JPH06129811A - Displacement correcting method for laser length measuring instrument - Google Patents

Displacement correcting method for laser length measuring instrument

Info

Publication number
JPH06129811A
JPH06129811A JP4276077A JP27607792A JPH06129811A JP H06129811 A JPH06129811 A JP H06129811A JP 4276077 A JP4276077 A JP 4276077A JP 27607792 A JP27607792 A JP 27607792A JP H06129811 A JPH06129811 A JP H06129811A
Authority
JP
Japan
Prior art keywords
time
difference
light source
frequency
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4276077A
Other languages
Japanese (ja)
Inventor
Hideo Hirukawa
英男 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4276077A priority Critical patent/JPH06129811A/en
Publication of JPH06129811A publication Critical patent/JPH06129811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a displacement correcting method, for a laser length measuring instrument, capable of reducing any error caused when measuring a light path difference. CONSTITUTION:In a laser length measuring instrument utilizing a Michelson type interferometer for which a wavelength variable light source or a frequency variable light source is used, the wavelength or frequency of a light source is modified by producing a difference between the time required for continuously and monotonously increasing or decreasing the wavelength or frequency of the light source and the time thereafter required for continuously and monotonously increasing or decreasing the same, and then the differential quantities of the interference degree being generated within respective periods of time are measured. By utilizing such an event that under the measured errors generated condition of a constant dispacement rate withing both measurement periods of time are proportional to respective variation periods of time, the dispacement quantity is found out from the difference between both interference degrees and the time differences. Subsequently, the light path length difference between both reflection mirrors in Michelson type interometer can be corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光源の波長または周波
数を変調して、マイケルソン形干渉計における両反射鏡
間の光路長差を求める測長方式(FM測長方式)に関
し、特に変調の一周期中におきる測定対称の移動によっ
て生じる誤差を低減する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a length measuring system (FM length measuring system) for obtaining a difference in optical path length between two reflecting mirrors in a Michelson interferometer by modulating a wavelength or a frequency of a light source. The present invention relates to a method for reducing an error caused by movement of measurement symmetry that occurs during one cycle of.

【0002】[0002]

【従来の技術】従来、光源の波長(または周波数)を変
調して、マイケルソン形干渉計における両反射鏡間の光
路長差を求める場合、変調の一周期内の周波数増加過程
または減少過程の一方、ないしは、それぞれの過程にお
ける周波数変化量と、周波数変化に対して生じる干渉次
数の変化量とから光路長差を求めていた。これは次式で
表すことができる。 L=ΔM・(C/Δυ) ─(1) ただし、 L:光路長差 Δυ:光源の周波数変化量 C:光速 ΔM:干渉次数変化量 である。
2. Description of the Related Art Conventionally, when a wavelength (or frequency) of a light source is modulated to obtain a difference in optical path length between both reflecting mirrors in a Michelson interferometer, a frequency increasing process or a frequency decreasing process within one period of modulation is performed. On the other hand, or, the optical path length difference is obtained from the frequency change amount in each process and the change amount of the interference order caused by the frequency change. This can be expressed by the following equation. L = ΔM · (C / Δυ) ─────── (1) where, L: Optical path length difference Δυ: Light source frequency change amount C: Light speed ΔM: Interference order change amount.

【0003】しかしながら、周波数を変化させている間
に、光路長差が変化する(測定対象に変位が生じる)
と、測長誤差が光路長差変化量のυ/Δυ倍(υは変化
開始時の周波数)生じることになる。これは、周波数変
化開始時の光路長差をL、周波数をυ、干渉次数をM、
また、周波数変化終了時の光路長差をL+ΔL、周波数
をυ+Δυ、干渉次数をM+ΔMとすると、 L=M・C/υ ─(2) L+ΔL=(M+ΔM)・C/(υ+Δυ) ─(3) より、 ΔM=(L+ΔL)・(Δυ/C)+ΔL・(υ/C) ─(4) したがって、 L+ΔL=ΔM・C/Δυ−ΔL・υ/Δυ ─(5) となる。つまり、上記(5) 式の右辺第2項目が誤差とな
る。現在、半導体レーザを用いた場合、Δυ/υは1/
100〜1/1000であるので、測長誤差は100倍
ないしは1000倍となり、サブミクロンの精度を出す
ことは困難である。
However, while changing the frequency, the optical path length difference changes (displacement occurs in the measuring object).
Then, a measurement error occurs by υ / Δυ times the optical path length difference change amount (υ is the frequency at the start of change). This is because the optical path length difference at the start of frequency change is L, the frequency is υ, the interference order is M,
If the optical path length difference at the end of frequency change is L + ΔL, the frequency is υ + Δυ, and the interference order is M + ΔM, then L = M · C / υ ─ (2) L + ΔL = (M + ΔM) ・ C / (υ + Δυ) ─ (3) Therefore, ΔM = (L + ΔL) · (Δυ / C) + ΔL · (υ / C) (4) Therefore, L + ΔL = ΔM · C / Δυ−ΔL · υ / Δυ ─ (5). That is, the second item on the right side of the above equation (5) is an error. Currently, when using a semiconductor laser, Δυ / υ is 1 /
Since it is 100 to 1/1000, the length measurement error becomes 100 to 1000 times, and it is difficult to obtain submicron accuracy.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題を踏まえてなされたものであり、光源の周波数
変調において、隣合う周期の周波数変化速度を交互に変
えて変調することにより、両時間差内に移動する距離だ
け交互の周期間で異なる誤差を発生させ、変化に要する
時間の差から光路長差の変化速度を求めることにより、
光路長差測定に生じる誤差を低減できるレーザ測長器の
変位量補正方法を提供することを目的としたものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. In the frequency modulation of the light source, the frequency change speeds of adjacent periods are alternately changed to perform modulation. By generating different errors between alternate cycles by the distance moved within both time differences, and obtaining the change speed of the optical path length difference from the difference in time required for change,
An object of the present invention is to provide a method for correcting a displacement amount of a laser length measuring device, which can reduce an error caused in measuring an optical path length difference.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、波長可変光源あるいは周波数可変光源を用
いたマイケルソン形の干渉計を利用したレーザ測長器に
おいて、前記光源の波長あるいは周波数を連続かつ単調
に増加ないしは減少させる時間と、その後の連続かつ単
調に増加ないしは減少させる時間とに差を持たせて変調
し、それぞれの時間内に生じる干渉次数の変化量を測定
し、両測定時間内で変位速度が一定とした場合に生じる
測長誤差が各変化時間に比例することを利用して、両干
渉次数の変化量の差と時間の差とから変位量を求め、前
記マイケルソン形の干渉計の両反射鏡間の光路長差に補
正をかけるようにしたことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention for solving the above-mentioned problems provides a laser length measuring device using a Michelson type interferometer using a wavelength tunable light source or a frequency tunable light source. The frequency is continuously and monotonically increased or decreased, and the subsequent time is continuously and monotonically increased or decreased.The frequency is modulated with a difference, and the amount of change in the interference order occurring in each time is measured. By utilizing the fact that the measurement error that occurs when the displacement velocity is constant within the measurement time is proportional to each change time, the displacement amount is obtained from the difference between the change amounts of both interference orders and the time difference. It is characterized in that the optical path length difference between both reflecting mirrors of the Son-type interferometer is corrected.

【0006】[0006]

【作用】本発明によると、光源の周波数変調において、
隣合う周期の周波数変化速度を交互に変えて変調するこ
とにより、両時間差内に移動する距離だけ交互の周期間
で異なる誤差を発生させ、変化に要する時間の差から光
路長差の変化速度を求めることができるので、光路長差
測定に生じる誤差を低減することができる。
According to the present invention, in the frequency modulation of the light source,
By changing the frequency change speed of adjacent cycles alternately and modulating, the error which is different between the cycles by the distance moved within both time differences is generated, and the change speed of the optical path length difference is calculated from the difference in the time required for the change. Since it can be obtained, the error that occurs in the optical path length difference measurement can be reduced.

【0007】[0007]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の変位量補正方法を実施するための波長可変
レーザダイオード(以下、単にLDという)を用いたレ
ーザ測長器の装置構成図である。図1において、1は波
長可変LDであり、駆動電流回路2からの定電流を波長
可変LD1の活性域に、また、同調電流回路3からのノ
コギリ波状の同調電流を波長可変LD1の回折格子部に
それぞれ流すことにより、連続して変化する波長を繰返
し発生することができる。4はペルチェ素子であり、波
長可変LD1を加熱または冷却することができる。5は
温度検出部であり、波長可変LD1の温度を測定し、温
度調節計6を介してペルチェ素子4へフィ−ドバックし
て、波長可変LD1の温度を一定に保つようにしてい
る。7はコリメ−タレンズであり、波長可変LD1の出
射光がコリメ−トされ平行光とされる。8はアイソレ−
タであり、後述の干渉計からの反射光が波長可変LD1
に戻って、発振が不安定になるのを防いでいる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a device configuration diagram of a laser length measuring device using a wavelength tunable laser diode (hereinafter, simply referred to as an LD) for carrying out the displacement amount correcting method of the present invention. In FIG. 1, reference numeral 1 denotes a tunable LD, in which a constant current from a drive current circuit 2 is used as an active region of the tunable LD 1 and a sawtooth-shaped tuning current from a tuning current circuit 3 is used as a diffraction grating portion of the tunable LD 1. The wavelengths that continuously change can be repetitively generated by each of these. A Peltier element 4 can heat or cool the variable wavelength LD 1. A temperature detector 5 measures the temperature of the variable wavelength LD 1 and feeds it back to the Peltier element 4 via the temperature controller 6 to keep the temperature of the variable wavelength LD 1 constant. Reference numeral 7 denotes a collimator lens, which collimates the light emitted from the wavelength tunable LD 1 to form parallel light. 8 is an isolation
And the reflected light from the interferometer described later is tunable LD1.
To prevent the oscillation from becoming unstable.

【0008】アイソレ−タ8を通った光は、ハ−フミラ
−9で2つに分岐される。反射光はエタロン10に導か
れる。波長可変LD1の波長が変化した場合に、エタロ
ン10の光路長で定まる特定の波長毎に光がエタロン1
0を透過するので、その透過光を集光レンズ11で集光
して、光検出器12で検出し、アンプ13で電圧信号に
変換する。14はピーク検出器で、アンプ13のエタロ
ン透過光信号のピークを検出して、タイマ15にトリガ
をかける。またピーク検出器14の出力をピークカウン
タ16で積算して、波長可変LD1の周波数変化量を求
める。
The light that has passed through the isolator 8 is split into two by a half mirror 9. The reflected light is guided to the etalon 10. When the wavelength of the tunable LD 1 changes, light is emitted by the etalon 1 for each specific wavelength determined by the optical path length of the etalon 10.
Since 0 is transmitted, the transmitted light is condensed by the condenser lens 11, detected by the photodetector 12, and converted into a voltage signal by the amplifier 13. A peak detector 14 detects the peak of the etalon transmitted light signal of the amplifier 13 and triggers the timer 15. The output of the peak detector 14 is integrated by the peak counter 16 to obtain the frequency change amount of the variable wavelength LD 1.

【0009】一方、ハ−フミラ−9の透過光は、ハ−フ
ミラ−17で更に2つに分岐される。反射光は光学系内
でその位置を固定した直角プリズム18で反射させて干
渉計の参照光となる。ハ−フミラ−17の透過光は位置
の測定対象である直角プリズム19で反射させて干渉計
の被験光となる。直角プリズム18,19からの参照光
及び被験光はハ−フミラ−17で合波されて干渉信号と
なり、集光レンズ20で集光して、光検出器21で検出
され、アンプ22で電圧信号に変換される。電圧信号の
位相を位相検出器23で検出して、位相積算器24で位
相変化量を求める。タイマ15,ピークカウンタ16お
よび位相積算器24の出力は、図示しない信号処理装置
において距離および速度に変換される。
On the other hand, the transmitted light of the harmylar-9 is further branched into two by the harmylar-17. The reflected light is reflected by the rectangular prism 18 whose position is fixed in the optical system, and becomes the reference light of the interferometer. The transmitted light from the half mirror 17 is reflected by the rectangular prism 19 whose position is to be measured and becomes the test light for the interferometer. The reference light and the test light from the right-angle prisms 18 and 19 are combined by the half mirror 17 to form an interference signal, which is condensed by the condenser lens 20, detected by the photodetector 21, and detected by the amplifier 22 as a voltage signal. Is converted to. The phase of the voltage signal is detected by the phase detector 23, and the phase integrator 24 determines the phase change amount. The outputs of the timer 15, the peak counter 16 and the phase integrator 24 are converted into distance and velocity in a signal processing device (not shown).

【0010】ここで、図2は図1装置において、直角プ
リズム19を一定の速度で変位させた場合に得られる光
路長差,各電気信号および光の周波数を示している。
(イ)図は直角プリズム19の位置に対応した干渉計の
光路長差を示し、光路長差は一定の速度で変化すると仮
定する。(ロ)図は同調電流回路3から波長可変LD1
に流す同調電流と同じ変化をする電圧信号であり、ノコ
ギリ波状を呈している。(ハ)図は波長可変LD1の出
射光の波長変化の様子を示す。(ニ)図はアンプ13で
得られるエタロン透過光信号である。エタロンは自身の
光路長で決まる一定のFSR(Free Spectral Range )
毎の光の波長(あるいは周波数)に対して透過率が高く
なり、図中、下に伸びたピ−クの間隔がその波長(ある
いは周波数)を示している。ただし、図では装置の回路
の特性上、マイナス側が透過光の存在を表している。
(ホ)図はアンプ22で得られる干渉計の出力信号であ
る。ただし、図では装置の回路の特性上、マイナス側が
干渉信号の出ていることを示している。なお、図3に示
すように、同調電流回路3の同調電流によって波長可変
LD1の出射パワ−が変化するため、干渉信号の振幅は
変調される。
Here, FIG. 2 shows the optical path length difference, each electric signal and the frequency of light obtained when the rectangular prism 19 is displaced at a constant speed in the apparatus of FIG.
(A) The figure shows the optical path length difference of the interferometer corresponding to the position of the rectangular prism 19, and it is assumed that the optical path length difference changes at a constant speed. (B) The figure shows the tuning current circuit 3 to the tunable LD1.
It is a voltage signal that changes in the same way as the tuning current that flows in, and has a sawtooth waveform. The figure (c) shows how the wavelength of the emitted light of the variable wavelength LD 1 changes. (D) The figure shows an etalon transmitted light signal obtained by the amplifier 13. Etalon is a fixed FSR (Free Spectral Range) determined by its optical path length
The transmittance becomes higher with respect to the wavelength (or frequency) of each light, and the interval between the peaks extending downward in the figure indicates the wavelength (or frequency). However, in the figure, the negative side represents the presence of transmitted light due to the characteristics of the circuit of the device.
(E) The figure shows the output signal of the interferometer obtained by the amplifier 22. However, in the figure, due to the characteristics of the circuit of the device, the minus side indicates that an interference signal is output. As shown in FIG. 3, the tuning power of the tuning current circuit 3 changes the output power of the wavelength tunable LD 1, so that the amplitude of the interference signal is modulated.

【0011】このような構成において、図4に示す信号
処理のフローチャートを用いて、以下に本発明のレーザ
測長器の変位量補正方法を説明する。まず、図2(ロ)
のA点において、同調電流を零にする。そしてピークカ
ウンタ16(1)をリセットする。次に同調電流を時間
当たりの変化量dI/dt=aにて、最大となる(ロ)
図のB点まで増加させる。
In such a configuration, the method of correcting the displacement amount of the laser length measuring machine according to the present invention will be described below with reference to the signal processing flowchart shown in FIG. First, Figure 2 (b)
At point A, the tuning current is made zero. Then, the peak counter 16 (1) is reset. Next, the tuning current becomes maximum when the amount of change per unit time dI / dt = a (b).
Increase to point B in the figure.

【0012】ここで、同調電流が最大値に達するまで、
エタロン透過光量のピークを求める。もし検出したピー
クが最初のものであれば、タイマ15と位相積算器24
をリセットする。2番目以降のピークであれば、その都
度、タイマ15の値をt1 として、また位相積算器24
の値を区間ABにおける位相積算値Mabとして書き換え
る。またピークカウンタ16(1)の値を1だけ増加さ
せる。
Here, until the tuning current reaches the maximum value,
Find the peak of the transmitted light amount of the etalon. If the detected peak is the first one, timer 15 and phase integrator 24
To reset. If it is the second and subsequent peaks, the value of the timer 15 is set to t 1 each time, and the phase integrator 24
Is rewritten as the phase integrated value Mab in the section AB. Further, the value of the peak counter 16 (1) is incremented by 1.

【0013】同調電流が最大値に達した際には、最後に
ピークの検出された時点での、時刻t1 、ピーク数、位
相積算値Mabが記録されている。ピーク数にエタロンの
FSRを掛けて、周波数変化量Δυを求める。
When the tuning current reaches the maximum value, the time t 1 , the number of peaks, and the phase integrated value Mab at the time when the peak is finally detected are recorded. The number of peaks is multiplied by the FSR of the etalon to obtain the frequency change amount Δυ.

【0014】次に、同調電流を零に戻す。(ロ)図のC
点まで達したら、ピークカウンタ16(2)をリセット
する。次に同調電流を時間当たりの変化量dI/dt=
cにて、最大となる(ロ)図のD点まで増加させる。
Next, the tuning current is returned to zero. (B) C in the figure
When the point is reached, the peak counter 16 (2) is reset. Next, change amount of tuning current per time dI / dt =
At c, the maximum value is increased to point D in (b).

【0015】ここで、同調電流が最大値に達するまで、
エタロン透過光量のピークを求める。もし検出したピー
クが最初のものであれば、位相積算器24をリセット
し、タイマ15の値をt2 とする。2番目以降のピーク
であれば、その都度、タイマ15の値をt3 として、ま
た位相積算器24の値を区間CDにおける位相積算値M
cdとして書き換える。またピークカウンタ16(2)の
値を1だけ増加させる。
Here, until the tuning current reaches the maximum value,
Find the peak of the transmitted light amount of the etalon. If the detected pea
If it is the first one, reset the phase integrator 24
The value of timer 15 to t2And Second and subsequent peaks
If so, the value of the timer 15 is changed to t each time.3As
The value of the phase integrator 24 is set to the phase integrated value M in the section CD.
cdRewrite as In addition, the peak counter 16 (2)
Increase the value by 1.

【0016】同調電流が最大値に達した際には、最後に
ピークの検出された時点での、時刻t3 、ピーク数、位
相積算値Mcdが記録されている。ピーク数にエタロンの
FSRを掛けて、周波数変化量Δυを求める。なお、こ
こでは説明を簡単にするために、区間ABと区間CDに
おいて周波数変化量Δυは同じとする。以上の過程で得
られた値から距離と速度を計算し、同調電流を零に戻
す。
When the tuning current reaches the maximum value, the time t 3 , the number of peaks, and the integrated phase value M cd at the time when the peak is finally detected are recorded. The number of peaks is multiplied by the FSR of the etalon to obtain the frequency change amount Δυ. In addition, here, in order to simplify the description, it is assumed that the frequency change amount Δυ is the same in the section AB and the section CD. Distance and velocity are calculated from the values obtained in the above process, and the tuning current is returned to zero.

【0017】次に、距離および速度の算出式について以
下に説明する。まず、両区間において、最初と最後のピ
ークが検出された時刻t0 (=0)、t1 、t2 、t3
から、最初と最後のピークが検出される間の時間を T1 =t1 −t0 ─(6) T2 =t2 −t1 ─(7) T3 =t3 −t2 ─(8) とする。
Next, the formulas for calculating the distance and velocity will be described below. First, in both sections, the times t 0 (= 0), t 1 , t 2 , and t 3 at which the first and last peaks were detected.
Therefore, the time between the detection of the first and last peaks is T 1 = t 1 −t 0 ─ (6) T 2 = t 2 −t 1 ─ (7) T 3 = t 3 −t 2 ─ (8 ).

【0018】ここで、時刻t0 における距離をL0 、干
渉次数をM0 、光速をCとすると、 L0 =M0 ・C/υ ─(9) と表せる。
Here, assuming that the distance at time t 0 is L 0 , the interference order is M 0 , and the speed of light is C, it can be expressed as L 0 = M 0 .C / υ ─ (9).

【0019】次に、時刻t1 における距離をL1 、干渉
次数をM1 とすると、 L1 =M1 ・C/(υ+Δυ) ─(10) と表せる。区間ABにおいて得られた位相積算値は、 Mab=M1 −M0 ─(11) であるから、上記(9) 式および(10)式から、 Mab=L1 ・(υ+Δυ)/C−L0 ・υ/C =L1 ・Δυ/C+(L1 −L0 )・υ/C =L1 ・Δυ/C+V・T1 ・υ/C ─(12) ただし、Vは光路長差の変化速度とする。
Next, assuming that the distance at time t 1 is L 1 and the interference order is M 1 , it can be expressed as L 1 = M 1 · C / (υ + Δυ)-(10). Since the phase integrated value obtained in the section AB is M ab = M 1 −M 0 ─ (11), from the above formulas (9) and (10), M ab = L 1 · (υ + Δυ) / C -L 0 · υ / C = L 1 · Δυ / C + (L 1 −L 0 ) · υ / C = L 1 · Δυ / C + V · T 1 · υ / C ─ (12) where V is the optical path length difference Change speed of.

【0020】同様にして、時刻t2 における距離をL
2 、干渉次数をM2 とすると、 L2 =M2 ・C/υ ─(13) と表せる。
Similarly, the distance at time t 2 is L
2 and the interference order is M 2 , it can be expressed as L 2 = M 2 · C / υ ─ (13).

【0021】次に、時刻t3 における距離をL3 、干渉
次数をM3 とすると、 L3 =M3 ・C/(υ+Δυ) ─(14) と表せる。区間CDにおいて得られた位相積算値は、 Mcd=M3 −M2 ─(15) であるから、上記(13)式および(14)式から、 Mcd=L3 ・(υ+Δυ)/C−L2 ・υ/C =L3 ・Δυ/C+(L3 −L2 )・υ/C =L3 ・Δυ/C+V・T3 ・υ/C ─(16) となる。
Next, assuming that the distance at time t 3 is L 3 and the interference order is M 3 , it can be expressed as L 3 = M 3 · C / (υ + Δυ)-(14). Since the phase integrated value obtained in the section CD is M cd = M 3 −M 2 ─ (15), from the above equations (13) and (14), M cd = L 3 · (υ + Δυ) / C -L 2 · υ / C = L 3 · Δυ / C + (L 3 −L 2 ) · υ / C = L 3 · Δυ / C + V · T 3 · υ / C ─ (16)

【0022】上記(16)式−(12)式より、 Mcd−Mab=V・(T2 +T3 )・Δυ/C −V・(T3 −T1 )・υ/C (17) したがって、 V=(Mcd−Mab)・C/υ/{(T3 −T1 ) +(T2 +T3 )・Δυ/υ} ─(18) として、速度が求められる。From the above equation (16)-(12), M cd -M ab = V · (T 2 + T 3 ) · Δυ / C −V · (T 3 −T 1 ) · υ / C (17) Therefore, the velocity is calculated as V = (M cd -M ab ) · C / υ / {(T 3 −T 1 ) + (T 2 + T 3 ) · Δυ / υ} ─ (18).

【0023】この値を上記(16)式に代入することによっ
て、時刻t3 における距離が補正できる。つまり、 L3 =Mcd・C/Δυ−V・T3 ・υ/Δυ ─(19) として求められる。
By substituting this value into the above equation (16), the distance at time t 3 can be corrected. That is, L 3 = M cd · C / Δυ−V · T 3 · υ / Δυ (19).

【0024】以上が本発明のレーザ測長器の変位量補正
方法であるが、ここで、具体的な値を代入して、より詳
細に説明する。光路長差を100mm、光路長差の変化
速度を1mm/s、T1 を0.3ms、T2 を0.1m
s、T3 を0.6ms、波長が850nmから848n
mまで変化する間に、位相変化量が測定されるとする。
つまり、光速を3*108 m/sとして、 υ=3.529*1014Hz υ+Δυ=3.538*1014Hz Δυ=9*1011Hz である。上記(9) ,(10),(13),(14)式より干渉次数を求
めると、 M0 =117633.3333 M1 =117933.6871 M2 =117633.8039 M3 =117934.5127 したがって、位相変化量は、 Mab=300.3541 Mcd=300.7088 ゆえに、 Mcd−Mab=0.3547(0.3547*2π[rad]に相当) となる。
The above is the method of correcting the displacement amount of the laser length-measuring device of the present invention. Here, more detailed description will be given by substituting specific values. Optical path length difference is 100 mm, optical path length difference change speed is 1 mm / s, T 1 is 0.3 ms, T 2 is 0.1 m
s, T 3 of 0.6 ms, wavelength of 850 nm to 848 n
It is assumed that the phase change amount is measured while changing to m.
That is, when the speed of light is 3 * 10 8 m / s, υ = 3.529 * 10 14 Hz υ + Δυ = 3.538 * 10 14 Hz Δυ = 9 * 10 11 Hz. When the interference order is calculated from the above equations (9), (10), (13), and (14), M 0 = 117633.3333 M 1 = 1173933.6871 M 2 = 117633.8039 M 3 = 117934.5127 Therefore, Since the amount of phase change is M ab = 300.3411 M cd = 300.7088, it becomes M cd −M ab = 0.3547 (corresponding to 0.3547 * 2π [rad]).

【0025】以上の値から、上記(18)式より、速度は1
mm/sであることが求められる。誤差要因として、最
も大きいのは位相測定精度であるが、ε(Mcd−Mab
が1/50とすると、速度の測定誤差は、 ε(Mcd−Mab)・C/υ/(T3 −T1 )=0.0563mm/s となる。この速度誤差による変位量補正誤差は、 V・T3 ・υ/Δυ=0.0132mm となる。本方式による変位量補正を用いない場合には、
V=1mm/sであるから、0.235mmの誤差が加
わっていることになる。すなわち、誤差を 0.0132/0.235≒1/18 に低減することができる。
From the above values, the speed is 1 from the above equation (18).
It is required to be mm / s. The largest error factor is the phase measurement accuracy, but ε (M cd -M ab )
Is 1/50, the velocity measurement error is ε (M cd −M ab ) · C / υ / (T 3 −T 1 ) = 0.0563 mm / s. The displacement amount correction error due to this speed error is V · T 3 · υ / Δυ = 0.0132 mm. When the displacement amount correction by this method is not used,
Since V = 1 mm / s, an error of 0.235 mm is added. That is, the error can be reduced to 0.0132 / 0.235≈1 / 18.

【0026】なお、上記実施例において、光源の周波数
変化量を、エタロンの透過光量のピーク数を計数して求
める代わりに、光路長差の安定した干渉計の位相変化量
を測定して、距離測定を行う干渉計部から得られた位相
変化量との比を用いることによっても、同様の補正を行
うことができる。
In the above embodiment, instead of counting the peak number of the transmitted light amount of the etalon to obtain the frequency change amount of the light source, the phase change amount of the interferometer with a stable optical path length difference is measured to obtain the distance. The same correction can be performed by using the ratio with the phase change amount obtained from the interferometer unit that performs the measurement.

【0027】[0027]

【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、光源の周波数変調において、隣
合う周期の周波数変化速度を交互に変えて変調すること
により、両時間差内に移動する距離だけ交互の周期間で
異なる誤差を発生させ、変化に要する時間の差から光路
長差の変化速度を求めることができるので、光路長差測
定に生じる誤差を低減することができるレーザ測長器の
変位量補正方法を実現できる。
As described above in detail with reference to the embodiments, according to the present invention, in the frequency modulation of the light source, the frequency change speeds of the adjacent periods are alternately changed so that the time difference between the two periods is reduced. It is possible to reduce the error that occurs in the measurement of the optical path length difference because it is possible to generate the error that is different between the alternating distances by the distance moved by the distance and obtain the changing speed of the optical path length difference from the difference of the time required for the change. It is possible to realize a method for correcting the displacement amount of the length measuring device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の変位量補正方法を実施するための波長
可変レーザダイオードを用いたレーザ測長器の装置構成
図である。
FIG. 1 is an apparatus configuration diagram of a laser length measuring device using a wavelength tunable laser diode for carrying out a displacement amount correcting method of the present invention.

【図2】図1装置において直角プリズム19を一定の速
度で変位させた場合に得られる光路長差,各電気信号お
よび光の周波数を示す図である。
FIG. 2 is a diagram showing an optical path length difference, electric signals, and light frequencies obtained when the rectangular prism 19 is displaced at a constant speed in the apparatus shown in FIG.

【図3】波長可変LDにおける同調電流と波長及び出射
パワ−の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a tuning current and a wavelength and an emission power in the wavelength tunable LD.

【図4】本発明のレーザ測長器の変位量補正方法を示す
信号処理のフロ−チャ−トである。
FIG. 4 is a signal processing flowchart showing a displacement amount correction method for a laser length measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1 波長可変レ−ザダイオ−ド 2 駆動電流回路 3 同調電流回路 4 ペルチェ素子 5 温度検出部 6 温度調節計 7 コリメ−タレンズ 8 アイソレ−タ 9,17 ハ−フミラ− 10 エタロン 11,20 集光レンズ 12,21 光検出器 13,22 アンプ 14 ピーク検出器 15 タイマ 16 ピークカウンタ 18,19 直角プリズム 23 位相検出器 24 位相積算器 1 Wavelength tunable laser diode 2 Driving current circuit 3 Tuning current circuit 4 Peltier element 5 Temperature detector 6 Temperature controller 7 Collimator lens 8 Isolator 9,17 Half mirror 10 Etalon 11, 20 Focusing lens 12, 21 Photodetector 13, 22 Amplifier 14 Peak detector 15 Timer 16 Peak counter 18, 19 Right angle prism 23 Phase detector 24 Phase accumulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 波長可変光源あるいは周波数可変光源を
用いたマイケルソン形の干渉計を利用したレーザ測長器
において、 前記光源の波長あるいは周波数を連続かつ単調に増加な
いしは減少させる時間と、その後の連続かつ単調に増加
ないしは減少させる時間とに差を持たせて変調し、それ
ぞれの時間内に生じる干渉次数の変化量を測定し、両測
定時間内で変位速度が一定とした場合に生じる測長誤差
が各変化時間に比例することを利用して、両干渉次数の
変化量の差と時間の差とから変位量を求め、前記マイケ
ルソン形の干渉計の両反射鏡間の光路長差に補正をかけ
るようにしたことを特徴とするレーザ測長器の変位量補
正方法。
1. A laser length measuring device using a Michelson-type interferometer using a variable wavelength light source or a variable frequency light source, wherein a time for continuously or monotonously increasing or decreasing the wavelength or frequency of the light source, Modulation is performed with a difference between the time to continuously and monotonously increase or decrease, the change amount of the interference order that occurs within each time is measured, and the length measurement occurs when the displacement velocity is constant within both measurement times. Utilizing the fact that the error is proportional to each change time, the displacement amount is obtained from the difference between the change amounts of both interference orders and the time difference, and the optical path length difference between both reflecting mirrors of the Michelson interferometer is obtained. A method for correcting a displacement amount of a laser length measuring device, which is characterized in that correction is applied.
JP4276077A 1992-10-14 1992-10-14 Displacement correcting method for laser length measuring instrument Pending JPH06129811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4276077A JPH06129811A (en) 1992-10-14 1992-10-14 Displacement correcting method for laser length measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4276077A JPH06129811A (en) 1992-10-14 1992-10-14 Displacement correcting method for laser length measuring instrument

Publications (1)

Publication Number Publication Date
JPH06129811A true JPH06129811A (en) 1994-05-13

Family

ID=17564486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276077A Pending JPH06129811A (en) 1992-10-14 1992-10-14 Displacement correcting method for laser length measuring instrument

Country Status (1)

Country Link
JP (1) JPH06129811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832442A (en) * 1987-07-17 1989-05-23 United Ropeworks (U.S.A.) Inc. Method and apparatus for aerial installation of fiber optic cables
JP2012251828A (en) * 2011-06-01 2012-12-20 Canon Inc Wavelength scanning interferometer
CN110361099A (en) * 2019-07-17 2019-10-22 东北大学 A kind of spectral domain low-coherent light interference optical path difference demodulation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832442A (en) * 1987-07-17 1989-05-23 United Ropeworks (U.S.A.) Inc. Method and apparatus for aerial installation of fiber optic cables
JP2012251828A (en) * 2011-06-01 2012-12-20 Canon Inc Wavelength scanning interferometer
CN110361099A (en) * 2019-07-17 2019-10-22 东北大学 A kind of spectral domain low-coherent light interference optical path difference demodulation method
CN110361099B (en) * 2019-07-17 2020-08-25 东北大学 Spectral domain low-coherence light interference optical path difference demodulation method

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
EP0401799B1 (en) Length measuring apparatus
JP2810956B2 (en) Absolute interference measurement method
EP0193742B1 (en) Wavelength scanning interferometry and interferometer employing laser diode
JPH05327105A (en) Light source equipment of stabilized wavelength
JPH06129811A (en) Displacement correcting method for laser length measuring instrument
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JPH01205486A (en) Wavelength stabilizer of semiconductor laser
JP2764630B2 (en) Absolute length measuring instrument
JP2750460B2 (en) Triangular-wave modulated semiconductor laser device with linearized frequency change of output light
JP3419855B2 (en) Laser ranging method and signal processing circuit
JP3344637B2 (en) Optical interference type position measuring device
JP2687631B2 (en) Interference signal processing method of absolute length measuring device
JPH067099B2 (en) Gas sensor using tunable etalon
JP3516875B2 (en) Interferometer
JP2690041B2 (en) High precision stage
JPH026236B2 (en)
KR0128526B1 (en) Tunable laser stabilizing system and detector
JPH0652166B2 (en) Absolute length measuring machine
JP2002267536A (en) Wavelength measuring device
JP2002043685A (en) Frequency variable light source
JPH067100B2 (en) Gas concentration pressure detection method using tunable etalon
JPH04166703A (en) Disturbance-removing type absolute length measuring machine
JPH0198283A (en) Variable wavelength light source
JPH0295224A (en) Laser frequency meter