JPH025587A - Characteristic measurement of semiconductor laser and device therefor - Google Patents

Characteristic measurement of semiconductor laser and device therefor

Info

Publication number
JPH025587A
JPH025587A JP63154816A JP15481688A JPH025587A JP H025587 A JPH025587 A JP H025587A JP 63154816 A JP63154816 A JP 63154816A JP 15481688 A JP15481688 A JP 15481688A JP H025587 A JPH025587 A JP H025587A
Authority
JP
Japan
Prior art keywords
semiconductor laser
interferometer
oscillation wavelength
measuring
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63154816A
Other languages
Japanese (ja)
Inventor
Masakazu Suematsu
末松 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP63154816A priority Critical patent/JPH025587A/en
Publication of JPH025587A publication Critical patent/JPH025587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To measure the characteristic of an LD element easily at a low cost by a method wherein a waveform is obtained by detecting the change with time of the intensity distribution of an interference fringe formed through an interferometer, whose sharp phase discontinuous point is detected to measure an oscillating wavelength property, which is dependent on an injection current under a specified condition, of a semiconductor laser element. CONSTITUTION:Laser rays, projected from an interferometer, are detected by a photodetector 9 such as a photodiode or the like to obtain an intensity change signal (fringe change signal) 10 of an interference fringe formed through an interferometer 8 at the position of the photodetector 9, the change signal 10 is inputted into a computer 11, and a signal process is performed to detect a mode hopping. The computer 11, composed of a microprocessor, a memory and others, controls an LD drive circuit 1 corresponding to the fringe change signal 10, detects a mode hopping, and perform a measurement control as an interferometer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体レーザの特性測定方法および装置、特に
半導体レーザ素子の発振波長特性を測定する半導体レー
ザの特性測定方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring characteristics of a semiconductor laser, and more particularly to a method and apparatus for measuring characteristics of a semiconductor laser for measuring oscillation wavelength characteristics of a semiconductor laser element.

[従来の技術] 半導体レーザ(以下L Dという)は、ガスレーザなど
に比べて装置の構成が簡単安価かつ小型軽量であり、光
通信、音響用、ないし映像用光ディスクなどの光源とl
ノで広く用いられている。また、光学干渉計用の光源へ
の応用も最近では盛んl+研究されている。
[Prior Art] Semiconductor lasers (hereinafter referred to as LDs) are simpler, cheaper, smaller, and lighter in device configuration than gas lasers, and are suitable for use as light sources for optical communication, audio, or video optical disks, etc.
It is widely used in Further, recently, research has been actively conducted on its application to light sources for optical interferometers.

[発明が解決しようとする課題] LD素子では、素子・\の注入電流に応じて発振波長が
変化するが、両者の対応間係は直線的ではなく、ある注
入電流値を境に発振波長が不連続的に変化する、いわゆ
るモードホッピング特性を有する。
[Problem to be solved by the invention] In an LD element, the oscillation wavelength changes depending on the current injected into the element, but the relationship between the two is not linear, and the oscillation wavelength changes after a certain injection current value. It has a so-called mode hopping characteristic that changes discontinuously.

干渉計では、波長走査により形成される干渉縞などを観
測することにより測定が行なわれるが、上記のモードホ
ッピングが生じると発振波長が変化lノでしまうので、
干−ドホッピング点を避りて使用しなけオ]ばならない
。しかも、モードホッピングは常に一定の注入電流値で
生じるわけではなく、温度条件などによりモードホッピ
ング点は変動するため、モードポツピングを避けるには
あらかじめ注入電流および温度などの条件と発振波長の
特性を測定しておかなければならない。
Interferometers perform measurements by observing interference fringes formed by wavelength scanning, but if the mode hopping described above occurs, the oscillation wavelength will change.
It must be used to avoid dry hopping points. Furthermore, mode hopping does not always occur at a constant injection current value, and the mode hopping point varies depending on temperature conditions, etc., so to avoid mode hopping, consider the injection current, temperature, and other conditions and the characteristics of the oscillation wavelength in advance. Must be measured.

このためには、回折格子や、干渉計などを用いた分光器
によりLD素子の発振波長の測定が必要になる。
For this purpose, it is necessary to measure the oscillation wavelength of the LD element using a spectrometer using a diffraction grating, an interferometer, or the like.

ところが、分光器などを用いる方法では、次のJ:うな
問題がある。
However, the method using a spectroscope has the following problem.

1)回折格子や、干渉計の反射鏡をレーザ光に2)犬が
かりな装置が必要で、とくにLD素子を光源と1ノで用
いる干渉計などの装置に実装した状態で評価するには分
光器などを被測定系に導入する構造が必要になり装薗全
体が初雑化、大型化する。また、出荷前に1台1台較正
を行なう必要がある場合には実際的な方法ではない。
1) A diffraction grating or an interferometer reflecting mirror is used as a laser beam. 2) A complicated device is required, especially when the LD element is used as a light source in order to be evaluated when it is mounted on a device such as an interferometer. A structure is required to introduce a device into the system under test, making the entire equipment complicated and large. Furthermore, this is not a practical method if it is necessary to calibrate each device one by one before shipping.

本発明の課題は以上の問題を解決し、簡単安価にLD素
子の特性を測定できるようにすることである。
An object of the present invention is to solve the above-mentioned problems and to make it possible to easily and inexpensively measure the characteristics of an LD element.

[課題を解決するための手段] 以上の課題を解決するために、本発明においては、半導
体レーザ素子の発振波長特性を測定する半導体レーザの
特性測定方法および装置において、駆動時の注入電流お
よび温度条件を所望に制御可能な半導体1ノ〜ザ素子の
レー デ光を干渉計に導入し干渉縞を形成し、半導体レ
ーザ素子の温度を所定値に制御した」−で半導体レーザ
素子の注J電流を変化させ、干渉計により形成された干
渉縞の強度分布の時間変化を検出して得られた波形の急
激な位相不連続点を検出することにより前記半導体レー
ザ素子の所定温度条件における注入電流に依存する発振
波長特性を測定する構成を採用した[作 用j 以上の構成によれば、干渉縞強度の時間変化信号を受光
素子などにより観測できるので、測定用分光器などを用
いるよりも装置の構成が簡単になり、また、短時間で測
定が行なえる。特に干渉計として装置を構成する場合に
は、干渉計そのもののハードウェアを利用1)て測定が
可能であり、装置を簡単安価かつ小型軽量に構成できる
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a semiconductor laser characteristic measurement method and apparatus for measuring the oscillation wavelength characteristics of a semiconductor laser element. The LED light from the semiconductor laser element, whose conditions can be controlled as desired, was introduced into an interferometer to form interference fringes, and the temperature of the semiconductor laser element was controlled to a predetermined value. The injected current of the semiconductor laser element under a predetermined temperature condition is determined by detecting the sharp phase discontinuity point of the waveform obtained by changing the intensity distribution of the interference fringes formed by the interferometer. According to the above configuration, the time-varying signal of the interference fringe intensity can be observed using a photodetector, which requires less equipment than using a measurement spectrometer. The configuration is simple and measurements can be performed in a short time. In particular, when the device is constructed as an interferometer, measurements can be made using the hardware of the interferometer itself, and the device can be constructed easily, inexpensively, small and lightweight.

[実施例] 以下、図面に示す実施例に基づき、本発明の詳細な説明
する。ここでは、干渉計の実施例を示しその光源のL 
D素子の発振特性を測定する構成を例示する。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings. Here, we will show an example of an interferometer and show the L of its light source.
A configuration for measuring the oscillation characteristics of a D element will be illustrated.

第1図は本発明を採用した干渉計の構成を示している。FIG. 1 shows the configuration of an interferometer employing the present invention.

レーザ光源は単一モード発振のLD素子3で、ATM 
(温度調節回路・)2で温度制御を受ける。
The laser light source is a single mode oscillation LD element 3, and the ATM
(Temperature control circuit) 2 receives temperature control.

A T M 2はI、D素子3の温度を所望の一定値に
制御する。この制御温度値はコンピュータ11により決
定さJする。
ATM 2 controls the temperature of the I and D elements 3 to a desired constant value. This control temperature value is determined by the computer 11.

また、LD素子3の駆動電流は、L D ffi動回路
1により制御さね、この駆動電流を変化させてLD素子
3の発振波長を調節する。i、 D素子3は注入電流の
変化によって導波路の屈折率が変化して発振波長が変化
する。
Further, the driving current of the LD element 3 is controlled by the LD ffi dynamic circuit 1, and the oscillation wavelength of the LD element 3 is adjusted by changing this driving current. In the i, D element 3, the refractive index of the waveguide changes due to a change in the injection current, and the oscillation wavelength changes.

LD素子3から出射される発散光はコリメートレンズ4
によって平行光に直される。コリメートされたレーザ光
は干渉計8内に導かれる。ここでは、マイケルソン型の
干渉計の構造を例示している。
The diverging light emitted from the LD element 3 is passed through the collimating lens 4.
is converted into parallel light by The collimated laser beam is guided into the interferometer 8. Here, the structure of a Michelson type interferometer is illustrated.

干渉計8に入射したレーザ光はビームスプリッタ5で2
つの光束に分けられる。2つの光束はそれぞわ固定鏡6
と可動鏡7によって光路差をつけて反射され、ビームス
プリッタ5によって再び1つになりて干渉し、入射方向
と直交した方向に出射される。
The laser beam incident on the interferometer 8 is split into two by the beam splitter 5.
It is divided into two luminous fluxes. The two light beams each have a fixed mirror 6.
The beams are reflected by the movable mirror 7 with an optical path difference, and are combined again into one beam by the beam splitter 5 to interfere with each other, and are emitted in a direction perpendicular to the direction of incidence.

干渉計8を出射したレーザ光をフォトダイオードなどの
受光素子9で受光し、受光素子9の位置での干渉計8に
よって作られた干渉縞の強度変化信号(縞変化信号)1
0を得て、コンピュータ11にこの信号波形を取り込み
、モードホッピングを検出するための信号処理を行う、
コンピュータ11は、マイクロプロセッサおよびメモリ
などから構成さね、縞変化信号10に応じてX、 D駆
動回路1な後述のように制御し、千−ドホッピングの検
出および干渉計と1ノでの測定制御を行なう。
The laser beam emitted from the interferometer 8 is received by a light receiving element 9 such as a photodiode, and an intensity change signal (fringe change signal) 1 of interference fringes created by the interferometer 8 at the position of the light receiving element 9 is generated.
0 is obtained, this signal waveform is imported into the computer 11, and signal processing is performed to detect mode hopping.
The computer 11 is composed of a microprocessor, a memory, etc., and controls the X and D drive circuits 1 according to the fringe change signal 10 as described later, and performs detection of 1,000-degree hopping and measurement with an interferometer. control.

以下、上述のように構成さI、た本発明装置の動作を説
明する。
The operation of the apparatus of the present invention constructed as described above will be described below.

波長λのレーザ光を干渉計8に入射して得られる固定鏡
6からの反射光と可動鏡7からの反射光は、光路差を!
、とするとそれぞれ次式で表される2 π a−Aexpj  (X+φ0)−(1)λ こわら2つの反射光を干渉させて得られる干渉縞は、次
式で表される。
There is an optical path difference between the reflected light from the fixed mirror 6 and the reflected light from the movable mirror 7, which are obtained by inputting a laser beam of wavelength λ into the interferometer 8!
, then 2 π a−Aexpj (X+φ0)−(1)λ which are respectively expressed by the following equations.The interference fringes obtained by interfering the two reflected lights are expressed by the following equations.

ん 第2図に、(3)式より縦軸に光強度!、横軸に発振波
長λをとって表したグラフを示す。
In Figure 2, from equation (3), the vertical axis represents the light intensity! , a graph in which the oscillation wavelength λ is plotted on the horizontal axis.

ここで、L D素子3が第3図に示すように注入電流t
oから11の間、レーザ光の波長がλOからλ、1まで
単調に増加し、11で波長がλ、1からλ、2に飛び、
その後またλ2から注入電流とともに単調に増加する特
性(モードホッピングが1つ)を有するものとし、注入
電流iを時間に関して一定の変化率で増加させた場合を
考える。この時の干渉縞の変化は第4図に示すようにな
り、レーザ光の波長の飛びは、注入電流11における干
渉縞の余弦変化の位相の飛び(不連続部)によって検出
できることがわかる。第4図では横軸に注入電流iをと
っている。
Here, the LD element 3 has an injected current t as shown in FIG.
From o to 11, the wavelength of the laser light increases monotonically from λO to λ,1, and at 11 the wavelength jumps from λ,1 to λ,2,
After that, suppose that the injection current i has a characteristic (one mode hopping) that increases monotonically with the injection current from λ2, and the injection current i is increased at a constant rate of change with respect to time. The changes in the interference fringes at this time are as shown in FIG. 4, and it can be seen that the jump in the wavelength of the laser beam can be detected by the jump in the phase (discontinuity) of the cosine change of the interference fringes in the injected current 11. In FIG. 4, the horizontal axis represents the injection current i.

干渉縞の余弦変化の位相の飛びの検出は、この信号波形
を一次微分することド:よフて行なえる。
Detection of phase jumps in cosine changes in interference fringes can be performed by first-order differentiation of this signal waveform.

第5図に第4図の波形を一次微分して求めた波形を示す
。図示のように、−次微分により余弦変化は正弦変化に
変るだけであるが、位相が飛んでいるところは波形が非
常に人外な値をとるので、これによって位相の飛び、す
なわちモードホッピング点を検出できる。
FIG. 5 shows a waveform obtained by first-order differentiation of the waveform in FIG. 4. As shown in the figure, the cosine change only changes to a sine change due to the -th differentiation, but the waveform takes very unnatural values where the phase jumps, so this causes the phase jump, that is, the mode hopping point. can be detected.

本発明で測定対象とするのは、東−モード発振で可変波
長の半導体レーザである。単一モード発振の半導体レー
ザの注入電流−発振波長特性を第6図に示す。図示のよ
うに、実際の素子では、ある注入電流範囲では注入電流
と発振波長とは直線関係にあるが、数カ所モードホップ
によって発振波長が大きく飛んでいる。モードホッピン
グは半導体レーザの温度と注入電流に依存しており、発
振波長も同様である。このためのモードホッピングの測
定の際は温度か注入電流のどちらかを一定にしておかな
くてはならない。
The object of measurement in the present invention is a semiconductor laser with East mode oscillation and a variable wavelength. FIG. 6 shows the injection current-oscillation wavelength characteristics of a single mode oscillation semiconductor laser. As shown in the figure, in an actual device, there is a linear relationship between the injection current and the oscillation wavelength within a certain injection current range, but the oscillation wavelength jumps significantly due to mode hops at several locations. Mode hopping depends on the temperature and injection current of the semiconductor laser, as well as the oscillation wavelength. When measuring mode hopping for this purpose, either the temperature or the injection current must be kept constant.

次に、第13図を参照して本発明における半導体レーザ
のそ−ドホツビングの測定手順を説明する。第13図の
手順はコンピュータ11により実行される。
Next, with reference to FIG. 13, a procedure for measuring the sod hobbing of a semiconductor laser according to the present invention will be explained. The procedure shown in FIG. 13 is executed by the computer 11.

まず、第13図のステップS1においてATM2によっ
てL D素子3の温度を任意の値で一定にする。
First, in step S1 of FIG. 13, the temperature of the LD element 3 is made constant at an arbitrary value by the ATM 2.

続いてステップS2においてy−D素子3の発振流を時
間に関して一定の割合で変化させ、一定の割合で波長走
査を行う。
Subsequently, in step S2, the oscillation flow of the y-D element 3 is changed at a constant rate with respect to time, and wavelength scanning is performed at a constant rate.

続いてステップS3においでL D素子3の光を干渉計
8に入用して干渉縞を得、受光素子9によって干渉縞を
受光して、鍋受化信号10の波形をコンピュータ11に
取り込む。第8図は鍋受化信号の波形の例を示し、ここ
では口Jf刻Miこおいて千−ドホッピングが生じてい
る。鍋受化信号10の波形をコンピュータ11に入力す
る場合、実際には所定のサンプリング時間ごとに量子化
したデータ列が取り込まシする。
Subsequently, in step S3, the light from the LD element 3 is applied to the interferometer 8 to obtain interference fringes, the interference fringes are received by the light receiving element 9, and the waveform of the pot acceptance signal 10 is input into the computer 11. FIG. 8 shows an example of the waveform of the pot receiving signal, in which a thousand-degree hopping occurs at the mouth Jf time Mi. When inputting the waveform of the pot reception signal 10 to the computer 11, a quantized data string is actually input at every predetermined sampling time.

次に、ステップS4でコンピク、−夕11によって精麦
化信号波形の一次微分演算を行う。第9図に第8図の波
形を一次微分した波形を示す。実際にはコンピュータ1
1の内部ではこの波形は上記同様のデータ列から構成さ
れる。
Next, in step S4, a first-order differential calculation of the refined signal waveform is performed using Compic and -11. FIG. 9 shows a waveform obtained by firstly differentiating the waveform of FIG. 8. Actually computer 1
1, this waveform is composed of the same data string as above.

次にステップS5において検出!ノベルを設定し次微分
波形でとびぬけて大きな値をとっている個所(変化率が
大きい箇所)を検出して千−ドホッピングを検出する。
Next, in step S5, detection! A novel is set, and a location where the next differential waveform has an extremely large value (a location where the rate of change is large) is detected to detect thousand-degree hopping.

具体的には一次微分データ列を所定のしきい値と順次比
較する処理によりモードホッピング点の検出が行なわれ
る。
Specifically, mode hopping points are detected by sequentially comparing the first-order differential data string with a predetermined threshold value.

第10図に、第9図から検出したモードホッピング点を
示す。ここでは、第7図と対応させてモードホッピング
が起きた注入電流の値を算出し、横軸に注入電流をとり
L D素子3の波長を増加させでいった場合に検出され
た干・−ドホツビングを白丸でS減少さ七!でいった場
合に検出されたモードホッピングを黒丸で示している。
FIG. 10 shows the mode hopping points detected from FIG. 9. Here, the value of the injection current at which mode hopping occurred is calculated in correspondence with FIG. Dohotsubing with a white circle and S decreases by 7! The mode hopping detected in this case is indicated by a black circle.

続いてステップS6において同〜条件で測定を繰り返し
、モードホッピングが起きる注入電流の値の平均値を算
出する。
Subsequently, in step S6, measurements are repeated under the same conditions to calculate the average value of the injection current values at which mode hopping occurs.

次にステップS7においてATM2によって1、D素子
3の温度を一定間隔でずらし、上記の処理を繰り返1ノ
で各温度ごとのモードホッピングの検出を行う7 第11図は、以上の処理jζより測定された異なる温度
条件にお1・づるモードホッピング点を縦+1!II]
jζ温度、横軸に注、1.電流をとってプロットしたも
のである7ここでは、第10図と同様に波長増加1侍の
モードホッピングを白丸で、波長減少時のモードホッピ
ングを黒丸で示している。
Next, in step S7, the ATM 2 shifts the temperatures of the D elements 1 and 3 at regular intervals, and the above process is repeated to detect mode hopping for each temperature in 1 step. 1/Zuru mode hopping point vertically +1 to the different temperature conditions measured! II]
jζ temperature, note on horizontal axis, 1. Here, as in FIG. 10, the mode hopping when the wavelength increases is shown by a white circle, and the mode hopping when the wavelength decreases is shown by a black circle.

第11図から明らかなように、モー ドホッピングの起
きる注入電流の値が温度によって変動することがわかる
As is clear from FIG. 11, the value of the injection current at which mode hopping occurs varies depending on the temperature.

以上のように、LD素7−3への注入電流を時間変化さ
ぜ、得られた干渉縞の変化信号の一次微分値から急激な
位相飛びを検出することによりモー・ドホッピング点を
検出できる。たとえば、第11図のように温度条件に応
じた千−ドホッピング点を測定できるので、干渉計動作
の際、所望の注入電流範囲に千−ドホッピングが生じな
いようにATM2によってL D素子3の温度を制御す
ることにより、L D素子3の注入電流/′発振波長が
直線的に対応している領域のみにおいて測定を行ノ♂う
ことかできる。また、装置の起動時などのタイミングに
おいて上記の千−ドホッピング測定を行ない、そわによ
り得た千−ドホッピング条件により装置動作時の諸宗教
を変更するような自動較J′F5jJ作を行なわせるご
ともできる。
As described above, the mode hopping point can be detected by changing the current injected into the LD element 7-3 over time and detecting a sudden phase jump from the first differential value of the obtained interference fringe change signal. . For example, as shown in FIG. 11, it is possible to measure a thousand-day hopping point depending on the temperature condition, so when operating the interferometer, the ATM 2 is used to control the LD element 3 so that thousand-day hopping does not occur within the desired injection current range. By controlling the temperature of the LD element 3, it is possible to perform measurements only in the region where the injection current/'oscillation wavelength of the LD element 3 linearly corresponds. In addition, the above-mentioned thousand-day hopping measurement is performed at timings such as when the device is started, and an automatic comparison is performed in which various religions are changed during device operation based on the thousand-day hopping conditions obtained by the method. I can also do things.

特性測定は、干渉計そのもののハードウェアを利用して
行なえるため、あらたな測定系を導入する必要がなく、
装置の構成を簡東安価にすることができる。特に、機械
的な制御などを必要とぜず、短時間で測定が可能であり
、しかもLD素子の発振領域全体にわたり連続的に千−
ドホッピング4、を性を検出することができる。。
Characteristic measurements can be performed using the interferometer's own hardware, so there is no need to introduce a new measurement system.
The configuration of the device can be made simple and inexpensive. In particular, measurements can be made in a short time without the need for mechanical control, and moreover, the measurement can be performed continuously over the entire oscillation region of the LD element.
4, the gender can be detected. .

なお、第1図ではマイケルソン型の干渉計を用いて説明
したが、フィゾー型、l・ワイマン・グリーン型、マツ
ハツエンダ−型など、他の干渉計でも本発明を適用でき
る。
Although FIG. 1 is explained using a Michelson type interferometer, the present invention can also be applied to other interferometers such as a Fizeau type, L. Weiman-Green type, and Matsuhatsu-Ender type.

また、第11図のグラフは第12図に示すように真中で
折り返すと、干渉測定動作時に注入電流の増加、減少を
1ないし複数周期行う必要がある場合などに、千−ドホ
ッピングが生じない温度、注入電流の条件を見つけるの
に便利である。このような処理は、測定結平をプリンタ
などによりグラフ形式で出力する場合に有効である。
In addition, if the graph in Figure 11 is folded in the middle as shown in Figure 12, thousand-degree hopping will not occur, such as when it is necessary to increase or decrease the injected current for one or more cycles during interference measurement operation. This is convenient for finding the conditions of temperature and injection current. Such processing is effective when outputting the measurement results in a graph format using a printer or the like.

なお、第5図に示す精麦化信号波形の一次微分をとる方
法は、アナログの微分回路で行うことも可能である。
Note that the method of taking the first-order differential of the refined signal waveform shown in FIG. 5 can also be performed using an analog differentiator circuit.

さらに、ビームスプリッタ5にはキューブビームスプリ
ッタ、ウェッジ付ハーフミラ−などを用いる。72おフ
ィゾー型干渉計を適用する場合には偏光ビームスプリッ
タも用いることができる。
Further, as the beam splitter 5, a cube beam splitter, a wedged half mirror, or the like is used. A polarizing beam splitter can also be used when a .72 or Fizeau interferometer is applied.

[発明の効果] 以上から明らかなように、大発明によれば、半導体レー
ザ素子の発振波長特性な測定する半導体レーザの特性測
定方法および装置において、駆動時の注入電流および温
度条件を所望に制御可能な半導体レーザ素子のレーザ光
を干渉計に導入し干渉縞を形成し、半導体1か−・ザ累
Tの温度を所定値に制御した」二で半導体レーザ素子の
注入電流を変化させ、干渉計により形成された干渉縞の
強度分布の時間変化を検出して得られた波形の急激な位
相不連続点を検出することにより前記半導体tz −ザ
素子の所定温度条件における注入電流に依存する発振波
長特性を測定する構成を採用しているので、装置の構成
が簡単安価かつ小型軽量で済み、短時間で確実に発振波
長特性を検出することができる。また、半導体レーザ素
子を光源として用いる干渉計に本発明を実施する場合に
は干渉計そのもののハードウェアを利用できるため、装
置に新たjイ測定系を追加する必要がないなどの優ねた
利点がある。
[Effects of the Invention] As is clear from the above, according to the great invention, in a semiconductor laser characteristic measuring method and apparatus for measuring the oscillation wavelength characteristics of a semiconductor laser element, injection current and temperature conditions during driving can be controlled as desired. The laser light from the semiconductor laser device was introduced into the interferometer to form interference fringes, and the temperature of the semiconductors 1 and 2 was controlled to a predetermined value. By detecting the sharp phase discontinuity point of the waveform obtained by detecting the time change in the intensity distribution of the interference fringes formed by the oscillation that depends on the injected current of the semiconductor tz-the element at a predetermined temperature condition. Since the configuration for measuring wavelength characteristics is adopted, the configuration of the device is simple, inexpensive, small and lightweight, and the oscillation wavelength characteristics can be reliably detected in a short time. In addition, when implementing the present invention in an interferometer that uses a semiconductor laser element as a light source, the hardware of the interferometer itself can be used, so there are advantages such as no need to add a new measurement system to the device. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を採用1ノた干渉計の構造を示したブロ
ック図、第2図は第1図の装置jに7おりる干渉縞の特
性を示した波形図、第3図はLD素子の千−ドホッピン
グを示した線図、第4図は千−ドホッピングがある場合
の干渉縞の特性を示した波形図、第5図は第4図の波形
の一次微分波形を示し7?−波形図、第6図はLD素子
の千−ドホッピングを示した線図、第7図は+、D素子
の特性測定時の注入電流を示した線図、第8図は第7図
の駆動特性により得らJ]る精麦化信号の波形図、第9
図は第8図の波形の一次微分波形を示した波形図、第1
0図は第9図から検出されるモー・ドホッピング点を示
した説明図、第11図は温度条イ!1を変更して得られ
、るモードホッピノグ点をブロツトシた説明図、第12
図は第11図を中央で折り返して1がだ千−ドホッピン
グの説明図、第13図は本発明における測定制御手頃を
示したフローチャー 1−図であ3〕。 l  ・・・ !、 D 駆 勤 回 足各     
  2 ・・・ 、へ TM3・・・LD素子    
4・・・コリメートレンズ5・・・ビームスプリッタ
Figure 1 is a block diagram showing the structure of an interferometer that adopts the present invention, Figure 2 is a waveform diagram showing the characteristics of the interference fringes in the device j in Figure 1, and Figure 3 is an LD. A diagram showing thousand-day hopping of the element, FIG. 4 is a waveform diagram showing the characteristics of interference fringes when there is thousand-day hopping, and FIG. 5 shows the first-order differential waveform of the waveform in FIG. 4. ? - waveform diagram, Figure 6 is a diagram showing the thousand-degree hopping of the LD element, Figure 7 is a diagram showing the injection current when measuring the characteristics of + and D elements, and Figure 8 is the diagram of Figure 7. Waveform diagram of the wheat refining signal obtained from the drive characteristics, No. 9
The figure is a waveform diagram showing the first-order differential waveform of the waveform in Figure 8.
Figure 0 is an explanatory diagram showing the mode hopping points detected from Figure 9, and Figure 11 is an explanatory diagram showing the mode hopping points detected from Figure 9. Explanatory diagram showing the mode hoppinog points obtained by changing 1, 12th
The figure is an explanatory diagram of 1-1,000-degree hopping by folding back FIG. 11 at the center, and FIG. 13 is a flowchart illustrating the measurement control procedure in the present invention. l...! , D drive shift each foot
2..., to TM3...LD element
4...Collimating lens 5...Beam splitter

Claims (1)

【特許請求の範囲】 (1)半導体レーザ素子の発振波長特性を測定する半導
体レーザの特性測定方法において、駆動時の注入電流お
よび温度条件を所望に制御可能な半導体レーザ素子のレ
ーザ光を干渉計に導入し干渉縞を形成し、半導体レーザ
素子の温度を所定値に制御した上で半導体レーザ素子の
注入電流を変化させ、干渉計により形成された干渉縞の
強度分布の時間変化を検出して得られた波形の急激な位
相不連続点を検出することにより前記半導体レーザ素子
の所定温度条件における注入電流に依存する発振波長特
性を測定することを特徴とする半導体レーザの特性測定
方法。 (2)発振波長特性測定時の温度条件を変更し、複数の
温度条件における半導体レーザ素子の発振波長特性を測
定することを特徴とする特許請求の範囲第1項に記載の
半導体レーザの特性測定方法(3)半導体レーザ素子の
発振波長特性を測定する半導体レーザの特性測定装置に
おいて、 半導体レーザ素子の駆動時の注入電流を所望の値に制御
する手段と、 半導体レーザ素子の温度を所望の値に制御する手段と、 半導体レーザ素子のレーザ光を導入しレーザ光の波長に
応じた干渉縞を形成する干渉計と、 この干渉計により形成された干渉縞の強度分布を測定す
る手段と、 前記温度制御手段により半導体レーザ素子の温度を所定
値に制御し前記注入電流制御手段により半導体レーザ素
子の注入電流を変化させ、前記測定手段により測定され
た干渉縞の強度分布の時間変化を検出して得られた波形
の急激な位相不連続点を検出することにより前記半導体
レーザ素子の所定温度条件における注入電流に依存する
発振波長特性を測定する測定制御手段を設けたことを特
徴とする半導体レーザの特性測定装置。 (4)前記温度制御手段により発振波長特性測定時の温
度条件を変更し、複数の温度条件における半導体レーザ
素子の発振波長特性を測定することを特徴とする特許請
求の範囲第3項に記載の半導体レーザの特性測定装置。
[Scope of Claims] (1) In a semiconductor laser characteristic measurement method for measuring the oscillation wavelength characteristics of a semiconductor laser device, a laser beam of a semiconductor laser device whose injection current and temperature conditions during driving can be controlled as desired is measured using an interferometer. After controlling the temperature of the semiconductor laser element to a predetermined value, the injection current of the semiconductor laser element is changed, and the time change in the intensity distribution of the interference fringes formed by the interferometer is detected. A method for measuring characteristics of a semiconductor laser, comprising: measuring an oscillation wavelength characteristic depending on an injected current of the semiconductor laser element under a predetermined temperature condition by detecting an abrupt phase discontinuity point in the obtained waveform. (2) Semiconductor laser characteristic measurement according to claim 1, characterized in that the temperature conditions during measurement of the oscillation wavelength characteristics are changed and the oscillation wavelength characteristics of the semiconductor laser element are measured under a plurality of temperature conditions. Method (3) A semiconductor laser characteristic measuring device for measuring the oscillation wavelength characteristics of a semiconductor laser device, comprising means for controlling the injection current during driving of the semiconductor laser device to a desired value, and controlling the temperature of the semiconductor laser device to a desired value. an interferometer that introduces laser light from a semiconductor laser element and forms interference fringes according to the wavelength of the laser light; and means that measures the intensity distribution of the interference fringes formed by the interferometer; The temperature control means controls the temperature of the semiconductor laser element to a predetermined value, the injection current control means changes the injection current of the semiconductor laser element, and the measurement means detects a time change in the intensity distribution of the interference fringes. A semiconductor laser characterized in that it is provided with a measurement control means for measuring an oscillation wavelength characteristic depending on the injection current under a predetermined temperature condition of the semiconductor laser element by detecting an abrupt phase discontinuity point of the obtained waveform. Characteristic measuring device. (4) The temperature control means changes the temperature conditions when measuring the oscillation wavelength characteristics, and the oscillation wavelength characteristics of the semiconductor laser element under a plurality of temperature conditions are measured. Semiconductor laser characteristic measurement device.
JP63154816A 1988-06-24 1988-06-24 Characteristic measurement of semiconductor laser and device therefor Pending JPH025587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154816A JPH025587A (en) 1988-06-24 1988-06-24 Characteristic measurement of semiconductor laser and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154816A JPH025587A (en) 1988-06-24 1988-06-24 Characteristic measurement of semiconductor laser and device therefor

Publications (1)

Publication Number Publication Date
JPH025587A true JPH025587A (en) 1990-01-10

Family

ID=15592504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154816A Pending JPH025587A (en) 1988-06-24 1988-06-24 Characteristic measurement of semiconductor laser and device therefor

Country Status (1)

Country Link
JP (1) JPH025587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036706A1 (en) * 2002-10-15 2004-04-29 New Focus, Inc. Systeme and method of detecting mode jumps of tunable lasers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187562U (en) * 1986-05-20 1987-11-28
JPS63181426U (en) * 1987-05-11 1988-11-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187562U (en) * 1986-05-20 1987-11-28
JPS63181426U (en) * 1987-05-11 1988-11-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036706A1 (en) * 2002-10-15 2004-04-29 New Focus, Inc. Systeme and method of detecting mode jumps of tunable lasers

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
JP2810956B2 (en) Absolute interference measurement method
JP5550384B2 (en) Lightwave interference measuring device
EP0193742B1 (en) Wavelength scanning interferometry and interferometer employing laser diode
JP5511163B2 (en) Distance measuring method and apparatus by light wave interference
JPH10339668A (en) Light wavemeter and light wavelength regulator
JP2013181780A (en) Measuring instrument and method for manufacturing article
JPH0460464A (en) Narrow spectrum short pulse light source apparatus and voltage detector
JP2554363B2 (en) Optical interferometer
JP2002333371A (en) Wavemeter
JP3003801B2 (en) Interferometry
JPH0222502A (en) Optical interference measuring instrument
JPH025587A (en) Characteristic measurement of semiconductor laser and device therefor
US5600442A (en) Position detecting apparatus based on before and after mode-hop signals
JP2012184967A (en) Wavelength scanning interferometer
JPH11160065A (en) Optical wave distance measuring instrument
JPH0222529A (en) Method and device for measuring characteristics of semiconductor laser
US6538746B1 (en) Method and device for measuring absolute interferometric length
JPH0219701A (en) Light interference measuring instrument
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JPH01210804A (en) Spacing measuring method
JP2000356509A (en) Length measuring instrument and length measurement correction device
JP2014173900A (en) Measuring device
US8830480B2 (en) Measurement apparatus
JPH06129811A (en) Displacement correcting method for laser length measuring instrument