JPH025592Y2 - - Google Patents

Info

Publication number
JPH025592Y2
JPH025592Y2 JP1985072940U JP7294085U JPH025592Y2 JP H025592 Y2 JPH025592 Y2 JP H025592Y2 JP 1985072940 U JP1985072940 U JP 1985072940U JP 7294085 U JP7294085 U JP 7294085U JP H025592 Y2 JPH025592 Y2 JP H025592Y2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic shielding
amorphous ribbon
magnetic permeability
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985072940U
Other languages
Japanese (ja)
Other versions
JPS61190196U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985072940U priority Critical patent/JPH025592Y2/ja
Publication of JPS61190196U publication Critical patent/JPS61190196U/ja
Application granted granted Critical
Publication of JPH025592Y2 publication Critical patent/JPH025592Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は多層しやへい構造の磁気シールド装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic shielding device having a multilayered shield structure.

〔従来の技術〕[Conventional technology]

従来、磁気シールド装置の構成材料としては、
鉄、珪素鋼、パーマロイ等の高透磁率材料が主と
して用いられ、一部ではアルミニウム、銅等の高
導電材料が使用されている。磁気シールド層の形
状としては、球殻または円筒あるいはこれらに近
似した立方体や任意断面形状の筒体が考えられる
が、製造の容易さから筒体の磁気シールド装置が
多用されている。また、磁気シールド効果を向上
させるために、磁気シールド層を厚くしたり、多
重構造にすることが一般に行われている。
Conventionally, the constituent materials for magnetic shielding devices are:
High magnetic permeability materials such as iron, silicon steel and permalloy are mainly used, and in some cases highly conductive materials such as aluminum and copper are used. The shape of the magnetic shielding layer may be a spherical shell, a cylinder, a cube similar to these, or a cylinder with an arbitrary cross-sectional shape, but cylindrical magnetic shielding devices are often used because of their ease of manufacture. Furthermore, in order to improve the magnetic shielding effect, it is common practice to make the magnetic shield layer thicker or to have a multilayer structure.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、磁気シールド層を厚くすると所定形状
に成型する際の成型性が劣化する。一方、多重構
造にすると、磁気シールド装置自体がかなり大型
化してしまい、被シールド物よりも磁気シールド
装置の方がかなり大きくなる場合があり、構造
上、実用的でなくなるという欠点がある。なお、
多重構造にした場合の殻の間隙は、スペーサとし
て非磁性材を介在させる場合を除いて通常は空隙
である。
However, when the magnetic shield layer is made thicker, the moldability when molding into a predetermined shape deteriorates. On the other hand, if a multiplex structure is used, the magnetic shielding device itself becomes considerably large in size, and the magnetic shielding device may be considerably larger than the object to be shielded, which has the disadvantage that it becomes impractical from a structural standpoint. In addition,
In the case of a multilayer structure, the gaps between the shells are usually air gaps, except when a non-magnetic material is interposed as a spacer.

本考案は上記のような実情に鑑みなされたもの
で、その目的は磁気シールド装置自体を大型化す
ることなく磁気シールド効果を向上させた磁気シ
ールド装置を提供することである。
The present invention was devised in view of the above-mentioned circumstances, and its purpose is to provide a magnetic shielding device that improves the magnetic shielding effect without increasing the size of the magnetic shielding device itself.

〔問題点を解決するための手段〕[Means for solving problems]

本考案によれば、高透磁率を有する材料による
少なくとも二層の殻からなる多重包囲構造体の殻
相互の間隙に、液体急冷法により作製された高透
磁率アモルフアスリボンを充填したことを特徴と
する磁気シールド装置が得られる。
According to the present invention, the gap between the shells of a multi-enveloping structure consisting of at least two shells made of a material having high magnetic permeability is filled with a high magnetic permeability amorphous ribbon produced by a liquid quenching method. A magnetic shielding device is obtained.

〔実施例〕〔Example〕

以下に本考案の実施例を説明する。 Examples of the present invention will be described below.

第1図は本考案の一実施例を示し、磁性材料に
よる円筒状の内殻1と、これより大きな径を有す
る同材料の円筒状外殻2との間に、液体急冷法に
より作製された高透磁率アモルフアスリボン3を
充填して成る。4は非磁性材料によるスペーサで
ある。このような筒状体のシールド装置では、両
端開口に対するシールドは直径に対して長さが数
倍程度あれば十分であることは周知の通りであ
る。
FIG. 1 shows an embodiment of the present invention, in which a cylindrical inner shell 1 made of a magnetic material and a cylindrical outer shell 2 made of the same material and having a larger diameter are formed by a liquid quenching method. It is filled with a high permeability amorphous ribbon 3. 4 is a spacer made of non-magnetic material. It is well known that in such a cylindrical shield device, it is sufficient that the length of the shield for the openings at both ends is several times the diameter.

内殻1及び外殻2の構成材料としては、高透磁
率材料、例えば鉄、珪素鋼、パーマロイ、Fe−
Co合金等から外部磁界の大きさに応じて選定す
れば良い。
The constituent materials of the inner shell 1 and outer shell 2 include high magnetic permeability materials such as iron, silicon steel, permalloy, Fe-
It may be selected from Co alloy etc. depending on the magnitude of the external magnetic field.

内殻1と外殻2との間隙に充填する材料とし
て、液体急冷法により作製された高透磁率アモル
フアスリボンを選ぶ理由を次に述べる。
The reason why a high magnetic permeability amorphous ribbon produced by a liquid quenching method is selected as the material to fill the gap between the inner shell 1 and the outer shell 2 will be described below.

1 充填される材料が高透磁率材料でなく非磁性
体であれば、磁気シールドには全く関与しな
い。また、磁性体であつても透磁率の小さな材
料であると、外部磁界により着磁された磁気シ
ールド効果を劣化させる。このため、内殻1と
外殻2との間隙に充填される材料は高透磁率材
料であることが必要となる。
1. If the material to be filled is not a high magnetic permeability material but a non-magnetic material, it will not be involved in magnetic shielding at all. Furthermore, even if the material is magnetic, if it is made of a material with low magnetic permeability, the magnetic shielding effect magnetized by an external magnetic field will deteriorate. Therefore, the material filled in the gap between the inner shell 1 and the outer shell 2 needs to be a high magnetic permeability material.

2 アモルフアスリボンは機械的強度が大きく、
靭性に富み、内殻1と外殻2との間隙に押し込
んでも材料自体が折れ曲がらずに充填される。
これに対し、結晶質の薄板、例えばパーマロイ
薄板は機械的強度が小さく、わずかな外力で材
料内部にひずみが導入されたり、折れ曲がつた
りし、透磁率が著しく劣化するため、充填用材
料としては適さない。
2 Amorphous ribbon has high mechanical strength,
It has high toughness and is filled without bending even when pushed into the gap between the inner shell 1 and outer shell 2.
On the other hand, crystalline thin plates, such as permalloy thin plates, have low mechanical strength, and a slight external force can cause strain or bending inside the material, resulting in a significant deterioration of magnetic permeability. It is not suitable as

3 液体急冷法により作製されたアモルフアスリ
ボンは、高温の溶湯から急速に冷却されるた
め、作製されたリボンの表面は薄い酸化被膜が
形成される。この酸化被膜は絶縁被膜として作
用し、内殻1と外殻2との間隙に充填されて
も、殻とアモルフアスリボンは磁気的に絶縁さ
れる。このため、殻による磁気シールド効果
に、アモルフアスリボンによる磁気シールド効
果が付与され、この磁気シールド装置全体のシ
ールド効果は飛躍的に向上することになる。
3. Since the amorphous ribbon produced by the liquid quenching method is rapidly cooled from a high-temperature molten metal, a thin oxide film is formed on the surface of the produced ribbon. This oxide film acts as an insulating film, and even if the gap between the inner shell 1 and the outer shell 2 is filled, the shell and the amorphous ribbon are magnetically insulated. Therefore, the magnetic shielding effect of the amorphous ribbon is added to the magnetic shielding effect of the shell, and the shielding effect of the entire magnetic shielding device is dramatically improved.

次に、アモルフアスリボンの充填率としては体
積比で1%以上10%以下の範囲が好ましい。充填
率の増加に伴ない磁気シールド効果は向上する
が、10%を越えて充填すると殻を構成する材料に
ひずみが加わつて磁気シールド効果が低下するた
め、上限としては10%とする。また、充填率が1
%未満では、内殻1と外殻2との間隙に均一に充
填されず、一部分にのみかたよつてしまうため下
限を1%とした。
Next, the filling rate of the amorphous ribbon is preferably in the range of 1% to 10% by volume. The magnetic shielding effect improves as the filling rate increases, but if the filling rate exceeds 10%, strain is added to the material that makes up the shell, reducing the magnetic shielding effect, so the upper limit is set at 10%. Also, the filling rate is 1
If the amount is less than 1%, the gap between the inner shell 1 and the outer shell 2 will not be uniformly filled and the content will be uneven in only one part, so the lower limit was set at 1%.

次に、具体例を示す。 Next, a specific example will be shown.

殻1,2は内直径がそれぞれ150mm、200mmで厚
さ1mmのパーマロイから成り、長さはそれぞれ
450mm、500mmである。内殻1と外殻2との間に、
液体急冷法により作製されたCo(70%)Fe(5%)
Si(15%)B(10%)(原子比率)の組成を有する
アモルフアスリボン3を体積比率で3%充填し
た。このアモルフアスリボン3の充填前、後にお
ける図中のP点での磁界を測定した。外部磁界
460mGに対し、アモルフアスリボン充填前は
0.33mGであつたが、3%充填することにより
0.05mGにまで小さくなつた。
Shells 1 and 2 are made of permalloy with an inner diameter of 150 mm and 200 mm, respectively, and a thickness of 1 mm, and their lengths are
They are 450mm and 500mm. Between inner shell 1 and outer shell 2,
Co (70%) Fe (5%) prepared by liquid quenching method
The amorphous amorphous ribbon 3 having a composition of Si (15%) B (10%) (atomic ratio) was filled with a volume ratio of 3%. The magnetic field at point P in the figure was measured before and after filling this amorphous ribbon 3. external magnetic field
460mG before filling with amorphous ribbon
It was 0.33mG, but by filling it with 3%
It was reduced to 0.05mG.

次に、充填率を5%にしたところ、P点におけ
る磁界は0.01mG以下であつた。
Next, when the filling rate was set to 5%, the magnetic field at point P was 0.01 mG or less.

〔考案の効果〕[Effect of idea]

以上のように、本考案による磁気シールド装置
によれば、大型化することなく極めて容易に極低
磁界空間が実現される。
As described above, according to the magnetic shielding device according to the present invention, an extremely low magnetic field space can be realized very easily without increasing the size.

【図面の簡単な説明】[Brief explanation of the drawing]

図は頓考案の一実施例を示す図。 1は高透磁率材料よりなる内殻、2は高透磁率
材料よりなる外殻、3はアモルフアスリボン。
The figure shows an example of the proposed device. 1 is an inner shell made of a high magnetic permeability material, 2 is an outer shell made of a high magnetic permeability material, and 3 is an amorphous ribbon.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高透磁率を有する材料による少なくとも二層の
殻からなる多重包囲構造体の殻相互の間隙に、液
体急冷法により作製された高透磁率アモルフアス
リボンを充填したことを特徴とする磁気シールド
装置。
1. A magnetic shielding device characterized in that a multi-enveloping structure consisting of at least two shell layers made of a material having high magnetic permeability is filled with a high magnetic permeability amorphous ribbon produced by a liquid quenching method into the gap between the shells.
JP1985072940U 1985-05-18 1985-05-18 Expired JPH025592Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985072940U JPH025592Y2 (en) 1985-05-18 1985-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985072940U JPH025592Y2 (en) 1985-05-18 1985-05-18

Publications (2)

Publication Number Publication Date
JPS61190196U JPS61190196U (en) 1986-11-27
JPH025592Y2 true JPH025592Y2 (en) 1990-02-09

Family

ID=30611830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985072940U Expired JPH025592Y2 (en) 1985-05-18 1985-05-18

Country Status (1)

Country Link
JP (1) JPH025592Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812475U (en) * 1981-07-18 1983-01-26 株式会社古径 Corner fixing sheet for paintings, photographs, etc.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52157702U (en) * 1976-05-25 1977-11-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812475U (en) * 1981-07-18 1983-01-26 株式会社古径 Corner fixing sheet for paintings, photographs, etc.

Also Published As

Publication number Publication date
JPS61190196U (en) 1986-11-27

Similar Documents

Publication Publication Date Title
Tenaud et al. Improved corrosion and temperature behaviour of modified Nd-Fe-B magnets
KR850000141A (en) Cylindrical permanent magnet manufacturing method
WO2013176332A1 (en) Cobalt (co) and platinum (pt)-based multilayer thin film having inverted structure and method for manufacturing same
DE2708151A1 (en) MAGNETIC ALLOYS
JPH11238613A (en) Compound magnetic material and its manufacture
JP2009185312A (en) Composite soft magnetic material, dust core using the same, and their production method
Luborsky Applications of amorphous alloys
JPS5846044B2 (en) powder iron core
JPH025592Y2 (en)
JP2005502052A5 (en)
Sellmyer et al. Handbook of advanced magnetic materials
JP2000232014A (en) Manufacture of composite magnetic material
WO2013111957A1 (en) Fe-al alloy powder for material of soft magnetic core, method for preparing same and method for preparing soft magnetic core using same
KR100360762B1 (en) Iron Amorphous Alloy Strip for Winding Trans
Shirakawa et al. Pressure effects on the Curie temperature and electrical resistance of Fe-based amorphous alloys
CA1340795C (en) Magnetic ribbon and magnetic core
CN101567243A (en) Cementing magnet for DC reactor and the DC reactor
JPH10208923A (en) Composite magnetic material and production thereof
Miyazaki et al. Magnetic properties of rapidly quenched Fe—Si alloys
JP3026048B2 (en) Manufacturing method of magnetically shielded cylinder using oxide superconductor
JPS6320031B2 (en)
JPH0510370Y2 (en)
JPS5814512A (en) Inductor device
US2818551A (en) Ferromagnetic body
JP2795531B2 (en) Magnetic shield structure