を熱交換器で除熱して大気
中に放出すると共に、内容器内に冷却用ガスを流し、高
温となって内容器から出たガスを熱交換器で冷却し、再
び冷却用ガスとして内容器内に循環させるようにしたこ
とを特徴とするグローブボックス接続バッチ式外熱型電
気炉の冷却方法。
(1) In a batch type external heating electric furnace that heats the processed material in an inner container connected to a negative pressure controlled glove box and surrounded by a heating element, a heat reflector, a heat insulator, and a cooling pipe, Cooling air is flowed outside the inner container, and the high temperature air that comes out from the outside of the inner container is removed by a heat exchanger and released into the atmosphere. At the same time, cooling gas is flowed inside the inner container to reduce the high temperature. A cooling method for a batch type external heating type electric furnace connected to a glove box, characterized in that the gas discharged from the inner container is cooled by a heat exchanger and then circulated back into the inner container as cooling gas.
JP2341289A 1989-02-01 1989-02-01 Method for cooling batch operated external heat type electric furnace of globe box connection Pending JPH02203299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2341289A JPH02203299A (en) 1989-02-01 1989-02-01 Method for cooling batch operated external heat type electric furnace of globe box connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2341289A JPH02203299A (en) 1989-02-01 1989-02-01 Method for cooling batch operated external heat type electric furnace of globe box connection

Publications (1)

Publication Number Publication Date
JPH02203299A true JPH02203299A (en) 1990-08-13

Family

ID=12109780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2341289A Pending JPH02203299A (en) 1989-02-01 1989-02-01 Method for cooling batch operated external heat type electric furnace of globe box connection

Country Status (1)

Country Link
JP (1) JPH02203299A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153683A (en) * 1985-12-26 1987-07-08 東芝セラミツクス株式会社 Batch type electric furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153683A (en) * 1985-12-26 1987-07-08 東芝セラミツクス株式会社 Batch type electric furnace

Similar Documents

Publication Publication Date Title
US6059567A (en) Semiconductor thermal processor with recirculating heater exhaust cooling system
US5892886A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
JPH04264716A (en) Heat treatment device
JPH04245420A (en) Wafer reaction vessel window having pressure-thermal compensation function
JPS63285121A (en) Device for roasting-reducing by microwave heating
JPH02203299A (en) Method for cooling batch operated external heat type electric furnace of globe box connection
US3035819A (en) Brazing or heat treating furnace
JPS59140371A (en) Metal working material curing method
JPS6287464A (en) Method of dewaxing ceramic formed body
JPH01255215A (en) Manufacture of semiconductor device
JPH01291095A (en) Heat treatment device
US4963090A (en) Reverse flow furnace/retort system
JPS5849779Y2 (en) Powder leak prevention device for powder discharge valve for fluidized bed
JP3017981B1 (en) Sintering furnace for nuclear fuel
JP2871111B2 (en) Cooling method in vacuum furnace
JP2002303415A (en) Method for removing high boiling point substance in regenerative combustion type gas treating apparatus
JPH09126658A (en) Vacuum heat treatment device
JPS63166218A (en) Wafer cooling method for semiconductor thermal processing equipment
JP2508687Y2 (en) Heat treatment furnace
JPS6348950B2 (en)
JPH06173010A (en) Heat-treating device
KR860001742Y1 (en) Ephitactial apparatus
JPH0534102Y2 (en)
JPH1176742A (en) Waste gas treating device and treatment of waste gas
JPH02287088A (en) Hot temperature heat treatment process and hot temperature heat treatment furnace