JPH0219701A - Light interference measuring instrument - Google Patents

Light interference measuring instrument

Info

Publication number
JPH0219701A
JPH0219701A JP63168915A JP16891588A JPH0219701A JP H0219701 A JPH0219701 A JP H0219701A JP 63168915 A JP63168915 A JP 63168915A JP 16891588 A JP16891588 A JP 16891588A JP H0219701 A JPH0219701 A JP H0219701A
Authority
JP
Japan
Prior art keywords
signal
light
optical path
frequency
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63168915A
Other languages
Japanese (ja)
Inventor
Masakazu Suematsu
末松 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP63168915A priority Critical patent/JPH0219701A/en
Publication of JPH0219701A publication Critical patent/JPH0219701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To exactly execute the length measurement by irradiating plural light reflecting means by a laser light, allowing its reflected light beam to interfere and forming an interference fringe. CONSTITUTION:A divergent light beam emitted from an LD element 3 is made incident on a beam splitter 5, and divided into two beams. A beam reflected by the beam splitter 5 is received by a light receiving element 7, a light intensity variation signal of a laser light source is obtained, and this signal 9 is inputted to a dividing circuit 17. On the other hand, a laser beam which has transmitted through the beam splitter 5 is led into an interferometer 19, and this laser beam is emitted in the direction being orthogonal to the incident direction. The laser beam which has been emitted from the interferometer 19 is received by a light receiving element 14, the signal is amplified by an amplifier 15, and a fringe variation signal 16 which is formed in accordance with prescribed optical path length of a fixed mirror 11 and a movable mirror 12 is obtained. Two signals which have been obtained in such a way are inputted to the circuit 17, the signal 16 is divided by the signal 9, and by inputting its output to a computer 18, an analysis of the signal is executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光干渉測定装置、特に半導体レーザを光源とし
て得られる干渉縞を観測して測長を行なう光干渉測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical interference measuring device, and particularly to an optical interference measuring device that measures length by observing interference fringes obtained using a semiconductor laser as a light source.

[従来の技術] 半導体レーザ(以下LDという)は、ガスレーザなどに
比べて装置の構成が簡単安価かつ小型軽量であり、光通
信、音響用、ないし映像用光ディスクなどの光源として
広く用いられている。また、光学干渉計用の光源への応
用も最近では盛んに研究されている。
[Prior Art] Semiconductor lasers (hereinafter referred to as LDs) are simpler, cheaper, smaller, and lighter in device configuration than gas lasers, etc., and are widely used as light sources for optical communication, audio, and video optical discs, etc. . In addition, applications to light sources for optical interferometers have recently been actively researched.

特に、2つの反射部材への光路長を干渉縞の観測を介し
て測定する干渉測長装置では、半導体レーザ素子の注入
電流あるいは素子温度に依存する発振波長特性を利用す
るものが知られている。
In particular, interferometric length measurement devices that measure the optical path length to two reflecting members through observation of interference fringes are known, which utilize the oscillation wavelength characteristics that depend on the injection current or device temperature of a semiconductor laser device. .

この種の装置では、半導体レーザの発振光を一定の光路
差を有する干渉計に入射して干渉縞を形成し、注入電流
または素子温度を制御して波長走査を行ない、これにと
もなう干渉縞の時間変化信号(以下縞変化信号という)
を検出し、この信号の位相変化量、あるいは周波数から
干渉計の光路差を求める方法である。
In this type of device, the oscillation light of a semiconductor laser is incident on an interferometer with a certain optical path difference to form interference fringes, and wavelength scanning is performed by controlling the injection current or element temperature. Time change signal (hereinafter referred to as fringe change signal)
is detected, and the optical path difference of the interferometer is determined from the amount of phase change or frequency of this signal.

[発明が解決しようとする課題〕 上記のような従来構造で得られる正弦波状の精麦化信号
の周期の数は少なすぎ、フリンジカウンティング法など
を用いる場合充分な測定精度を得るのが困難であった。
[Problem to be solved by the invention] The number of cycles of the sinusoidal milling signal obtained with the conventional structure as described above is too small, and it is difficult to obtain sufficient measurement accuracy when using a fringe counting method or the like. Ta.

また、上記構成において、波長走査は半導体レーザ素子
への注入電流を変化させることにより行なうが、注入電
流の変化により発振波長と共に出力光強度も変わってし
まうため、検出される精麦化信号は干渉縞の変化に関す
る情報を含むとともに光源の出力光の強度情報を含むも
のとなる。
In addition, in the above configuration, wavelength scanning is performed by changing the current injected into the semiconductor laser element, but since the output light intensity changes along with the oscillation wavelength due to the change in the injection current, the detected polishing signal does not reflect the interference pattern. It contains information regarding the change in the intensity of the light source, as well as information about the intensity of the output light from the light source.

たとえば、第5図に示すように半導体レーザ素子の注入
電流iを周期Tの3角波状に変化させた場合、干渉縞形
成面の1点において受光素子により光強度変化として得
られる精麦化信号は第6図のようになる。このように信
号の直流オフセット分が変化している場合には、一定の
ゼロレベルを想定できないから、ゼロ交叉法での周波数
測定は不可能である。また、直流オフセット分の除去の
ために電気的なフィルタを用いることも考えられるが、
その場合には信号位相のずれが生じたり、被測定信号の
周波数に合わせてフィルタのカットオフ周波数をたえず
調整しなければならないという問題があり、実用的でな
い。
For example, when the injection current i of the semiconductor laser device is changed in the form of a triangular wave with a period T as shown in FIG. It will look like Figure 6. When the DC offset of the signal changes in this way, it is impossible to assume a constant zero level, so frequency measurement using the zero-crossing method is impossible. It is also possible to use an electrical filter to remove the DC offset, but
In this case, there are problems in that a signal phase shift occurs and the cutoff frequency of the filter must be constantly adjusted in accordance with the frequency of the signal under test, which is not practical.

本発明の課題は以上の問題を解決し、半導体レーザ素子
を用いる干渉測長において波長走査にともなう光強度の
影響を補正し、また、位相変化測定をゼロ公文法による
周波数測定で行ない正確に測長を行なえるようにするこ
とである。
The object of the present invention is to solve the above problems, correct the influence of light intensity accompanying wavelength scanning in interferometric length measurement using a semiconductor laser element, and accurately measure phase change by performing frequency measurement using zero official law. It is to be able to carry out long-term care.

[課題を解決するための手段] 以上の課題を解決するために、本発明においては、半導
体レーザ素子が発生するレーザ光を複数の光反射手段に
照射し、これらの反射手段からの反射光を干渉させ干渉
縞を形成し、半導体レーザ素子の注入電流を周期的に変
化させてレーザ光の波長走査を行ない、レーザ光の波長
変化にともなう前記干渉縞の時間変化する干渉縞強度変
化信号の周波数を測定し、この周波数に基づき前記反射
手段間の光路差を測定する光干渉測定装置において、前
記レーザ光の光束の一部を分割する手段と、この分割手
段により分割された光束の強度の時間変化を測定する手
段と、この測定手段により得られた光強度変化信号によ
り前記干渉縞強度変化信号を除算する手段と、この除算
手段の出力信号の周波数をゼロ交叉間隔検出を介して測
定し測定された周波数に基づき前記光路差を演算する制
御手段を設けた構成を採用した。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a plurality of light reflecting means are irradiated with laser light generated by a semiconductor laser element, and the reflected light from these reflecting means is Interference is caused to form interference fringes, and the wavelength of the laser light is scanned by periodically changing the injection current of the semiconductor laser element, and the frequency of the interference fringe intensity change signal that changes with time of the interference fringes as the wavelength of the laser light changes. In an optical interference measurement device that measures the optical path difference between the reflecting means based on the frequency, the optical interference measuring device includes a means for dividing a part of the luminous flux of the laser beam, and a time of the intensity of the luminous flux divided by the dividing means. means for measuring the change in intensity; means for dividing the interference fringe intensity change signal by the light intensity change signal obtained by the measuring means; and measuring the frequency of the output signal of the dividing means through zero-crossing interval detection. A configuration is adopted in which a control means is provided for calculating the optical path difference based on the detected frequency.

[作 用] 以上の構成によれば、光路差演算の際、半導体レーザ素
子の波長走査にともなう光強度変化の影響を前記の除算
処理により補正できる。
[Function] According to the above configuration, when calculating an optical path difference, the influence of a change in light intensity due to wavelength scanning of a semiconductor laser element can be corrected by the above-mentioned division process.

[実施例] 以下、図面に示す実施例に基づき、本発明の詳細な説明
する。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図は本発明を採用した干渉測定装置の構成をボして
いる。
FIG. 1 shows the configuration of an interference measuring device employing the present invention.

第1図において、レーザ光源は単一縦モード発振のLD
素子3で、ATM (温度調節回路)2で温度制御を受
ける。ATM2はLD素子3の温度を所望の一定値に制
御する。制御温度値はコンピュータ18により決定され
る。
In Figure 1, the laser light source is a single longitudinal mode oscillation LD.
The element 3 receives temperature control from an ATM (temperature control circuit) 2. The ATM 2 controls the temperature of the LD element 3 to a desired constant value. The control temperature value is determined by computer 18.

また、LD素子3の駆動電流は、LD駆動回路1により
制御され、この駆動電流の変化によりLD素子3の発振
波長を調節する。LD素子3は注入電流の変化によって
導波路の屈折率が変化して発振波長が変化する。
Further, the drive current of the LD element 3 is controlled by the LD drive circuit 1, and the oscillation wavelength of the LD element 3 is adjusted by changing the drive current. In the LD element 3, the refractive index of the waveguide changes due to a change in the injection current, and the oscillation wavelength changes.

LD素子3から出射される発散光はコーメートルンズ4
で平行にされビームスプリッタ5に入射され、2つの光
に分けられる。
The diverging light emitted from the LD element 3 is transmitted through a coma lens 4.
The light beams are made parallel and incident on the beam splitter 5, where they are split into two beams.

ビームスプリッタ5によって反射される光は光量調節フ
ィルタ6を介して受光素子7で受光し、可変利得増幅器
8で信号を増幅してレーザ光源の光強度変化信号9を得
る。この光強度変化信号9は除算回路17に入力される
The light reflected by the beam splitter 5 is received by a light receiving element 7 via a light amount adjustment filter 6, and the signal is amplified by a variable gain amplifier 8 to obtain a light intensity change signal 9 of the laser light source. This light intensity change signal 9 is input to a division circuit 17.

一方、ビームスプリッタ5を透過したレーザ光は干渉計
19内に導かれる。ここでは、干渉計19としてマイケ
ルソン型の干渉計を例示する。
On the other hand, the laser beam transmitted through the beam splitter 5 is guided into the interferometer 19. Here, a Michelson type interferometer is illustrated as the interferometer 19.

干渉計19に入射したレーザ光はビームスプリッタ10
で2つの光束に分けられる。2つの光束はそれぞれ固定
鏡11と可動鏡12によって光路差をつけて反射され、
ビームスプリッタ10によって再び1つになって干渉し
、入射方向と直交した方向に出射される。
The laser beam incident on the interferometer 19 passes through the beam splitter 10
The light is divided into two beams. The two light beams are reflected by a fixed mirror 11 and a movable mirror 12 with optical path differences, respectively.
The beams are combined into one again by the beam splitter 10, interfere with each other, and are emitted in a direction perpendicular to the direction of incidence.

干渉計を出射したレーザ光を光量調節フィルタ13に通
して受光素子14で受光し、増幅器15で信号を増幅し
て、固定鏡11、可動鏡12の所定の光路長に応じて形
成される干渉縞の強度変化信号(精麦化信号)16を得
る。
The laser beam emitted from the interferometer passes through the light amount adjustment filter 13 and is received by the light receiving element 14, and the signal is amplified by the amplifier 15. Interference is formed according to the predetermined optical path length of the fixed mirror 11 and the movable mirror 12. A striped intensity change signal (refined signal) 16 is obtained.

このようにして得られた2つの信号を除算回路17に入
力し、精麦化信号16を光強度変化信号9で割り、その
出力をコンピュータ18に取り入れて信号の解析を行う
The two signals obtained in this way are input to the division circuit 17, the refined signal 16 is divided by the light intensity change signal 9, and the output is input to the computer 18 for signal analysis.

除算回路17はアナログ回路から、コンピュータ18は
マイクロプロセッサ、メモリなどからなるコンピュータ
システムにより構成される。
The division circuit 17 is constructed from an analog circuit, and the computer 18 is constructed from a computer system comprising a microprocessor, memory, and the like.

次に以上の構成における動作につき詳細に説明する。ま
ず、干渉計19側の測長につき説明する。
Next, the operation of the above configuration will be explained in detail. First, length measurement on the interferometer 19 side will be explained.

波長λ0のレーザ光を干渉計19に入射して得られる固
定鏡11からの反射光と可動鏡12からの反射光は、光
路差をLとするとそれぞれ次式で表される。
The reflected light from the fixed mirror 11 and the reflected light from the movable mirror 12 obtained by inputting a laser beam of wavelength λ0 into the interferometer 19 are expressed by the following equations, respectively, where L is the optical path difference.

但しA、Bは定数、φ。は初期位相 これら2つの反射光を干渉させて得られる干渉縞は、次
式で表される。
However, A and B are constants and φ. is the initial phase.The interference fringes obtained by interfering these two reflected lights are expressed by the following equation.

第2図に、(3)式より縦軸に11横軸にLをとって表
したグラフを示す。
FIG. 2 shows a graph in which 11 is plotted on the vertical axis and L is plotted on the horizontal axis based on equation (3).

例えば、ここでLを0から4λ。まで変化させると、4
周期分の干渉縞が得られる。これは、N、=L/λ。;
4λ0/λo=4で示される。
For example, here L is 0 to 4λ. If you change it up to 4
Interference fringes corresponding to the period can be obtained. This is N,=L/λ. ;
4λ0/λo=4.

ここで、第3図に波長がλ1 =2λ。になった場合の
グラフを示す。この場合には、Lを0から4λ0まで変
化させても2周期分の干渉縞の変化しか得られない。こ
れは、N、=L/λ1=2λ1/λ1=2で示される。
Here, in FIG. 3, the wavelength is λ1 = 2λ. The graph below shows the result. In this case, even if L is changed from 0 to 4λ0, only two cycles of interference fringes can be obtained. This is shown as N,=L/λ1=2λ1/λ1=2.

第2図、第3図より明らかなように、今L−4λ。で一
定にしておき、レーザ光の波長をλ0からλ1まで変化
させた時、干渉縞はn=N、−N、=2で2周期分変化
する。この縞の変化分nは波長の変化分と光路差に依存
しているので、縞の変化分と波長の変化分を求めること
で光路差を求めることができる。これらの関係は、次式
で与えられる。
As is clear from Figures 2 and 3, now L-4λ. When the wavelength of the laser beam is kept constant and changed from λ0 to λ1, the interference fringes change by two periods with n=N, -N, and =2. Since this fringe change n depends on the wavelength change and the optical path difference, the optical path difference can be determined by determining the fringe change and the wavelength change. These relationships are given by the following equation.

本発明では、可変波長のコヒーレント光源として単一縦
モード発振の半導体レーザを用いている。単一縦モード
発振の半導体レーザの典型的な注入電流−発振波長特性
は第4図のようなものである。直線的な波長可変範囲は
モードホップによって制限されるが、モードホップから
モードホップのあいだの区間では、注入電流と発振波長
とは直線関係にある。以下に示す処理では、好ましくは
この直線部分を使用するものとする。
In the present invention, a single longitudinal mode oscillation semiconductor laser is used as a variable wavelength coherent light source. A typical injection current-oscillation wavelength characteristic of a single longitudinal mode oscillation semiconductor laser is as shown in FIG. Although the linear wavelength tuning range is limited by mode hops, there is a linear relationship between the injection current and the oscillation wavelength in the section between mode hops. In the processing described below, this straight line portion is preferably used.

第5図に、半導体レーザに注入する注入電流の波形を示
す。注入電流を一定の割合で変化させて、一定の割合で
波長の走査を行う。半導体レーザの波長変化率をK(n
rn/mA)とし、注入電流が10の時の発振波長をλ
。とすると、10−10+Δiの時λ。→λ。+にΔi
となる。
FIG. 5 shows the waveform of the injection current injected into the semiconductor laser. The wavelength is scanned at a constant rate by changing the injection current at a constant rate. The wavelength change rate of the semiconductor laser is K(n
rn/mA), and the oscillation wavelength when the injection current is 10 is λ
. Then, when 10-10+Δi, λ. →λ. Δi to +
becomes.

これを(4)式に代入すると、次式が得られる。Substituting this into equation (4) yields the following equation.

次式が得られる。The following equation is obtained.

・・・ (5) さらに、λ。>>KΔiなので、近似することによって
次式が得られる。
... (5) Furthermore, λ. >>KΔi, so the following equation can be obtained by approximation.

但しに、 、K、は定数 これらからできる干渉縞の強度は、次式のようになる。However, ,K, is a constant The intensity of interference fringes formed from these is given by the following equation.

(5)式または(6)式から、n、に、Δ11λ。を測
定することによって光路りを求めることができる。
From equation (5) or equation (6), n is Δ11λ. By measuring , the optical path can be determined.

しかしながら、前記のようにLD素子3は注入電流を変
化させると発振波長とともに出力光強度も変化する。こ
の補正を行なうため、符号5〜9.17で示される補正
系が設けられている。
However, as described above, when the injection current of the LD element 3 is changed, the output light intensity changes along with the oscillation wavelength. In order to perform this correction, correction systems indicated by reference numerals 5 to 9.17 are provided.

ここで、注入電流による半導体レーザ光の出力光強度変
化をT(i)  発振波長の変化をλ(i)とおき、(
1)、(2)式を書き換えるとλ(j、) (9)式を72(i)で割ることによって次式が得られ
る。
Here, let the change in the output light intensity of the semiconductor laser light due to the injection current be T(i), the change in the oscillation wavelength be λ(i), and (
Rewriting equations 1) and (2), λ(j,) By dividing equation (9) by 72(i), the following equation is obtained.

これより、干渉縞の強度変化である精麦化信号16を光
源の出力光強度9で割ると、精麦化信号16から光源出
力光強度変化の影響を取り除くことができることがわか
る。
From this, it can be seen that by dividing the polished signal 16, which is the change in the intensity of the interference fringes, by the output light intensity 9 of the light source, the influence of the change in the light source output light intensity can be removed from the polished signal 16.

ここで、精麦化信号16と出力光強度変化イ言号9の波
形をそれぞれ第6図、第7図に示す。
Here, the waveforms of the milling signal 16 and the output light intensity change signal 9 are shown in FIGS. 6 and 7, respectively.

また、割算回路17によって精麦化信号16(第6図)
を出力光強度変化信号9(第7図)で除算すると、出力
信号波形は第8図に示すようになる。
In addition, the dividing circuit 17 generates a milling signal 16 (FIG. 6).
When divided by the output light intensity change signal 9 (FIG. 7), the output signal waveform becomes as shown in FIG. 8.

第8図から明らかなように、精麦化信号のエンベロープ
の変化は多少残るが、三角波状のバイアス変化は大幅に
取り除くことができるので、ゼロ交叉法を用いても周波
数の解析が可能になる。
As is clear from FIG. 8, although some changes in the envelope of the refined signal remain, triangular wave bias changes can be largely removed, making it possible to analyze the frequency using the zero-crossing method.

ここで、第8図の補正後の信号周波数の解析方法につい
て第9図のフローチャート図を参照して説明する。第9
図の手順はコンピュータ18で行なわれる処理手順を示
したものである。
Here, the method for analyzing the signal frequency after correction shown in FIG. 8 will be explained with reference to the flowchart shown in FIG. 9. 9th
The illustrated procedure shows the processing procedure performed by the computer 18.

第9図のスーテップS1では、除算回路17の出力に得
られる補正後の信号(第8図)をA/D変換を介してメ
モリなどに取り込む。
In step S1 of FIG. 9, the corrected signal (FIG. 8) obtained from the output of the division circuit 17 is taken into a memory or the like via A/D conversion.

次に、ステップS2ではゼロレベルに対応する適当なし
きい値を設定し、ステップS3においてメモリ中のサン
プリングデータとしきい値を比較し、信号が交叉するゼ
ロ交叉点を検出し、それぞれ隣り合うゼロ交叉点との時
間間隔(ゼロ点間隔)を求める。この際、注入電流の折
返点やモードホッピングなどによって不連続点が生じて
いるところは、該当するゼロ点間隔のデータを切り捨て
る。
Next, in step S2, an appropriate threshold value corresponding to the zero level is set, and in step S3, the sampling data in the memory is compared with the threshold value, the zero crossing point where the signal intersects is detected, and each adjacent zero crossing point is detected. Find the time interval between points (zero point interval). At this time, where discontinuous points occur due to turning points of the injected current, mode hopping, etc., data at the corresponding zero point interval is discarded.

その後、ステップS4において残りのデータからゼロ点
間隔の平均を出し、注入電流の三角波変化の1周期にお
ける代表値とし、さらにステップS5でステップS4で
得られた周期値から信号周波数fsを逆算する。ここで
、注入電流の三角波変化の周波数をfdとすると、(5
)、(6)式における干渉縞の変化の周期の数nは n = f s / 2 f d    −(12)で
表されるので、ステップS6においてこの周期数nを求
める。
Thereafter, in step S4, the average of the zero point intervals is calculated from the remaining data and used as a representative value in one period of the triangular wave change of the injected current.Furthermore, in step S5, the signal frequency fs is calculated backward from the period value obtained in step S4. Here, if the frequency of the triangular wave change of the injected current is fd, then (5
), the number n of cycles of interference fringe changes in equation (6) is expressed as n = f s / 2 f d - (12), so this number n of cycles is determined in step S6.

次にステップS子において、上記周期数nを(6)式に
代入する演算をコンピュータ18で行なうことにより光
路差りを求めることができる(λ。およびKについては
あらかじめ測定した定数を用いる)。得られた光路差は
、順次メモリなどに格納する。
Next, in step S, the optical path difference can be obtained by substituting the period number n into equation (6) using the computer 18 (constants measured in advance are used for λ and K). The obtained optical path differences are sequentially stored in a memory or the like.

上記処理は注入電流変化の1周期を単位として繰り返さ
れる。
The above process is repeated in units of one period of injection current change.

ステップS8では、注入電流変化の周期1゛の所定数倍
に相当する時間が経過したか、あるいはこれに相当する
数のデータを処理したかどうかを判定する。すなわち、
所定周期数だけ注入電流変化を繰り返した場合には、ス
テップS9に移行しこれまでに得られた光路差の平均値
をとってこの平均値を最終的な測定値と12で出力する
In step S8, it is determined whether a time corresponding to a predetermined multiple of the period 1'' of the injection current change has elapsed or whether a corresponding number of data have been processed. That is,
When the injection current change is repeated for a predetermined number of cycles, the process moves to step S9, where the average value of the optical path differences obtained so far is taken and this average value is output as the final measured value.

以上に示したように、レーザ光束を分割し測定法で干渉
縞変化信号の周波数を測定し、この周波数値に基づき測
長演算を行なうことができる。
As described above, the frequency of the interference fringe change signal can be measured by dividing the laser beam and measuring the frequency, and the length measurement calculation can be performed based on this frequency value.

従って、波長走査の際の光強度の影響を除去でき、干渉
計の測定精度を向上できる。特に上記実施例ではアナロ
グ回路により除算を行なうのでリアルタイムで高速な処
理が可能である。
Therefore, the influence of light intensity during wavelength scanning can be removed, and the measurement accuracy of the interferometer can be improved. In particular, in the above embodiment, since division is performed by an analog circuit, high-speed processing in real time is possible.

またゼロ交叉法を利用できるため、高速フーリエ交換な
どを用いる方法に比して処理システムのバー トウエア
/ソフトウェア構成が簡単であり、コストダウンあるい
は装置の小型軽量化が可能Tあるとともに処理時間も短
くて済む。
Additionally, since the zero-crossover method can be used, the processing system's hardware/software configuration is simpler than methods that use fast Fourier exchange, etc., making it possible to reduce costs or make the equipment smaller and lighter, and the processing time is shorter. It's done.

なお、以上では最後に光路差の平均をとる方、メジ、を
示したが、PI】定の経通時間tパ対して光路差L、7
7・データを1周期ずつプロットして、2物体間で;7
. 、’l(路差の時間変化を測定することもてとる。
In addition, in the above, the method of taking the average of the optical path differences was shown at the end, but the optical path difference L, 7
7. Plot the data one cycle at a time between two objects;7
.. , 'l (It is also possible to measure the time change in road difference.

なお、1周期中のゼロ点間隔を求める際にまず最初にゼ
ロ点間隔の平均値を求め、この平均値に対して所定の誤
差範囲を越えるゼロ点間隔のデータを削除し、改めて残
ったデータで平均をとり、この改めて求めた平均値を用
いてデータの削除を再び行う、というプロセスを繰り返
し、削除すべきデータがなくなった時点でのΔP均値を
とってバラツキを少なくすることもできる。
In addition, when calculating the zero point interval in one cycle, first find the average value of the zero point interval, delete the data with the zero point interval that exceeds the predetermined error range with respect to this average value, and then calculate the remaining data again. It is also possible to reduce the variation by repeating the process of taking the average value and deleting the data again using this newly determined average value, and then taking the average value of ΔP when there is no longer any data to be deleted.

さらに、第1図に示すビームスプリッタ5.1oにはキ
ューブ・ビームスプリッタ、ウェッジ付ハーフミラ−な
どを用いる。特にフィゾー干渉計などにおいてはビーム
スプリッタ10に偏光ビームスプリッタを用いてもよく
、その場合には各反射鏡との間にλ/4板を挿入する。
Further, as the beam splitter 5.1o shown in FIG. 1, a cube beam splitter, a wedged half mirror, or the like is used. Particularly in a Fizeau interferometer or the like, a polarizing beam splitter may be used as the beam splitter 10, in which case a λ/4 plate is inserted between each reflecting mirror.

光源側への戻り光がなくなり、LD素子3の発振波長が
安定化され、正確な測定が可能である。
There is no light returning to the light source side, the oscillation wavelength of the LD element 3 is stabilized, and accurate measurement is possible.

[発明の効果] 以上から明らかなように、本発明によれば、半導体レー
ザ素子が発生するレーザ光を複数の光反射手段に照射し
、これらの反射手段からの反射光を干渉させ干渉縞を形
成し、半導体レーザ素子の注入電流を周期的に変化させ
てレーザ光の波長走査を行ない、レーザ光の波長変化に
ともなう前記干渉縞の時間変化する干渉縞強度変化信号
の周波数を測定し、この周波数に基づき前記反射手段間
の光路差を測定する光干渉測定装置において、前記レー
ザ光の光束の一部を分割する手段と、この分割手段によ
り分割された光束の強度の時間変化を測定する手段と、
この測定手段により得られた光強度変化信号により前記
干渉縞強度変化信号を除算する手段と、この除算手段の
出力信号の周波数をゼロ交叉間隔検出を介して測定し測
定された周波数に基づき前記光路差を演算する制御手段
を設けた構成を採用しているので、光路差演算の際、半
導体レーザ素子の波長走査にともなう光強度変化の影響
を前記の除算処理により補正でき、正確な測定が可能に
なる。特に、光路中の大気のゆらぎや、装置の光学系の
不要な干渉縞、あるいは半導体レーザ素子の温度条件な
どによる鳩麦化信号の光強度変化分も除去できるため、
測定精度は大きく向上される。
[Effects of the Invention] As is clear from the above, according to the present invention, a plurality of light reflecting means are irradiated with laser light generated by a semiconductor laser element, and the reflected lights from these reflecting means are caused to interfere with each other to form interference fringes. The wavelength of the laser beam is scanned by periodically changing the injection current of the semiconductor laser element, and the frequency of the interference fringe intensity change signal that changes over time as the wavelength of the laser beam changes is measured. An optical interference measurement device that measures the optical path difference between the reflecting means based on frequency, comprising means for dividing a part of the luminous flux of the laser beam, and means for measuring temporal changes in the intensity of the luminous flux divided by the dividing means. and,
means for dividing the interference fringe intensity change signal by the light intensity change signal obtained by the measuring means; and a means for measuring the frequency of the output signal of the dividing means through zero-crossing interval detection, and based on the measured frequency, the optical path. Since the configuration is equipped with a control means for calculating the difference, when calculating the optical path difference, the effect of light intensity changes due to wavelength scanning of the semiconductor laser element can be corrected by the above-mentioned division process, allowing accurate measurement. become. In particular, it is possible to eliminate changes in the light intensity of the lightening signal due to atmospheric fluctuations in the optical path, unnecessary interference fringes in the optical system of the device, or temperature conditions of the semiconductor laser element.
Measurement accuracy is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を採用した光干渉測定装置のブロック図
、第2図、第3図は第1図の装置において得られる干渉
縞の特性を示した波形図、第4図はLD素子の注入電流
に依存する波長特性を示した線図、第5図はLD素子の
注入電流波形を示した波形図、第6図は鳩麦化信号の波
形図、第7図はLD素子の注入電流に応じた光強度変化
を示した波形図、第8図は鳩麦化信号を光強度変化で除
して得た補正後の波形図、第9図は第8図の信号の周波
数解析処理を示したフローチャート図である。 1・・・LD駆動回路  2・・・ATM3・・・LD
素子4−・・コリメートレンズ5・・・ビームスプリッ
タ 6・・・光量調節フィルタ 7・・・受光素子    8・・・可変利得増幅器9・
・・光強度変化信号 10・・・ビームスプリッタ 11・・・固定鏡    12・・・可動鏡13・・・
光量調節フィルタ 14・・・受光素子 15・・・増幅器    16・・・鳩麦化信号17・
・・除算回路   18・・・コンピュータ19・・・
干渉計 第2図 LD術号の兼&竹不主の揉吃 第4図 〉 〉
Fig. 1 is a block diagram of an optical interference measuring device employing the present invention, Figs. 2 and 3 are waveform diagrams showing the characteristics of interference fringes obtained with the device of Fig. 1, and Fig. 4 is a diagram of the LD element. A diagram showing the wavelength characteristics depending on the injection current. Figure 5 is a waveform diagram showing the injection current waveform of the LD element. Figure 6 is a waveform diagram of the pigeon conversion signal. Figure 7 is a diagram showing the waveform of the injection current of the LD element. Figure 8 is a waveform diagram after correction obtained by dividing the light intensity change by the light intensity change, and Figure 9 shows the frequency analysis processing of the signal in Figure 8. It is a flowchart figure. 1...LD drive circuit 2...ATM3...LD
Element 4... Collimating lens 5... Beam splitter 6... Light amount adjustment filter 7... Light receiving element 8... Variable gain amplifier 9...
...Light intensity change signal 10...Beam splitter 11...Fixed mirror 12...Movable mirror 13...
Light amount adjustment filter 14...light receiving element 15...amplifier 16...pigmentation signal 17.
...Division circuit 18...Computer 19...
Interferometer Figure 2 LD Jutsugo's cum &Takefusu's massage Figure 4 〉 〉

Claims (1)

【特許請求の範囲】 1)半導体レーザ素子が発生するレーザ光を複数の光反
射手段に照射し、これらの反射手段からの反射光を干渉
させ干渉縞を形成し、半導体レーザ素子の注入電流を周
期的に変化させてレーザ光の波長走査を行ない、レーザ
光の波長変化にともなう前記干渉縞の時間変化する干渉
縞強度変化信号の周波数を測定し、この周波数に基づき
前記反射手段間の光路差を測定する光干渉測定装置にお
いて、前記レーザ光の光束の一部を分割する手段と、こ
の分割手段により分割された光束の強度の時間変化を測
定する手段と、この測定手段により得られた光強度変化
信号により前記干渉縞強度変化信号を除算する手段と、
この除算手段の出力信号の周波数をゼロ交叉間隔検出を
介して測定し測定された周波数に基づき前記光路差を演
算する制御手段を設けたことを特徴とする光干渉測定装
置。 2)前記光路差を所定測定サイクルごとに測定し、光路
差データを1周期づつプロットして前記反射手段間の光
路差の時間変化を測定するようにしたことを特徴とする
光干渉測定装置。
[Claims] 1) Laser light generated by a semiconductor laser element is irradiated onto a plurality of light reflecting means, and the reflected lights from these reflecting means are caused to interfere with each other to form interference fringes, thereby reducing the current injected into the semiconductor laser element. The wavelength of the laser beam is scanned by changing it periodically, and the frequency of the interference fringe intensity change signal that changes with time of the interference fringes as the wavelength of the laser beam changes is measured. Based on this frequency, the optical path difference between the reflecting means is determined. An optical interference measurement device for measuring a part of the light beam of the laser beam, a means for dividing a part of the luminous flux of the laser beam, a means for measuring a temporal change in the intensity of the luminous flux divided by the dividing means, and a light beam obtained by the measuring means. means for dividing the interference fringe intensity variation signal by an intensity variation signal;
An optical interference measuring device comprising: a control means for measuring the frequency of the output signal of the dividing means through zero-crossing interval detection and calculating the optical path difference based on the measured frequency. 2) An optical interference measuring device characterized in that the optical path difference is measured every predetermined measurement cycle, and the optical path difference data is plotted one cycle at a time to measure the time change in the optical path difference between the reflecting means.
JP63168915A 1988-07-08 1988-07-08 Light interference measuring instrument Pending JPH0219701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168915A JPH0219701A (en) 1988-07-08 1988-07-08 Light interference measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168915A JPH0219701A (en) 1988-07-08 1988-07-08 Light interference measuring instrument

Publications (1)

Publication Number Publication Date
JPH0219701A true JPH0219701A (en) 1990-01-23

Family

ID=15876918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168915A Pending JPH0219701A (en) 1988-07-08 1988-07-08 Light interference measuring instrument

Country Status (1)

Country Link
JP (1) JPH0219701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110211A (en) * 1990-01-04 1992-05-05 Shoji Niki Optical interference signal extractor with device for reduced noise from optical light power variation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110211A (en) * 1990-01-04 1992-05-05 Shoji Niki Optical interference signal extractor with device for reduced noise from optical light power variation

Similar Documents

Publication Publication Date Title
JP5511163B2 (en) Distance measuring method and apparatus by light wave interference
CN110646805B (en) Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source
JPH0749207A (en) Absolute interference measuring method and laser interferometer suitable for method thereof
JPH10339668A (en) Light wavemeter and light wavelength regulator
IL101158A (en) Three wavelength optical measurement apparatus and method
EP0193742A2 (en) Wavelength scanning interferometry and interferometer employing laser diode
JP2828162B2 (en) Interferometric measurement method for absolute measurement and laser interferometer device suitable for this method
JP5572067B2 (en) Measuring device
JP6628030B2 (en) Distance measuring device and method
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
KR101987392B1 (en) High Speed Comb Wavelength Tunable Light Source and Apparatus for Fast Measuring Remote Surface Change using the same
JPH0222502A (en) Optical interference measuring instrument
JP2554363B2 (en) Optical interferometer
JPH0219701A (en) Light interference measuring instrument
JP3285270B2 (en) Position measuring device
JP3577840B2 (en) Semiconductor thickness measuring device and its measuring method
JPH03146803A (en) Method and instrument for measuring distance
JP3711723B2 (en) Semiconductor thickness measuring device
JP3272436B2 (en) Distance measuring method and distance measuring device
JPH025587A (en) Characteristic measurement of semiconductor laser and device therefor
JPH0648365Y2 (en) Laser frequency meter
JPH01210804A (en) Spacing measuring method
JP3090699B2 (en) Eye axis length measuring device
JP2899077B2 (en) Refractive index distribution measurement method
Coggrave et al. Single-shot wavelength meter on a chip based on exponentially increasing delays and in-phase quadrature detection