JPH0254981A - Surface-emission laser and laser array - Google Patents
Surface-emission laser and laser arrayInfo
- Publication number
- JPH0254981A JPH0254981A JP20676188A JP20676188A JPH0254981A JP H0254981 A JPH0254981 A JP H0254981A JP 20676188 A JP20676188 A JP 20676188A JP 20676188 A JP20676188 A JP 20676188A JP H0254981 A JPH0254981 A JP H0254981A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- light
- substrate
- active region
- surface emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 230000003287 optical effect Effects 0.000 claims description 33
- 239000010410 layer Substances 0.000 abstract description 35
- 230000010355 oscillation Effects 0.000 abstract description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 8
- 239000012792 core layer Substances 0.000 abstract description 7
- 230000004913 activation Effects 0.000 abstract 3
- 238000005253 cladding Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0207—Substrates having a special shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18305—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18319—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement comprising a periodical structure in lateral directions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4068—Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】 〔概要〕 面発光レーザ及びレーザアレイに関し。[Detailed description of the invention] 〔overview〕 Regarding surface emitting lasers and laser arrays.
特定の波長のみを効率よく選択的に放射する面発光レー
ザ及びかかる面発光レーザを並べて光結合したレーザア
レイを目的とし。The object of the present invention is to provide a surface-emitting laser that efficiently and selectively emits only a specific wavelength, and a laser array in which such surface-emitting lasers are arranged and optically coupled.
〔1〕、基板と該基板面に平行な光導波路と活性領域を
含み、該活性領域から該基板面に垂直な方向に光を放射
する面発光レーザであって、少なくとも該活性領域から
放射する光が該光導波路に当たる部分に2次以上のグレ
イティングが形成されている面発光レーザ、及び〔2〕
基板を共有し該基板面に垂直な方向に光を放射する複数
の面発光レーザを含むレーザアレイであって、各面発光
レーザは該基板面に平行な先導波路によって光結合され
且つ少な(とも各面発光レーザの活性領域から放射する
光が該光導波路に当たる部分に2次以上のグレイティン
グが形成されているレーザアレイにより構成する。[1] A surface emitting laser that includes a substrate, an optical waveguide parallel to the substrate surface, and an active region, and emits light from the active region in a direction perpendicular to the substrate surface, the laser emitting light from at least the active region. [2] A surface emitting laser in which a grating of secondary or higher order is formed in the portion where light hits the optical waveguide; and [2]
A laser array including a plurality of surface-emitting lasers that share a substrate and emit light in a direction perpendicular to the substrate surface, each surface-emitting laser being optically coupled by a leading waveguide parallel to the substrate surface and having a small It is constituted by a laser array in which a second-order or higher-order grating is formed in a portion where light emitted from the active region of each surface-emitting laser hits the optical waveguide.
本発明は面発光レーザ及びレーザアレイに関する。 The present invention relates to a surface emitting laser and a laser array.
面発光レーザは基板面に垂直な方向にレーザ光を発する
レーザであり、2次元アレー化が可能であるため、2次
元光情報処理用のデバイスとして研究されている。しか
し、波長を所定の値に制御することが未だ難しく、この
ため、特定の波長のみを効率よく選択的に放射する面発
光レーザの開発が望まれている。A surface-emitting laser is a laser that emits laser light in a direction perpendicular to a substrate surface, and can be formed into a two-dimensional array, so it is being researched as a device for two-dimensional optical information processing. However, it is still difficult to control the wavelength to a predetermined value, and therefore there is a desire to develop a surface emitting laser that selectively emits only a specific wavelength efficiently.
従来7面発光レーザの例として基板の両面を高反射化し
てミラーとして用いるものがある(例えば電子通信情報
学会技術報告書0QE86−8(1986年4月))。An example of a conventional seven-surface emitting laser is one in which both sides of the substrate are made highly reflective and used as mirrors (for example, Institute of Electronics, Communication and Information Engineers Technical Report 0QE86-8 (April 1986)).
第6図にこのような従来の面発光レーザの模式図を示す
。第6図において、1は基板、3は活性領域、33は光
吸収領域、4はクラッド層、81及び82はミラー、1
0及び11は電極、dは活性領域の厚さ、2rは活性領
域の直径、Lは共振器長、矢印は光の方向を表す。FIG. 6 shows a schematic diagram of such a conventional surface emitting laser. In FIG. 6, 1 is a substrate, 3 is an active region, 33 is a light absorption region, 4 is a cladding layer, 81 and 82 are mirrors, 1
0 and 11 are electrodes, d is the thickness of the active region, 2r is the diameter of the active region, L is the resonator length, and the arrow represents the direction of light.
活性領域3から放射された光はミラー81とミラー82
の間を往復し、共振した光がレーザ光として外部に取り
出される。この時、共振波長は共振器長しに大きく依存
する。ところが、共振器長しは成長された結晶の膜厚に
よって決まるため該共振器長りを正確に抑えることが難
しく、この構造は特定の波長を精度よく、また再現性よ
く実現するのに適した構造とはなっていない。The light emitted from the active region 3 passes through mirrors 81 and 82.
The resonant light that travels back and forth between the two is extracted to the outside as a laser beam. At this time, the resonant wavelength largely depends on the resonator length. However, since the resonator length is determined by the thickness of the grown crystal, it is difficult to suppress the resonator length accurately, and this structure is suitable for realizing a specific wavelength with high precision and reproducibility. It is not a structure.
そこで、一方のミラーに誘電体多層膜を用い。Therefore, we used a dielectric multilayer film for one mirror.
特定の波長のみを選択的に反射する構造が考案されてい
る。第7図はかかる面発光レーザの従来例を示す模式図
である。第7図において、1はGaAs基板、3は活性
領域、4はp型クラッド層、24はn型クラッド層、5
はキャップ層、6はn型GaAlAs層61.63及び
n型GaAlAs層62からなるブロッキング層、7は
絶縁層、8及び9はミラーであって誘電体多層膜、10
はn電極、11はn電極、矢印は光の方向を表す。Structures that selectively reflect only specific wavelengths have been devised. FIG. 7 is a schematic diagram showing a conventional example of such a surface emitting laser. In FIG. 7, 1 is a GaAs substrate, 3 is an active region, 4 is a p-type cladding layer, 24 is an n-type cladding layer, and 5 is a GaAs substrate.
6 is a cap layer, 6 is a blocking layer consisting of an n-type GaAlAs layer 61, 63 and an n-type GaAlAs layer 62, 7 is an insulating layer, 8 and 9 are mirrors and are dielectric multilayer films, 10
11 represents the n-electrode, 11 represents the n-electrode, and the arrow represents the direction of light.
誘電体多層膜は特定の波長のみを選択的に反射するので
、その波長の光を優先的に発振させる作用を持つ。Since the dielectric multilayer film selectively reflects only a specific wavelength, it has the effect of preferentially oscillating light of that wavelength.
その選択性を高めるためには該多層膜の層数を増せばよ
いのであるが該多層膜を数十層にわたって精度よ(作る
ことが難しいので波長の選択性を高めることが困難であ
る。In order to increase the selectivity, it is possible to increase the number of layers in the multilayer film, but it is difficult to increase the wavelength selectivity because it is difficult to make several tens of layers of the multilayer film with high precision.
従って、従来の面発光レーザにあっては精度よ(且つ再
現性よく制御された発振波長の発光を得ることが困難で
あった。Therefore, with conventional surface emitting lasers, it has been difficult to obtain light emission with an oscillation wavelength that is controlled with high precision (and good reproducibility).
本発明は波長選択の機構として分布帰還型レーザ(DF
Bレーザ)や分布反射型レーザ(DBRレーザ)等に用
いられているグレイティング(回折格子)付きの光導波
路を面発光レーザの光の通路に設けることにより、精度
よく且つ再現性よく制御された発振波長の発光を持つ面
発光レーザ及びかかる面発光レーザを並べて光結合した
レーザアレイを提供することを目的とする。The present invention uses a distributed feedback laser (DF) as a wavelength selection mechanism.
By installing an optical waveguide with a grating (diffraction grating), which is used in B lasers) and distributed reflection lasers (DBR lasers), in the light path of surface emitting lasers, it is possible to control the light with high precision and reproducibility. It is an object of the present invention to provide a surface emitting laser that emits light at an oscillation wavelength and a laser array in which such surface emitting lasers are arranged and optically coupled.
第1図は本発明の面発光レーザの模式図、第2図は本発
明のレーザアレイの模式図を示す。第1図及び第2図に
おいて、1は基板、2はクラッド層21.23及びコア
層22からなる先導波路。FIG. 1 is a schematic diagram of a surface emitting laser of the present invention, and FIG. 2 is a schematic diagram of a laser array of the present invention. In FIGS. 1 and 2, 1 is a substrate, and 2 is a leading waveguide consisting of cladding layers 21, 23 and a core layer 22.
3.31.32は活性領域、4,41.42はp型りラ
フト層、 81. 82.811,812,821,
822はミラー、10はn電極、 11.111,1
12はn電極。3.31.32 is an active region, 4, 41.42 is a p-type raft layer, 81. 82.811,812,821,
822 is a mirror, 10 is an n-electrode, 11.111,1
12 is an n-electrode.
矢印は光の方向を表す。Arrows represent the direction of light.
(1)基板1と該基板面に平行な光導波路2と活性領域
3を含み、該活性領域から該基板面に垂直な方向に光を
放射する面発光レーザであって、少なくとも該活性領域
から放射する光が該光導波路に当たる部分に2次以上の
グレイティングが形成されている面発光レーザと。(1) A surface-emitting laser that includes a substrate 1, an optical waveguide 2 parallel to the substrate surface, and an active region 3, and emits light from the active region in a direction perpendicular to the substrate surface, and at least from the active region A surface emitting laser in which a second or higher order grating is formed in a portion where the emitted light hits the optical waveguide.
〔2〕基板1を共有し該基板面に垂直な方向に光を放射
する複数の面発光レーザを含むレーザアレイであって、
各面発光レーザは該基板面に平行な光導波路2によって
光結合され且つ少なくとも各面発光レーザの活性領域3
1.32から放射する光が該光導波路に当たる部分に2
次以上のグレイティングが形成されているレーザアレイ
によって上記課題は解決される。[2] A laser array including a plurality of surface emitting lasers that share a substrate 1 and emit light in a direction perpendicular to the substrate surface,
Each surface emitting laser is optically coupled by an optical waveguide 2 parallel to the substrate surface and at least an active region 3 of each surface emitting laser.
2 in the part where the light emitted from 1.32 hits the optical waveguide.
The above problem is solved by a laser array in which more than one grating is formed.
本発明では波長選択の機構とし2次以上のグレーティン
グ付きの光導波路を面発光レーザの活性領域から放射す
るレーザ光の通路に設けている。In the present invention, as a wavelength selection mechanism, an optical waveguide with a secondary or higher order grating is provided in the path of the laser light emitted from the active region of the surface emitting laser.
グレイティングの周期をΔ、導波路の伝搬定数をβとす
ると1次の条件を満たす波長で極めて急峻に反射率が高
(なるので、この波長でレーザ発振を生じる。If the period of the grating is Δ and the propagation constant of the waveguide is β, the reflectance becomes extremely steep at a wavelength that satisfies the first-order condition, so laser oscillation occurs at this wavelength.
β=nX (271(/Δ)、 (n次のBragg条
件)2次以上の高次のグレイティングは光導波路の中を
通るガイドモードの他に該光導波路の外に漏れるリーキ
モードとも結合する。それゆえ1発振光を外部に取り出
すために2次以上のグレイティングを形成する。β= n Therefore, in order to extract one oscillation light to the outside, a grating of second or higher order is formed.
特に2次のグレイティングは導波方向のガイドモード及
び導波方向に垂直な方向のリーキモードとのみ結合する
ので、基板面に垂直な方向に進む光と基板面に平行な光
導波路との結合に適している。In particular, the second-order grating couples only the guided mode in the waveguide direction and the leaky mode in the direction perpendicular to the waveguide direction, so that the light traveling in the direction perpendicular to the substrate surface is coupled to the optical waveguide parallel to the substrate surface. suitable for
さらに、複数の面発光レーザが光導波路を通じて光結合
している時は、ガイドモードの光を仲介として発振光を
相互に干渉させ該発振光の位相関係を一定に保つことが
できる。Furthermore, when a plurality of surface emitting lasers are optically coupled through an optical waveguide, the oscillated lights can be made to interfere with each other using guided mode light as an intermediary, and the phase relationship of the oscillated lights can be kept constant.
なお、活性領域からの光が当たる光導波路部分を除いた
光導波路部分に1次のグレイティングを形成することに
より、光の損失を小さくすることができる。Note that optical loss can be reduced by forming a primary grating in a portion of the optical waveguide excluding the portion of the optical waveguide that is exposed to light from the active region.
以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.
第3図は実施例■である。第3図において、1はGaA
s基板、2はクラッドII!21.23及びコア層22
からなる光導波路、3は厚さ2.5μmのGaAsの活
性領域、4は厚さ1μmのp−GaxAl、、As (
x =0.4 )のp型クラッド層。FIG. 3 shows Example (2). In Figure 3, 1 is GaA
s board, 2 is clad II! 21.23 and core layer 22
3 is a GaAs active region with a thickness of 2.5 μm, 4 is a p-GaxAl layer with a thickness of 1 μm, As (
x = 0.4) p-type cladding layer.
5は厚さ0.2 μmのGaAsのキャップ層、6は6
1− p Ga、 AI、−、tAs (x =O−4
)層6 2、 n−Ga、Al、八s (x=0.
4 ) N63 、 p −Ga、 AI、−、
As (x =0.4 )層からなるフ゛ロッキング層
、7はSiO2の1色縁層。5 is a GaAs cap layer with a thickness of 0.2 μm, 6 is 6
1- p Ga, AI, -, tAs (x = O-4
) layer 6 2, n-Ga, Al, 8s (x=0.
4) N63, p-Ga, AI,-,
A locking layer consists of an As (x = 0.4) layer, and 7 is a monochromatic edge layer of SiO2.
8及び9はミラーであって誘電体多層膜、10はn電極
、11はn電極を表す。8 and 9 are mirrors and represent dielectric multilayer films, 10 is an n-electrode, and 11 is an n-electrode.
光導波路2の構成部分の組成と厚さと屈折率を下に示す
。The composition, thickness, and refractive index of the constituent parts of the optical waveguide 2 are shown below.
21、クラッド層 1μm。21, cladding layer 1 μm.
22、コア層 0.4 μm。22. Core layer 0.4 μm.
23、クラッド層 1μm。23, cladding layer 1 μm.
八1X Ga、−、As (x =0.4 )n
=3.39
AIXGa、−、As (x =0.2 )n=3.4
5
AlxGa、−、As (x =0.4 )n=3.3
9
コア層22とクラッド層23の境界面に2次のグレイテ
ィングが形成されている。共振波長λOを0.88μm
とし、上記の屈折率を用いてこの先導波路の固有値方程
式より伝搬定数βを求め、どのβ値を前述の式に入れて
2次のグレイティングの周#Aへを求めた。その結果、
A=0.515μmとなった。81X Ga, -, As (x = 0.4)n
= 3.39 AIXGa, -, As (x = 0.2) n = 3.4
5 AlxGa, -, As (x = 0.4) n = 3.3
9. A secondary grating is formed at the interface between the core layer 22 and the cladding layer 23. Resonance wavelength λO is 0.88μm
Using the above refractive index, the propagation constant β was determined from the eigenvalue equation of this leading waveguide, and which β value was entered into the above equation to determine the circumference #A of the second-order grating. the result,
A=0.515 μm.
本実施例は活性領域に接するクラッド層を先導波路で形
成している例であり、上記の構造により0.88μmの
発振波長を有する面発光レーザが実現できる。This example is an example in which the cladding layer in contact with the active region is formed by a leading waveguide, and the above structure can realize a surface emitting laser having an oscillation wavelength of 0.88 μm.
活性領域3から放射された光は光導波路に当たった後一
部は該光導波路を基板面に平行な方向に伝搬するが、2
次以上のグレイティングが形成された導波路ではリーキ
モードとの結合が大きく該導波路の外部に漏れる損失が
大きい。そこで、活性領域3から放射された光が光導波
路に当たる部分以外の光導波路部分には1次のグレイテ
ィングを形成して損失を少なくすることができる一第4
図は実施例■である。第4図において、符号は第3図中
の符号と同一のものを表し、24は厚さ1,5.crm
のn−GaXAt、−xAs (x =0.4 )のn
型クラフト層を表す。After hitting the optical waveguide, some of the light emitted from the active region 3 propagates through the optical waveguide in a direction parallel to the substrate surface, but 2
In a waveguide in which gratings of the following order or more are formed, the coupling with the leaky mode is large and the loss leaking to the outside of the waveguide is large. Therefore, it is possible to reduce the loss by forming a first-order grating in the optical waveguide portion other than the portion where the light emitted from the active region 3 hits the optical waveguide.
The figure shows Example 2. In FIG. 4, the symbols represent the same symbols as those in FIG. 3, and 24 indicates the thickness of 1, 5, . crm
n-GaXAt, -xAs (x = 0.4)
Represents the type craft layer.
本実施例は光導波路を活性領域と反対側の基板面上に形
成する構造である。活性領域3から放射された光は基板
中で減衰するので、基板はできるだけ薄く形成する。This embodiment has a structure in which the optical waveguide is formed on the substrate surface opposite to the active region. Since the light emitted from the active region 3 is attenuated in the substrate, the substrate is made as thin as possible.
本実施例においても、活性領域3から放射された光が当
たる光導波路部分に2次のグレイティングを形成し、そ
れ以外の光導波路部分には1次のグレイティングを形成
して光の利用効率を高めることができる。In this embodiment as well, a second-order grating is formed in the optical waveguide portion that is hit by the light emitted from the active region 3, and a first-order grating is formed in the other optical waveguide portions to improve the efficiency of light utilization. can be increased.
第5図は実施例■で、第3図の実施例Iに示した面発光
レーザを複数含むレーザアレイを示す。FIG. 5 shows Example 2, which shows a laser array including a plurality of surface emitting lasers shown in Example I of FIG.
第5図において、符号は第3図中の符号と同一のものを
表す。In FIG. 5, the symbols represent the same symbols as in FIG. 3.
複数の面発光レーザはGaAs基板1を共有し、光導波
路2はお互いに光結合している。該先導波路の活性領域
3から放射する光の当たる部分に2次のグレイティング
を形成し、それ以外の光導波路部分には1次のグレイテ
ィングを形成する。A plurality of surface emitting lasers share a GaAs substrate 1, and optical waveguides 2 are optically coupled to each other. A second-order grating is formed in the portion of the leading waveguide that is hit by the light emitted from the active region 3, and a first-order grating is formed in the other portion of the optical waveguide.
かかる構成では一つの面発光レーザの活性領域3から放
射された光が光導波路を伝って隣の面発光レーザ或いは
さらに遠くの面発光レーザに影響を与える。このような
干渉効果を利用することにより、主たる面発光レーザに
対して従たる面発光レーザが一定の位相関係を保ちなが
ら発振する。In such a configuration, light emitted from the active region 3 of one surface emitting laser propagates through the optical waveguide and influences an adjacent surface emitting laser or a surface emitting laser further away. By utilizing such an interference effect, the secondary surface emitting laser oscillates while maintaining a constant phase relationship with respect to the main surface emitting laser.
いわゆるMaster−3laveレーザとしての機能
を実現することができ、アレイ全体として位相同期のな
されたレーザアレイが得られる。A function as a so-called Master-3lave laser can be realized, and a laser array whose entire array is phase-synchronized can be obtained.
以上説明した様に2本発明によれば2面発光レーザの光
導波路中に形成されたグレイティングの周期を正確に抑
えることにより発振波長を正確に決定でき2発振波長域
の極めて狭い面発光レーザを実現することができる。さ
らに、複数の面発光レーザを含み、該複数の面発光レー
ザが一定の位相関係を保って発振するレーザアレイを提
供することができる。As explained above, according to the present invention, the oscillation wavelength can be accurately determined by accurately suppressing the period of the grating formed in the optical waveguide of the diagonal surface-emitting laser, which has an extremely narrow oscillation wavelength range. can be realized. Furthermore, it is possible to provide a laser array that includes a plurality of surface emitting lasers and in which the plurality of surface emitting lasers oscillate while maintaining a constant phase relationship.
かかる面発光レーザ及びレーザアレイは2次元光情報処
理用のデバイスとして利用価値が高い。Such surface emitting lasers and laser arrays have high utility value as devices for two-dimensional optical information processing.
第1図は本発明の面発光レーザの模式図。
第2図は本発明のレーザアレイの模゛式図。
第3図乃至第5図は実施例■乃至実施例■。
第6図は従来の面発光レーザの模式図。
第7図は従来例
である。図において。
1は基板であってGaAs基板。
2は光導波路。
21.23はクラッド層。
22はコア層。
24はn型クラッド層。
3.31.32は活性領域。
33は光吸収領域。
4.41.42はクラッド層であってn型クラッド層。
5はキャップ層。
6はブロッキング層。
61.63はp型GaA 1^3層。
62はn型GaAlAs層。
7は絶縁層。
8及び9はミラーであって誘電体多層膜。
81 、 82 、811,812,821.822は
ミラー10は電極であってn電極。
11、111,112は電極であってn電極。
苓り11月の面交丸し−ワ゛の禅式図
、第 1 図
体全四刀
し−プ゛
アレイtn4罫式図
第
図
実 方也4列
■
図
第
實
於。
イ列
圧
第
牛
図
イ見束力[有]金九し−ヲ′の係べ間
第 6f2i
q晃
采
1列
第
図FIG. 1 is a schematic diagram of a surface emitting laser according to the present invention. FIG. 2 is a schematic diagram of the laser array of the present invention. FIGS. 3 to 5 show examples ① to ②. FIG. 6 is a schematic diagram of a conventional surface emitting laser. FIG. 7 shows a conventional example. In fig. 1 is a substrate, which is a GaAs substrate. 2 is an optical waveguide. 21.23 is the cladding layer. 22 is the core layer. 24 is an n-type cladding layer. 3.31.32 is the active region. 33 is a light absorption region. 4.41.42 is a cladding layer, which is an n-type cladding layer. 5 is the cap layer. 6 is the blocking layer. 61.63 is p-type GaA 1^3 layer. 62 is an n-type GaAlAs layer. 7 is an insulating layer. 8 and 9 are mirrors and are dielectric multilayer films. 81, 82, 811, 812, 821.822, the mirror 10 is an n-electrode. 11, 111, and 112 are electrodes, which are n electrodes. November's Menko Marushi - Wa's Zen-style diagram, 1st figure all four swords - square array tn 4 ruled style figure 4 squares ■ figure number actual. I series pressure 1st column 1st column 6f2i 1st column 6f2i
Claims (1)
活性領域(3)を含み、該活性領域から該基板面に垂直
な方向に光を放射する面発光レーザであって、少なくと
も該活性領域から放射する光が該光導波路に当たる部分
に2次以上のグレイティングが形成されていることを特
徴とする面発光レーザ。 〔2〕基板(1)を共有し該基板面に垂直な方向に光を
放射する複数の面発光レーザを含むレーザアレイであっ
て、各面発光レーザは該基板面に平行な光導波路(2)
によって光結合され且つ少なくとも各面発光レーザの活
性領域(31、32)から放射する光が該光導波路に当
たる部分に2次以上のグレイティングが形成されている
ことを特徴とするレーザアレイ。[Claims] [1] Includes a substrate (1), an optical waveguide (2) parallel to the substrate surface, and an active region (3), and emits light from the active region in a direction perpendicular to the substrate surface. 1. A surface emitting laser, characterized in that a second or higher order grating is formed at least in a portion where light emitted from the active region hits the optical waveguide. [2] A laser array including a plurality of surface emitting lasers that share a substrate (1) and emit light in a direction perpendicular to the substrate surface, each surface emitting laser having an optical waveguide (2) parallel to the substrate surface. )
1. A laser array characterized in that a grating of second or higher order is formed in a portion of the optical waveguide which is optically coupled by the surface emitting laser and is emitted from at least the active region (31, 32) of each surface emitting laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20676188A JPH0254981A (en) | 1988-08-20 | 1988-08-20 | Surface-emission laser and laser array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20676188A JPH0254981A (en) | 1988-08-20 | 1988-08-20 | Surface-emission laser and laser array |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0254981A true JPH0254981A (en) | 1990-02-23 |
Family
ID=16528650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20676188A Pending JPH0254981A (en) | 1988-08-20 | 1988-08-20 | Surface-emission laser and laser array |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0254981A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021069A1 (en) * | 1991-05-14 | 1992-11-26 | Seiko Epson Corporation | Image-forming device |
WO1998057402A1 (en) * | 1997-06-11 | 1998-12-17 | Honeywell Inc. | Resonant reflector for improved optoelectronic device performance and enhanced applicability |
EP0852834B1 (en) * | 1995-09-29 | 1999-03-31 | BRITISH TELECOMMUNICATIONS public limited company | Optically resonant structure |
US6727520B2 (en) | 2000-12-29 | 2004-04-27 | Honeywell International Inc. | Spatially modulated reflector for an optoelectronic device |
US6782027B2 (en) | 2000-12-29 | 2004-08-24 | Finisar Corporation | Resonant reflector for use with optoelectronic devices |
US6836501B2 (en) | 2000-12-29 | 2004-12-28 | Finisar Corporation | Resonant reflector for increased wavelength and polarization control |
US8599897B2 (en) | 2000-12-29 | 2013-12-03 | Finisar Corporation | Tunable detector |
JP2014199923A (en) * | 2013-03-13 | 2014-10-23 | 株式会社リコー | Plane emission laser array, light source device, and process of manufacturing plane emission laser array |
JP2022500880A (en) * | 2018-09-21 | 2022-01-04 | オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH | Phase-coupled laser devices and methods for manufacturing phase-coupled laser devices. |
-
1988
- 1988-08-20 JP JP20676188A patent/JPH0254981A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021069A1 (en) * | 1991-05-14 | 1992-11-26 | Seiko Epson Corporation | Image-forming device |
US5610647A (en) * | 1991-05-14 | 1997-03-11 | Seigo Epson Corporation | Image forming apparatus including a plural laser beam scanning apparatus |
US6326992B1 (en) | 1991-05-14 | 2001-12-04 | Seiko Epson Corporation | Image forming apparatus |
EP0852834B1 (en) * | 1995-09-29 | 1999-03-31 | BRITISH TELECOMMUNICATIONS public limited company | Optically resonant structure |
WO1998057402A1 (en) * | 1997-06-11 | 1998-12-17 | Honeywell Inc. | Resonant reflector for improved optoelectronic device performance and enhanced applicability |
EP1309051A1 (en) * | 1997-06-11 | 2003-05-07 | Honeywell Inc. | Resonant reflector for improved optoelectronic device performance and enhanced applicability |
US6836501B2 (en) | 2000-12-29 | 2004-12-28 | Finisar Corporation | Resonant reflector for increased wavelength and polarization control |
US6782027B2 (en) | 2000-12-29 | 2004-08-24 | Finisar Corporation | Resonant reflector for use with optoelectronic devices |
US6727520B2 (en) | 2000-12-29 | 2004-04-27 | Honeywell International Inc. | Spatially modulated reflector for an optoelectronic device |
US7266135B2 (en) | 2000-12-29 | 2007-09-04 | Finisar Corporation | Method for producing laser with resonant reflector |
US7288421B2 (en) | 2000-12-29 | 2007-10-30 | Finisar Corporation | Method for forming an optoelectronic device having an isolation layer |
US7760786B2 (en) | 2000-12-29 | 2010-07-20 | Finisar Corporation | Laser with resonant reflector |
US8599897B2 (en) | 2000-12-29 | 2013-12-03 | Finisar Corporation | Tunable detector |
JP2014199923A (en) * | 2013-03-13 | 2014-10-23 | 株式会社リコー | Plane emission laser array, light source device, and process of manufacturing plane emission laser array |
JP2022500880A (en) * | 2018-09-21 | 2022-01-04 | オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH | Phase-coupled laser devices and methods for manufacturing phase-coupled laser devices. |
US11923656B2 (en) | 2018-09-21 | 2024-03-05 | Osram Oled Gmbh | Phase-coupled laser assembly and method for producing a phase-coupled laser assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5710847A (en) | Semiconductor optical functional device | |
JP3714430B2 (en) | Distributed feedback semiconductor laser device | |
US7499480B2 (en) | Photonic crystal structure and surface-emitting laser using the same | |
US4935930A (en) | Laser light source for generating beam collimated in at least one direction | |
US20190207362A1 (en) | Dual layer grating coupler | |
US20200366061A1 (en) | Tunable semiconductor laser based on half-wave coupled partial reflectors | |
JPH0254981A (en) | Surface-emission laser and laser array | |
JPH0685404A (en) | Two-dimensional monolithic coherent semiconductor laser array | |
CN113346352A (en) | Vertical cavity surface emitting laser and optical fiber coupling system | |
JPH09129954A (en) | Laser mode suppression system and control of resonance mode of laser system | |
JP3595677B2 (en) | Optical isolator, distributed feedback laser and optical integrated device | |
CN215221270U (en) | Vertical cavity surface emitting laser and optical fiber coupling system | |
JP4086260B2 (en) | Light emitting element module | |
JPH03195076A (en) | External resonator type variable wavelength semiconductor laser | |
JP3755176B2 (en) | Light emitting element module | |
JP2792736B2 (en) | A distributed feedback laser emitting from the surface of a curved grating. | |
US5442650A (en) | Distributed talbot filter surface-emitting distributed feedback laser | |
JPH11261163A (en) | Light-emitting element module | |
JPH01231387A (en) | Semiconductor light emitting device | |
KR100264775B1 (en) | Semiconductor laser | |
JPH0414024A (en) | Secondary higher harmonic generation device | |
JPS6320888A (en) | Semoconductor light-emitting device | |
JPS607790A (en) | Semiconductor laser device | |
CA1118085A (en) | Methods for simultaneous suppression of laser pulsations and continuous monitoring of output power | |
JPS62229890A (en) | Variable-wavelength semiconductor light source |