JPH0255682A - Different material joint - Google Patents

Different material joint

Info

Publication number
JPH0255682A
JPH0255682A JP20734688A JP20734688A JPH0255682A JP H0255682 A JPH0255682 A JP H0255682A JP 20734688 A JP20734688 A JP 20734688A JP 20734688 A JP20734688 A JP 20734688A JP H0255682 A JPH0255682 A JP H0255682A
Authority
JP
Japan
Prior art keywords
joint
joining
junction
members
junction part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20734688A
Other languages
Japanese (ja)
Inventor
Shigechika Kosuge
小菅 茂義
Hirotaka Nakagawa
中川 大隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20734688A priority Critical patent/JPH0255682A/en
Publication of JPH0255682A publication Critical patent/JPH0255682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and the joining strength of a junction part by executing a junction in a state that a shape of the junction part is inclined at the time of bringing different kinds of metallic members to solid phase joining. CONSTITUTION:At the time of joining a member 1 consisting of a Zr compound stock, etc., and a member 2 of a stainless steel stock, etc., a male die tapered part 3 is formed in the tip of the member 1, and a female die tapered part 4 is formed in a joining position of the member 2. Subsequently, the members 1, 2 are pressed under the prescribed pressure condition, and also, a junction part is electrically conducted directly and heating is executed. In this case, by setting a transformation temperature of the member 1 as a boundary, a heat cycle of suitable temperature width by prescribed heating and cooling is given. In such a way, thickness of an intermetallic compound layer generated between the joint surfaces is decreased remarkably. Also, the junction stock 1 causes transformation superplasticity, and a shrink fit effect also works on the joint interface, therefore, the corrosion resistance and the joining strength of the junction part of the members 1, 2 are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固相接合法による異材継手の接合部の形状に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the shape of a joint of a dissimilar material joint by solid-phase joining.

[従来の技術] 固相接合法は、圧接法、超音波接合法、摩擦接合法、爆
発接合法、拡散接合法等を含む概念であるが、従来の固
相接合法による異材継手の接合は接合方向に対して垂直
な面で行うのを通例としている。例えば、特開昭62−
220292号公報は、使用済みの核燃料再処理設備の
ごとく高濃度硝酸水溶液を取り扱う配管系に使用される
管接合技術に関するものであるが、一方の普通鋼、ステ
ンレス鋼等の部材に対し他方のジルコニウム系材料を垂
直面で接合している。かかる垂直面での接合(以下、フ
ラット接合という)上の問題は、接合部において金属間
化合物層が比較的厚く (普通、90μm以上)形成さ
れる1点である。とくに、−方の材料がジルコニウム系
材料(純ジルコニウムおよびジルカロイのようなZr合
金を総称して以下、Zr系材料と記述する。)である場
合、FeNi、Cr等との間に形成される金属間化合物
は、きわめて脆いものであるため、その層厚が大になる
と接合強度は著しく低下する。また、冷却時においては
、接合部において熱応力が剪断応力となって働くため接
合強度を弱化せしめる。したがって、かかる悪性の金属
間化合物層を制限するため、上記公報に示すごとく2つ
の接合材料の橋渡し的な役目をするインサート材を介在
させるという考え方に到達する。
[Conventional technology] Solid phase welding is a concept that includes pressure welding, ultrasonic welding, friction welding, explosion welding, diffusion welding, etc., but the conventional solid phase welding method cannot join dissimilar metal joints. It is customary to perform this on a plane perpendicular to the joining direction. For example, JP-A-62-
Publication No. 220292 relates to pipe joining technology used in piping systems that handle high-concentration nitric acid aqueous solutions, such as in spent nuclear fuel reprocessing equipment. Materials are joined vertically. One problem with such vertical bonding (hereinafter referred to as flat bonding) is that the intermetallic compound layer is relatively thick (usually 90 μm or more) at the bonding portion. In particular, when the negative material is a zirconium-based material (pure zirconium and Zr alloys such as Zircaloy are hereinafter collectively referred to as Zr-based materials), the metal formed between FeNi, Cr, etc. Since the intermediate compound is extremely brittle, the bonding strength decreases significantly as the layer thickness increases. Furthermore, during cooling, thermal stress acts as shear stress at the joint, weakening the joint strength. Therefore, in order to limit the formation of such a malignant intermetallic compound layer, the idea of interposing an insert material that acts as a bridge between the two bonding materials was reached, as shown in the above-mentioned publication.

しかしながら、インサート材を用いる場合、インサート
材の品質や厚さを厳重に管理する必要があり、工程が複
雑になるだけでなく接合強度を高信頼度のもとで確保す
る技術が非常に困難になる。
However, when using insert materials, it is necessary to strictly control the quality and thickness of the insert materials, which not only complicates the process but also makes the technology to ensure high reliability of joint strength extremely difficult. Become.

[発明が解決しようとする課題] 上記のように従来の異材継手では接合部形状が接合方向
(接合部材の軸線方向)に対し垂直であり、接合部にお
いて金属間化合物層が厚く形成されるという問題があっ
た。これは、垂直面同士の突合せであるため金属間化合
物の排除作用が乏しいためであることによるものである
[Problems to be solved by the invention] As mentioned above, in conventional dissimilar metal joints, the shape of the joint is perpendicular to the joining direction (the axial direction of the joined members), and the intermetallic compound layer is formed thick at the joint. There was a problem. This is due to the fact that since the vertical surfaces are butted against each other, the effect of removing intermetallic compounds is poor.

そこで、本発明は接合部における金属間化合物層が薄く
形成されるような接合部形状とするとともに、インサー
ト材のような介在物を全く必要とせずに直接接合を果た
すようにした固相接合法による異材継手を提供すること
を目的とするものである。
Therefore, the present invention has developed a joint shape that allows the intermetallic compound layer to be formed thinly at the joint, and a solid-phase joining method that achieves direct joining without the need for any inclusions such as insert materials. The purpose of this invention is to provide a joint made of dissimilar materials.

[課題を解決するための手段] 本発明に係る異材継手は、固相接合法で異種金属材料の
継手を作るにあたって、接合部の形状を接合方向に対し
斜めにするものである。接合部材の軸線に対する角度は
45°以下が好ましく、さらに焼きばめ効果を持たせる
ように選定するとよい。
[Means for Solving the Problems] In the dissimilar metal joint according to the present invention, when a joint of dissimilar metal materials is made by a solid-phase joining method, the shape of the joint part is made oblique to the joining direction. The angle of the joining member with respect to the axis is preferably 45° or less, and is preferably selected to provide a shrink fit effect.

[作 用コ 本発明による異材継手では、接合時テーパ面同士が押し
付は合うため接合部に生じる金属間化合物をその斜面に
沿って外部へ押し出そうとする力が働く。このため、金
属間化合物層は比較的薄いものとなる。また、接合面積
の増大とともに焼きばめ作用が期待できる。さらに、冷
却時においては、熱応力が圧縮応力として作用するため
接合強度を増加させる方向に働く。
[Function] In the dissimilar material joint according to the present invention, since the tapered surfaces are pressed against each other during joining, a force acts to push out the intermetallic compound generated at the joint part to the outside along the slope thereof. Therefore, the intermetallic compound layer is relatively thin. In addition, a shrink fit effect can be expected as the bonding area increases. Furthermore, during cooling, thermal stress acts as compressive stress, which works to increase the bonding strength.

[実施例コ 以下、本発明の実施例を図により説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

まず、変態超塑性を利用した拡散接合法による異材継手
の場合について説明する。第1図はこの実施例の異材継
手の構成図であり、同図(a)は棒材の場合を、同図(
b)はパイプ材の場合を示している。図において、1.
2は接合部材で、この実施例では部材1にZr系材料を
、部材2にステンレス材料(SUS304L)を使用し
ている。
First, a case of a dissimilar material joint made by a diffusion bonding method using transformed superplasticity will be explained. Figure 1 is a configuration diagram of the dissimilar material joint of this embodiment, and Figure 1 (a) shows the case of a bar material;
b) shows the case of pipe material. In the figure, 1.
Reference numeral 2 denotes a joining member, and in this embodiment, member 1 is made of Zr-based material, and member 2 is made of stainless steel material (SUS304L).

3は線膨脹係数の小さい方の部材すなわちZr系材料1
の先端部に形成された雌形テーバ部であり、角度θは1
5°である。4はZr系材料1の雌形テーパ部3と突き
合わされる異種材料2の雌形テーバ部である。異種材料
2はZr系材料1に比べて線膨脹係数ははるかに大きい
。5は雌形テーバ部4の内奥部に形成される空洞部であ
る。
3 is the member with a smaller linear expansion coefficient, that is, Zr-based material 1
It is a female tapered part formed at the tip of , and the angle θ is 1
It is 5°. Reference numeral 4 denotes a female tapered portion of the dissimilar material 2 that is butted against the female tapered portion 3 of the Zr-based material 1. The coefficient of linear expansion of the different material 2 is much larger than that of the Zr-based material 1. Reference numeral 5 denotes a hollow portion formed deep inside the female tapered portion 4.

上記のように形成されたZr系材料1と異種材料2を種
々の加圧力条件下で突合せ、その突合せ部に直接通電し
てこの部分を加熱し、Z「の変態温度862℃を境に上
下適当な温度幅で所要回数ヒートサイクルを与える。
The Zr-based material 1 and the dissimilar material 2 formed as described above are butted together under various pressure conditions, and the abutted portion is directly energized to heat this part. Apply the required number of heat cycles at an appropriate temperature range.

第2図はヒートサイクルのパターン例を示すものである
。ピーク温度を1027℃、ボトム温度を677℃とし
、変態温度通過時の加熱・冷却速度は20℃/ see
とした。また、サイクル回数としては3〜20回で、1
0回位が最良の結果をもたらすようである。
FIG. 2 shows an example of a heat cycle pattern. The peak temperature is 1027℃, the bottom temperature is 677℃, and the heating and cooling rate when passing the transformation temperature is 20℃/see.
And so. In addition, the number of cycles is 3 to 20 times, and 1
Around 0 times seems to give the best results.

このようなヒートサイクルを与えることにより、Zr系
材料1は変態超塑性を起すので、この超塑性状態下でZ
r系材料1と異種材料2に荷重Pを加え両者を加圧接合
するのである。変態超塑性を起したZr系材料1の一部
はテーパ面の内外端6゜7より排除され、パリとなって
固着するので、最後に機械加工により所定の寸法に仕上
げる。
By applying such a heat cycle, the Zr-based material 1 undergoes transformation superplasticity, so that under this superplastic state, Zr
A load P is applied to the r-based material 1 and the dissimilar material 2 to join them together under pressure. A part of the Zr-based material 1 which has undergone transformation superplasticity is removed from the inner and outer ends 6°7 of the tapered surface and becomes solid and fixed, so that it is finally machined to a predetermined size.

接合後、接合界面には焼きばめ作用が働くので、接合強
度が増大する。なお、継手引張り試験における破断位置
は、両母材の強度、接合部反応層の強度のほかテーパ部
の角度にも依存するため、この角度の選定により破断位
置が接合部か、低強度側の母材かに変化する。
After bonding, a shrink fit effect acts on the bonding interface, increasing the bonding strength. In addition, the fracture position in a joint tensile test depends on the strength of both base materials, the strength of the joint reaction layer, and the angle of the tapered part, so by selecting this angle, it is possible to determine whether the fracture position is at the joint or on the lower strength side. The base material changes.

次に、実験例を示す。なお、参考のため第3図に示すよ
うな従来のフラット接合の場合と比較する。
Next, an experimental example will be shown. For reference, a comparison will be made with a conventional flat bonding case as shown in FIG.

く実験例〉 (1)供試材の組成および引張強さ(第1表およびWS
2表参照) (2)実験条件 加圧力     0 、 1〜1 、 0 kg / 
mm 2ヒートサイクル 3〜20回 ヒートパターン 第2図参照 雰囲気     10−2Torr以下(3)実験結果
(第3表、第4表参照)なお、第3表、第4表において
、TJは第1図(a)のテーバ形接合の場合を、FJは
第3図のフラット接合の場合を示す。また、TJ、FJ
の添字1は純Zr−3US304L、添字2はZr合金
−5US304Lの各組合せを示す。
Experimental example> (1) Composition and tensile strength of sample material (Table 1 and WS
(See Table 2) (2) Experimental conditions Pressure force 0, 1-1, 0 kg/
mm 2 Heat cycles 3 to 20 times Heat pattern See Figure 2 Atmosphere 10-2 Torr or less (3) Experimental results (See Tables 3 and 4) In addition, in Tables 3 and 4, TJ is as shown in Figure 1. (a) shows the case of the tapered joint, and FJ shows the case of the flat joint in FIG. 3. Also, T.J., F.J.
The subscript 1 indicates the combination of pure Zr-3US304L, and the subscript 2 indicates the combination of Zr alloy-5US304L.

第3表 金属間化合物層の厚さ(μm)第4表 引張強さ (kg / mm ” 用いた加速耐食性試験によって接合部の耐食性を調べた
結果を第6表に示す。
Table 3 Thickness of intermetallic compound layer (μm) Table 4 Tensile strength (kg/mm) Table 6 shows the results of examining the corrosion resistance of the joint by an accelerated corrosion resistance test.

供試材 TJ  (加圧力0.8 kg/ 1n2)F
J2(加圧力0.8kg/mm  )第6表 (4)破断位置(第5表参照) 第5表 破断位置 (5)耐食性試験の結果(第6表参照)1.0g/りの
Cr6+を含む沸騰硝酸水溶液を注)表中、Oは接合部
界面の選択腐食なし、Δは接合部界面の選択腐食部あり
、Xは接合部界面の選択腐食がはげしいことを示してい
る。
Test material TJ (pressure force 0.8 kg/1n2)F
J2 (pressure force 0.8 kg/mm) Table 6 (4) Fracture position (see Table 5) Table 5 Fracture position (5) Corrosion resistance test results (see Table 6) 1.0 g/liter of Cr6+ Note: In the table, O indicates no selective corrosion at the joint interface, Δ indicates selective corrosion at the joint interface, and X indicates severe selective corrosion at the joint interface.

第4図は加圧力と破断強度の関係を示すグラフであり、
第5図は接合部界面の中間層(金属間化合物層)厚さと
破断強度の関係を示すグラフである。第4図および第5
図中、Aは加圧力O15kg/lll11  のとき、
Bは加圧力− −Okg / ++us 2のときのも
のである。
Figure 4 is a graph showing the relationship between pressing force and breaking strength.
FIG. 5 is a graph showing the relationship between the thickness of the intermediate layer (intermetallic compound layer) at the joint interface and the breaking strength. Figures 4 and 5
In the figure, A is when the pressurizing force is O15kg/ll11,
B is when the pressing force is - -Okg/++us2.

以上の実験結果から明らかなように、本発明による継手
は金属間化合物層の厚さが従来のフラット接合に比べて
約1/2以下と相当に薄いものとなっている。また、実
用上十分な接合強度を示しており、かつバラツキも少な
い。これに対して、従来のフラット接合の場合は接合強
度が安定せず、かつ母材破断が得られる接合条件の範囲
が狭くなる。
As is clear from the above experimental results, the thickness of the intermetallic compound layer in the joint according to the present invention is considerably thinner, approximately 1/2 or less than that of the conventional flat joint. In addition, the bonding strength is sufficient for practical use, and there is little variation. On the other hand, in the case of conventional flat bonding, the bonding strength is not stable and the range of bonding conditions in which fracture of the base material can be obtained is narrow.

次に、熱間圧接法による場合を示す。異材継手の形状は
第1図(a)と同様であり、部材1に5US304Lを
、部材2にAA606B−76を用いた。
Next, a case using the hot pressure welding method will be described. The shape of the dissimilar material joint is the same as that shown in FIG. 1(a), and 5US304L was used for member 1, and AA606B-76 was used for member 2.

(1)実験条件 加熱温度   300℃ 加圧力    0.5kg/止2 (2)実験結果 金属間化合物層の厚さ 3μm 引張強度   19 kg/ mm2(母材破断)この
結果からも金属間化合物層の厚さは第3表のFJに比べ
て薄いことがわかる。また、接合強度はアルミ母材破断
てあり問題はない。
(1) Experimental conditions Heating temperature: 300℃ Pressure: 0.5kg/stop2 (2) Experimental results Thickness of intermetallic compound layer: 3μm Tensile strength: 19kg/mm2 (base metal fracture) From these results, it is also possible to determine that the intermetallic compound layer It can be seen that the thickness is thinner than that of FJ in Table 3. In addition, there is no problem with the bonding strength as the aluminum base material breaks.

[発明の効果] 以上のように本発明による異材継手は、接合部における
金属間化合物層が薄いものとなり、接合強度及び耐食性
が大きく、また直接接合のため安価に提供できる。
[Effects of the Invention] As described above, the dissimilar material joint according to the present invention has a thin intermetallic compound layer at the joint, has high joint strength and corrosion resistance, and can be provided at low cost because it is directly joined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明による異材継手の構成図
、第2図はヒートサイクルのパターン例を示す図、第3
図は比較に用いたフラット接合の継手の構成図、第4図
は加圧力と破断強度の関係を示すグラフ、第5図は接合
部界面の中間層厚さと破断強度の関係を示すグラフであ
る。 1.2・・・接合部材 3・・・雌形テーパ部 4・・・雌形テーパ部 代理人 弁理士  佐々木 宗 治
Figures 1 (a) and (b) are configuration diagrams of a dissimilar material joint according to the present invention, Figure 2 is a diagram showing an example of a heat cycle pattern, and Figure 3 is a diagram showing an example of a heat cycle pattern.
The figure shows the configuration of a flat joint joint used for comparison, Figure 4 is a graph showing the relationship between pressing force and breaking strength, and Figure 5 is a graph showing the relationship between intermediate layer thickness at the joint interface and breaking strength. . 1.2...Joining member 3...Female taper part 4...Female taper part Agent Patent attorney Muneharu Sasaki

Claims (1)

【特許請求の範囲】[Claims] 固相接合法により作製された異種金属材料からなる継手
において、接合部の形状を接合方向に対して斜めにした
ことを特徴とする異材継手。
1. A joint made of dissimilar metal materials produced by a solid-phase joining method, characterized in that the shape of the joint is oblique with respect to the joining direction.
JP20734688A 1988-08-23 1988-08-23 Different material joint Pending JPH0255682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20734688A JPH0255682A (en) 1988-08-23 1988-08-23 Different material joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20734688A JPH0255682A (en) 1988-08-23 1988-08-23 Different material joint

Publications (1)

Publication Number Publication Date
JPH0255682A true JPH0255682A (en) 1990-02-26

Family

ID=16538216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20734688A Pending JPH0255682A (en) 1988-08-23 1988-08-23 Different material joint

Country Status (1)

Country Link
JP (1) JPH0255682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9680416B2 (en) 2004-06-23 2017-06-13 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
CN110216364A (en) * 2019-06-28 2019-09-10 南京佑天金属科技有限公司 A kind of ultrasonic consolidation manufacturing process of zirconium steel laminar composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680416B2 (en) 2004-06-23 2017-06-13 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
CN110216364A (en) * 2019-06-28 2019-09-10 南京佑天金属科技有限公司 A kind of ultrasonic consolidation manufacturing process of zirconium steel laminar composite

Similar Documents

Publication Publication Date Title
Mohamed et al. Mechanism of solid state pressure welding
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JPH0255682A (en) Different material joint
JPH0647570A (en) Friction welding method for different material
US3436805A (en) Method of joining aluminum and ferrous members
JPS6311118B2 (en)
US3367020A (en) Method of preparing tubes of certain metals for subsequent joining by welding
US5148965A (en) Method of shear forge bonding and products produced thereby
JP4281881B2 (en) Heating furnace tube and manufacturing method of heating furnace tube
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
US4699309A (en) Method of bonding dissimilar materials
JPH0255683A (en) Different material joint
JPH01262081A (en) Joining method for zirconium material and dissimilar material
US2707825A (en) Method of pressure welding
JPH04253578A (en) Method for joining different metals
JPH01266980A (en) Joint of zirconium material and dissimilar material
JPH06658A (en) Formation of joint for stainless steel products and different metallic material
JP3626593B2 (en) Liquid phase diffusion bonding method in oxidizing atmosphere
JPH0647178B2 (en) Cold welding method for metal tubes
Wright et al. Summary of prior work on joining of oxide dispersion-strengthened alloys
Barabash et al. Beryllium-metals joints for application in the plasma-facing components
JPH0639564A (en) Joint of dissimilar materials
JPH07270306A (en) Adhesion strength evaluation method for clad steel plate
JPH0255681A (en) Method of joining ti-5ta material and stainless steel material
JPS60213375A (en) Joining method of castings