JPH0254797A - Surface treatment of metal - Google Patents

Surface treatment of metal

Info

Publication number
JPH0254797A
JPH0254797A JP20300888A JP20300888A JPH0254797A JP H0254797 A JPH0254797 A JP H0254797A JP 20300888 A JP20300888 A JP 20300888A JP 20300888 A JP20300888 A JP 20300888A JP H0254797 A JPH0254797 A JP H0254797A
Authority
JP
Japan
Prior art keywords
adhesion
corrosion resistance
chromate
ions
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20300888A
Other languages
Japanese (ja)
Other versions
JPH057477B2 (en
Inventor
Toshio Odajima
小田島 壽男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20300888A priority Critical patent/JPH0254797A/en
Publication of JPH0254797A publication Critical patent/JPH0254797A/en
Publication of JPH057477B2 publication Critical patent/JPH057477B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a coating film having superior corrosion resistance, workability and adhesion to an org. coating film on the surface of a metal by adding specified amts. of specified cations and anions to a bath having a specified concn. of CrO3 and by electrolytically treating the surface of the metal as the cathode at a specified current density in the resulting bath. CONSTITUTION:A chromating bath contg. 0.05-1mol/l (expressed in terms of CrO3) chromic anhydride, chromate or dichromate is prepd. and 0.01-0.2gram ion/l one or more among Cu<2+>, Zn<2+>, Ni<2+>, Co<2+> and Mn<2+> and 0.001-0.02 gram ion/l Cl<-> and/or F<-> are added to the bath. The surface of a metal is electrolytically treated as the cathode at 0.1-40A/dm<2> current density in the resulting bath. By this surface treatment, a chromate coating film having superior corrosion resistance, workability and adhesion to an org. coating film is formed in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属の表面処理法に関するものであり、特に
金属の耐食性及び塗料密着性の向上をはかることを目的
とするものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for surface treatment of metals, and is particularly aimed at improving the corrosion resistance and paint adhesion of metals.

本処理方法によって得られた表面処理鋼板は優れた耐食
性及び塗料密着性を有することから各種家電用、建材用
、自動車用の耐食性素材として使用することができる。
Since the surface-treated steel sheet obtained by this treatment method has excellent corrosion resistance and paint adhesion, it can be used as a corrosion-resistant material for various home appliances, building materials, and automobiles.

〔従来の技術〕[Conventional technology]

周知のごとく、電気亜鉛めっき鋼板や溶融めっき鋼板、
あるいは、各種合金めっき鋼板が自動車、家電、建材な
どに広く使用されている。
As is well known, electrogalvanized steel sheets, hot-dip galvanized steel sheets,
Alternatively, various alloy-plated steel sheets are widely used in automobiles, home appliances, building materials, and the like.

こうした中で、近年、特に耐食性に優れた表面処理鋼板
に対する要求がますます強くなり、このような鋼板の需
要は今後ますます増加する傾向にある。
Under these circumstances, in recent years, there has been an increasingly strong demand for surface-treated steel sheets that have particularly excellent corrosion resistance, and the demand for such steel sheets is likely to increase further in the future.

例えば、家電業界では省工程、省コストの観点から塗装
を省略できる採便用の可能な優れた耐食性を有する鋼板
に対する要求がある。また、自動車業界でも近年の環境
の変化、例えば、北米、北欧での冬の道路の凍結防止の
ために散布する岩塩による腐食、また、工業地帯でのS
(hガスの発生による酸性雨による腐食など、車体は激
しい腐食環境にさらされ安全上の観点から優れた耐食性
を有する表面処理鋼板が強く要求されている。
For example, in the home appliance industry, there is a demand for a steel plate that has excellent corrosion resistance and can be easily used without painting in terms of process and cost savings. In addition, recent environmental changes have also occurred in the automobile industry, such as corrosion caused by rock salt, which is sprayed to prevent winter roads from freezing in North America and Northern Europe, and S
(Vehicle bodies are exposed to severe corrosive environments such as corrosion caused by acid rain caused by the generation of H gas, and from a safety standpoint there is a strong demand for surface-treated steel sheets with excellent corrosion resistance.

これら問題点を解決するため種々の検討がなされ、多く
の製品が開発されてきた。
In order to solve these problems, various studies have been made and many products have been developed.

これまで鋼板の耐食性を向上するために亜鉛めっきが行
なわれてきた。
Until now, zinc plating has been used to improve the corrosion resistance of steel sheets.

亜鉛めっき鋼板は、亜鉛の犠牲防食作用によって鋼板の
腐食を防止するものであり、耐食性を得ようとすれば亜
鉛付着量を増加しなければならない。このため必要亜鉛
量のコストアップ、あるいは加工性、溶接性、生産性の
低下等いくつかの問題点がある。また、一般に亜鉛めっ
き鋼板は塗料密着性が悪い。
Galvanized steel sheets prevent corrosion of the steel sheet through the sacrificial anticorrosive action of zinc, and in order to obtain corrosion resistance, the amount of zinc deposited must be increased. For this reason, there are several problems such as an increase in cost due to the amount of zinc required, and a decrease in workability, weldability, and productivity. Additionally, galvanized steel sheets generally have poor paint adhesion.

このような亜鉛めっき鋼板の特に耐食性を改善する方法
として、各種合金めっき鋼板が開発されてきた。これら
合金めっき鋼板として、例えばZnNi系、Zn−Ni
−Co系、Zn−Ni−Cr系、Zn −Fe系、Zn
 −Co系、Zn−Cr系、Zn −Mn系等をあげる
ことができる。これら合金めっきにより、通常の亜鉛め
っき鋼板に比べ裸の耐食性は約3〜5倍向上することが
認められる。しかし、それでも長期問屋外に放置したり
、水や塩水を噴霧すると白錆や赤錆が発生しやすいこと
が問題である。
As a method for improving the corrosion resistance of such galvanized steel sheets, various alloy-plated steel sheets have been developed. These alloy-plated steel sheets include, for example, ZnNi-based, Zn-Ni
-Co series, Zn-Ni-Cr series, Zn -Fe series, Zn
Examples include -Co type, Zn-Cr type, Zn-Mn type, etc. It is recognized that these alloy platings improve the bare corrosion resistance by about 3 to 5 times compared to ordinary galvanized steel sheets. However, the problem is that white rust or red rust is likely to occur if left outside for a long period of time or if water or salt water is sprayed on it.

これに対し、耐食性を改善するためにクロメート処理を
施す方法が考えられるが、上記各種合金めっき面に十分
付着量を確保でき、かつ、密着性に優れたクロメート皮
膜を得ることのできるクロメート処理法は皆無である。
On the other hand, chromate treatment can be considered to improve corrosion resistance, but the chromate treatment method can ensure a sufficient amount of adhesion on the various alloy plating surfaces mentioned above and can obtain a chromate film with excellent adhesion. There are none.

一般に、クロメート皮膜が形成される場合、素地(素材
)からのイオンの溶出がきわめて重要で、クロメート皮
膜は溶出してきたイオンと反応しながら形成される。し
たがって、溶出イオンの種類及び量によって形成された
クロメート皮膜の特性は微妙に異なる。
Generally, when a chromate film is formed, the elution of ions from the base (material) is extremely important, and the chromate film is formed while reacting with the eluted ions. Therefore, the characteristics of the chromate film formed differ slightly depending on the type and amount of eluted ions.

上記合金めっき鋼板は優れた耐食性を有するが、これは
換言するとイオンが溶出しにくいことを意味し、クロメ
ート皮膜は形成されにくく付着量を確保できない。すな
わち、耐食性がよくなるほどクロメート処理は困難とな
る。
Although the above-mentioned alloy-plated steel sheet has excellent corrosion resistance, this means that ions are difficult to elute, and a chromate film is difficult to form and a sufficient amount of adhesion cannot be ensured. That is, the better the corrosion resistance, the more difficult the chromate treatment becomes.

クロメート処理法には大別して電解型クロメート、塗布
型クロメート、反応型クロメート法があるが、いずれの
場合も多かれ少なかれ同じことが言える。
Chromate treatment methods can be broadly classified into electrolytic chromate, coating chromate, and reactive chromate methods, but the same can be said to a greater or lesser extent in all cases.

また、最近の傾向として耐食性を更に改善するために、
亜鉛系めっき鋼板にクロメート処理し各種樹脂を塗布し
た、いわゆる簡易プレコートm板(以下有機複合鋼板と
呼ぶ)が開発され一部市販されている。
In addition, as a recent trend, in order to further improve corrosion resistance,
So-called simple pre-coated m-sheets (hereinafter referred to as organic composite steel sheets), which are zinc-plated steel sheets that are chromate-treated and coated with various resins, have been developed and some are commercially available.

こうした有機複合鋼板の下地用として用いるクロメート
皮膜は同然のことながら有機樹脂との密着性が優れてい
なければならない。
The chromate film used as the base for such organic composite steel sheets must have excellent adhesion to the organic resin.

また、これらは車体防錆鋼板などに使用される場合には
過酷な加工を受けるため、クロメート皮膜は素地及び有
機樹脂との密着性に優れているとともに皮膜自身加工に
耐えうる強固な皮膜でなければならない。
In addition, since these materials are subjected to harsh processing when used in rust-preventing steel plates for car bodies, etc., the chromate film must have excellent adhesion to the base material and organic resin, and be strong enough to withstand the processing itself. Must be.

各種めっき鋼板に対するクロメート処理も、すでに公知
のものが多く、種々のクロメート処理法が開発され、プ
ロパー化されている。
Many of the chromate treatments for various types of plated steel sheets are already well known, and various chromate treatment methods have been developed and made appropriate.

例えばクロム酸を主成分とし、他に硫酸を添加したもの
(特公昭39−7461号公報)、リン酸を添加したも
の(特公昭30−3514号公報、特公昭35−891
7号公報、特公昭36−9559号公報、特公昭369
560号公報)、ホウ酸を添加したもの(米国特許第2
733199号、同第2780592号)、ハロゲン(
Ct −。
For example, those containing chromic acid as the main component with the addition of sulfuric acid (Japanese Patent Publication No. 39-7461), and those containing phosphoric acid (Japanese Patent Publication No. 30-3514, Japanese Patent Publication No. 35-891)
Publication No. 7, Special Publication No. 36-9559, Special Publication No. 369
No. 560), with boric acid added (U.S. Patent No. 2)
733199, 2780592), halogen (
Ct-.

F−)を添加したもの(特公昭39−14363号公報
)等、各種陰イオンを添加した浴を用いて、鋼板を陰極
電解処理することが行なわれてきた。
Cathode electrolytic treatment of steel sheets has been carried out using baths to which various anions are added, such as baths to which various anions are added, such as baths to which F-) is added (Japanese Patent Publication No. 39-14363).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

所が、耐食性の優れた合金や、各種金属に容易に処理で
き、十分付着量を確保することができ、素材及び有機皮
膜との密着性に優れ、かつ、過酷な加工に耐えうるクロ
メート処理は皆無である。
However, chromate treatment can be easily applied to alloys with excellent corrosion resistance and various metals, can secure sufficient adhesion, has excellent adhesion to materials and organic coatings, and can withstand harsh processing. There are none.

その多くは、耐食性の優れた合金や、各種金属に処理す
ることが困難であり、また、耐食性に優れたものは塗料
密着性に劣り、逆に塗料密着性に優れたものは耐食性に
劣り、かつ、過酷な加工に耐えうるちのはない。
Many of them are difficult to process into alloys with excellent corrosion resistance and various metals, and those with excellent corrosion resistance have poor paint adhesion, and conversely, those with excellent paint adhesion have poor corrosion resistance. Moreover, there is no material that can withstand harsh processing.

本発明は、上記従来の技術の欠点を解決し、金属の耐食
性及び有機皮膜との密着性に優れ、かつ、加工性に優れ
た皮膜を有するクロメート処理法を提供することを目的
とするものである。
The purpose of the present invention is to solve the above-mentioned drawbacks of the conventional techniques and provide a chromate treatment method that provides a film that has excellent metal corrosion resistance and adhesion with an organic film, and has excellent workability. be.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は、クロム酸浴にカチオンとしてCu
、 Zn、 Ni、 Co、 Mnのイオンを、1種あ
るいは2種以上とF−、CI−のイオンを1種あるいは
2種含有せしめ、しかも無水クロム酸とカチオンとアニ
オンをぞれぞれ特定の濃度に抑え、かつ、王者が特定の
割合になるように調整した処理液中で、金属を陰極とし
て特定の電解条件で、電解処理することにより、金属上
に極く短時間のうちに皮膜をつくり、耐食性および有機
皮膜との密着性を著しく向上させることにより、商品価
値を著しく高めるものである。
That is, in the present invention, Cu is added as a cation to a chromic acid bath.
, Zn, Ni, Co, and Mn ions, and one or more F- and CI- ions, and chromic anhydride, cations, and anions each contain specific By electrolytically treating the metal under specific electrolytic conditions using the metal as a cathode in a treatment solution that has been adjusted to a specific proportion and with a low concentration, a film can be formed on the metal in a very short time. By significantly improving the structure, corrosion resistance, and adhesion with organic coatings, the product value is significantly increased.

この優れた特性は、無水クロム酸浴に上記カチオンのみ
を含有せしめた場合、あるいは上記アニオンのみを含有
せしめた場合には得られず、また、特定の電解条件から
はずれても得られず、浴組成と電解条件との組合せによ
ってはじめて得られるものである。
This excellent property cannot be obtained when the chromic anhydride bath contains only the above cations or only the above anions, nor can it be obtained even if the specific electrolytic conditions are deviated from the bath. It can only be obtained by a combination of composition and electrolytic conditions.

この際の無水クロム酸、カチオン、アニオンの間には次
の関係がなければならないことを見いだした。
It was found that the following relationship must exist between chromic anhydride, cation, and anion in this case.

無水クロム酸又はクロム酸塩もしくは重クロム酸塩を無
水クロム酸に換算した濃度 =0.05〜1モル/l     ・・・・・・・・・
・・・(1)溶解しているCu”、 Zn+″、 Ni
+″ (:o44. Mn44イオンのダラムイオン数 −0,01〜0.2グラムイオン/l ・旧・・(2)
溶解しているCI−、F−イオンのダラムイオン数  
−0,001〜0.02グラムイオン/i!、  ・・
・(3)陰極で電解処理する場合の電流密度 =0.1〜40^/dm”   ・・・・・・・・・・
・・・・・・・・・・・(4)上記(1)、 (2)、
 (3)、 (4)の条件を同時に満足する条件で金属
を陰極で電解処理した場合、生成する皮膜は耐食性、有
機皮膜との密着性が著しく向上することを確認した。ま
た、上記条件を同時に満足する場合にはあらゆる合金及
び金属の上に電気量に応じて目的とするクロメート皮膜
量を付着できることがわかった。
Concentration of chromic anhydride or chromate or dichromate converted to chromic anhydride = 0.05 to 1 mol/l ・・・・・・・・・
...(1) Dissolved Cu'', Zn+'', Ni
+'' (:o44. Number of Durham ions of Mn44 ions -0.01 to 0.2 g ions/l ・Old... (2)
Durham ion number of dissolved CI-, F- ions
-0,001 to 0.02 g ions/i! , ・・・
・(3) Current density when performing electrolytic treatment at the cathode = 0.1 to 40^/dm” ・・・・・・・・・・・・
・・・・・・・・・・・・(4) Above (1), (2),
It was confirmed that when a metal is electrolytically treated with a cathode under conditions that simultaneously satisfy conditions (3) and (4), the corrosion resistance and adhesion of the resulting film to the organic film are significantly improved. It has also been found that when the above conditions are simultaneously satisfied, a desired amount of chromate film can be deposited on any alloy or metal depending on the amount of electricity.

第1図は(2)、 (3)、 (4)を固定し、(1)
の無水クロム酸の濃度をかえた場合の鋼板の耐食性を、
第2図は有機皮膜との密着性を又第3図はCr付着量を
示したものである。
In Figure 1, (2), (3), and (4) are fixed, and (1)
The corrosion resistance of steel sheets when the concentration of chromic anhydride is changed is
FIG. 2 shows the adhesion with the organic film, and FIG. 3 shows the amount of Cr deposited.

すなわち、Zn−Ni系合金めっき鋼板(Ni=12%
)にCo44を2.5g71、CI−を0.25g/I
!、とじ、陰極で電解する場合の電流密度を5 A/d
m” 、電気量を5 C/dm”  (一定)とし、C
rysの濃度を種々かえた場合の耐食性を第1図に示し
、得られたクロメート皮膜上にポリアクリル酸エステル
の水溶性樹脂を2μ塗布した場合の有機樹脂との密着性
を第2図に示し、また、Cr付着量の関係を第3図に示
す。
That is, Zn-Ni alloy plated steel sheet (Ni=12%
) with 2.5g71 of Co44 and 0.25g/I of CI-
! , the current density when electrolyzing at the cathode is 5 A/d.
m", the amount of electricity is 5 C/dm" (constant), and C
Figure 1 shows the corrosion resistance when the concentration of rys was varied, and Figure 2 shows the adhesion to the organic resin when 2μ of a water-soluble polyacrylate resin was applied on the resulting chromate film. , and the relationship between the amount of Cr deposited is shown in FIG.

第4図は(1)、 (3)、 (4)を固定し、(2)
のCo”イオンの濃度をかえた場合の鋼板の耐食性を、
第5図は有機皮膜との密着性を、第6図はCr付着量の
関係を示したものである。
Figure 4 fixes (1), (3), and (4), and (2)
The corrosion resistance of the steel plate when the concentration of Co” ions is changed,
FIG. 5 shows the adhesion with the organic film, and FIG. 6 shows the relationship with the amount of Cr deposited.

すなわち、Zn−Ni系合金めっき鋼板(Ni=12%
)にCr(h= 20g/42. CI−=0.25g
’/ffiとし、陰極電解電流密度= 5 A/dm”
 、電気量= 5 C/d鵬2 (−定)とし、co+
+イオンの濃度を種々かえた場合の耐食性を第4図に示
し、得られたクロメート皮膜上にポリアクリル酸エステ
ルの水溶性樹脂を2μ塗布した場合の有機樹脂との密着
性を第5図に示し、Cr付着量の関係を第6図に示す。
That is, Zn-Ni alloy plated steel sheet (Ni=12%
) to Cr (h = 20g/42. CI- = 0.25g
'/ffi, cathode electrolysis current density = 5 A/dm''
, quantity of electricity = 5 C/dpeng2 (-constant), co+
Figure 4 shows the corrosion resistance when the concentration of + ions is varied, and Figure 5 shows the adhesion to the organic resin when 2μ of a water-soluble polyacrylate resin is applied on the resulting chromate film. and the relationship between the amount of Cr deposited is shown in FIG.

第7図は(1)、 (2)、 (4)を固定し、(3)
 ノC1−イオンの濃度をかえた場合の鋼板の耐食性を
、第8図は有機皮膜との密着性を、第9図はCr付着量
の関係を示したものである。
In Figure 7, (1), (2), and (4) are fixed, and (3)
FIG. 8 shows the relationship between the corrosion resistance of the steel sheet and the adhesion to the organic film when the concentration of C1- ions was changed, and FIG. 9 shows the relationship between the amount of Cr deposited.

すなわち、Zn−Ni系合金めっき鋼板(Ni=12%
)にCr(h= 20 g/ E 、 Co+″2.5
 g/ 1.とじ、陰極電解電流密度−5A/dm” 
、電気量= 5 C/dm”  (一定)とし、CI−
イオンの濃度をかえた場合の鋼板の耐食性を第7図に示
し、得られたクロメート皮膜上にポリアクリル酸エステ
ルの水溶性樹脂を2μ塗布した場合の有機樹脂との密着
性を第8図に示し、また、Cr付着量の関係を第9図に
示す。
That is, Zn-Ni alloy plated steel sheet (Ni=12%
) to Cr (h=20 g/E, Co+″2.5
g/1. Closing, cathode electrolysis current density -5A/dm"
, the amount of electricity = 5 C/dm” (constant), CI-
Figure 7 shows the corrosion resistance of steel sheets when the concentration of ions is changed, and Figure 8 shows the adhesion with organic resin when 2μ of a water-soluble polyacrylate resin is applied on the resulting chromate film. Furthermore, the relationship between the amount of Cr deposited is shown in FIG.

第10図は(1)、 (2)、 (3)を固定し、陰極
電解電流密度をかえた場合の鋼板の耐食性を、第11図
は有機皮膜との密着性を、第12図はCr付着量の関係
を示したものである。
Figure 10 shows the corrosion resistance of the steel plate when (1), (2), and (3) are fixed and the cathode electrolysis current density is changed. Figure 11 shows the adhesion with the organic film. This shows the relationship between the amount of adhesion.

すなわち、Zn−Ni系合金めっき鋼板(Ni = 1
2%)にCr(h = 20 g/ l、Co” = 
2.5 g/ i!、CI−=0.25g#!とじ、陰
極電解電流密度をかえた場合の鋼板の耐食性を第10図
に示し、得られたクロメート皮膜上にポリアクリル酸エ
ステルの水溶性樹脂を2μ塗布した場合の有機樹脂との
密着性を第11図に示し、また、Cr付着量の関係を第
12図に示す。
That is, Zn-Ni alloy plated steel sheet (Ni = 1
2%) to Cr (h = 20 g/l, Co” =
2.5 g/i! , CI-=0.25g#! Figure 10 shows the corrosion resistance of the steel plate when the binding and cathodic electrolytic current densities are changed, and the adhesion with the organic resin when 2 μm of a water-soluble polyacrylate resin is coated on the obtained chromate film is shown in Figure 10. This is shown in FIG. 11, and the relationship between the amount of Cr deposited is shown in FIG. 12.

ここで耐食性は、JIS−Z −2371規格に準拠し
た塩水噴霧試験により(食塩水濃度5%、槽内温度35
°C1噴霧圧力20psi)600時間後の発錆状況を
示し、◎、O2Δ、X、XXの5段階で評価し、◎が最
良である。
Here, the corrosion resistance was determined by a salt spray test in accordance with the JIS-Z-2371 standard (salt water concentration 5%, tank temperature 35%).
The rusting state after 600 hours (°C1 spray pressure 20 psi) is shown and evaluated in five stages: ◎, O2Δ, X, and XX, with ◎ being the best.

◎ : 赤錆発生   0% O:  〃     0超〜1% △ :  〃     1超〜10% × :l/      10超〜50%XX:   /
/      50%超有機樹脂の密着性は陰極電解処
理後ポリアクリル酸エステルの水溶液を2μとなるよう
に塗布し、120°Cで乾燥した後、塗布した試験片を
30分沸騰し、その後2mmゴバン目に皮膜をカットし
テープ剥離し、剥離面積で評価した。
◎ : Red rust occurrence 0% O: 〃 More than 0~1% △:〃 More than 1~10% × :l/ More than 10~50%XX: /
/ The adhesion of the 50% super organic resin was determined by applying an aqueous solution of polyacrylic acid ester to a thickness of 2μ after cathodic electrolytic treatment, drying at 120°C, boiling the applied test piece for 30 minutes, and then applying a 2mm goblin. The film was cut on the eye, peeled off with tape, and evaluated based on the peeled area.

◎ : 剥離面積   0% O:  〃     0超〜1% Δ :  〃     1超〜10% X  :  //      10超〜50%XX: 
  /l      50%超第1図から明らかなよう
に、Cry、が0.05モル/l未満及び1モル/l超
では耐食性は低下し、0.05〜1モル/j2の場合に
優れた耐食性が得られる。
◎: Peeling area 0% O: 〃 More than 0 to 1% Δ:〃 More than 1 to 10% X: // More than 10 to 50% XX:
As is clear from FIG. 1, when Cry is less than 0.05 mol/l and more than 1 mol/l, corrosion resistance decreases, and when it is 0.05 to 1 mol/l, excellent corrosion resistance is achieved. is obtained.

第2図から明らかなように、表面に形成した有機皮膜の
密着性もCrO+が0.05〜1モル/lの場合に優れ
、0.05モル/l未満あるいは1モル/l超では低下
する。
As is clear from Figure 2, the adhesion of the organic film formed on the surface is excellent when CrO+ is 0.05 to 1 mol/l, and deteriorates when it is less than 0.05 mol/l or more than 1 mol/l. .

第3図から明らかなように、Cry、が0.05〜0.
1モル/lではCr付着量を安定して確保できるが、0
.05モル/1未満あるいは0.1モル/l超ではCr
付着量は極端に低下する。
As is clear from FIG. 3, Cry is 0.05 to 0.
At 1 mol/l, the amount of Cr attached can be stably ensured, but at 0
.. Cr less than 0.05 mol/l or more than 0.1 mol/l
The amount of adhesion is extremely reduced.

第4図から明らかなようにCo”が0.01〜0.2グ
ラムイオン/lでは優れた耐食性を示し、0.01グラ
ムイオン/l未満あるいは0.2グラムイオン/l超で
は耐食性は低下する。
As is clear from Figure 4, excellent corrosion resistance is exhibited when Co'' is between 0.01 and 0.2 g ions/l, and corrosion resistance decreases when it is less than 0.01 g ions/l or more than 0.2 g ions/l. do.

第5図から明らかなように有機皮膜の密着性もCo−が
0.01〜0.2グラムイオン/りの領域で優れ、0.
01グラムイオン/l未満、0.2グラムイオン/l超
では密着性は低下する。
As is clear from FIG. 5, the adhesion of the organic film is excellent in the range of 0.01 to 0.2 gram ion/litre of Co-;
If the amount is less than 0.01 gram ion/l or more than 0.2 gram ion/l, the adhesion will decrease.

第6図から明らかなようにCo”が0.01〜0.2グ
ラムイオン/lではCr付着量を安定して確保できるが
、0.01グラムイオン/l未満あるいは0.2グラム
イオン/l超ではCr付着量は極端に低下し、目的量を
付着するのが困難である。
As is clear from Fig. 6, when Co'' is 0.01 to 0.2 g ions/l, the amount of Cr attached can be stably ensured, but if it is less than 0.01 g ions/l or 0.2 g ions/l If the amount of Cr is exceeded, the amount of Cr deposited will be extremely reduced, making it difficult to deposit the desired amount.

第7図から明らかなようにCI−が0.001〜0.0
2グラムイオン/lではきわめて優れたクロメート皮膜
が形成され、優れた耐食性を示す。o、ooiグラムイ
オン/l未満あるいは0.02グラムイオン/l超では
耐食性は著しく低下する。
As is clear from Figure 7, CI- is 0.001 to 0.0.
At 2 g ions/l, an extremely good chromate film is formed and exhibits excellent corrosion resistance. If it is less than o, ooi gram ion/l or more than 0.02 gram ion/l, the corrosion resistance will be significantly reduced.

これは形成されたクロメート皮膜の構造がCI−濃度に
よって大きく異なり、C1−が上記範囲にあればCrz
03主体の皮膜が形成されるが、範囲からはずれると金
属CrやCr (Oll) 3・n H20主体となる
ためである。
This is because the structure of the formed chromate film varies greatly depending on the CI concentration, and if C1- is within the above range, Crz
This is because a film mainly composed of 03 is formed, but if it deviates from this range, the film mainly consists of metal Cr or Cr (Oll) 3·n H20.

第8図から明らかなように有機皮膜の密着性もCt−が
0.001〜0.02グラムイオン/lの領域で優れ、
0.001グラムイオン/l未満、0.02グラムイオ
ン/l超では密着性は著しく低下する。
As is clear from Figure 8, the adhesion of the organic film is excellent in the Ct- range of 0.001 to 0.02 gram ions/l;
If it is less than 0.001 gram ion/l or more than 0.02 gram ion/l, the adhesion will be significantly reduced.

第9図から明らかなようにCI−が0.001グラムイ
オン/乏〜0.02グラムイオン/lではCr付着量を
安定して確保できるが、0.001グラムイオン/l未
満あるいはO9・02グラムイオン/l超ではCr付着
量は低下する。
As is clear from Fig. 9, when CI- is 0.001 gram ion/poor to 0.02 gram ion/l, the amount of Cr attached can be stably secured, but if it is less than 0.001 gram ion/l or O9.02 When the amount exceeds gram ions/l, the amount of Cr deposited decreases.

第10図から明らかなように陰極電解を行なうに際し、
電流密度を0. I A/dmz未満あるいは40A/
dm”超にした場合、耐食性は著しく劣るのに対し、0
.1〜40A/dm”で電解処理した場合には優れた耐
食性が得られる。
As is clear from Figure 10, when performing cathodic electrolysis,
Set the current density to 0. less than I A/dmz or 40A/
dm", the corrosion resistance is markedly inferior, whereas
.. Excellent corrosion resistance can be obtained when electrolytically treated at 1 to 40 A/dm''.

第11図から明らかなように0.1〜40 A/dm”
で電解処理した場合には有機皮膜は優れた密着性を示す
が、0.1 A/dm”未満あるいは4〇八へdm”超
の場合には密着性は劣る。
As is clear from Fig. 11, 0.1 to 40 A/dm”
The organic film exhibits excellent adhesion when electrolytically treated at 0.1 A/dm" or above 408 dm", but the adhesion is poor.

これは0.1 A/dm”未満で電解処理した場合には
Cr(OH) 3−nHzO主体の皮膜が形成され、4
0A/dm”超で電解した場合にはCr (OH) :
+・nHzo及び金属Cr主体の皮膜が形成されるのに
対し、0.1〜404/d+a”で電解した場合にはC
r、03主体のクロメート皮膜が形成されるためである
When electrolytically treated at less than 0.1 A/dm, a film mainly composed of Cr(OH) 3-nHzO is formed, and 4
When electrolyzed at more than 0 A/dm, Cr (OH):
+・nHzo and a film mainly composed of Cr metal is formed, whereas when electrolyzed at 0.1 to 404/d+a'', C
This is because a chromate film consisting mainly of r,03 is formed.

第12図から明らかなように0. I A/da”未満
あるいは40 A/dl11”超で電解処理した場合に
はCrの析出効率は著しく低下するのに対し、0.1〜
40A/dmzで電解すると安定してCr付着量を確保
することができる。
As is clear from Figure 12, 0. When electrolytically treated at less than 40 A/dl11" or more than 40 A/dl11", the Cr precipitation efficiency decreases significantly;
When electrolyzed at 40 A/dmz, the amount of Cr deposited can be stably ensured.

第1図〜第12図の結果はカチオンとしてCo−を用い
た結果を示したが、Co”+のかわりにCu”Zn”、
 Ni”、 Mn”を用いてもほぼ同様の結果が得られ
た。また、2種以上のカチオンを共存させても同様の結
果が得られた。
The results shown in Figures 1 to 12 show the results using Co- as the cation, but instead of Co''+, Cu''Zn'',
Almost similar results were obtained using Ni'' and Mn''. Moreover, similar results were obtained even when two or more types of cations were allowed to coexist.

また、アニオンとしてC1−を用いた結果を示したが、
CI−のかわりにF−を用いても、あるいは両者を共存
させてもほぼ同様の結果が得られた。
In addition, although we showed the results using C1- as the anion,
Almost the same results were obtained even when F- was used instead of CI- or when both were used together.

(実施例参照) 以上の結果から本発明では 無水クロム酸、カチオン、アニオンの共存する浴で電解
クロメート処理を行なうに際し、無水クロム酸、又は、
クロム酸塩、もしくは、重クロム酸塩を無水クロム酸に
換算した濃度=0.05〜1モル/l 溶解しているCu”、 Znす、 Ni”、 Co”、
 Mn”+の1種あるいは2種以上のイオンのダラムイ
オン数=0.01〜0.2グラムイオン/l 溶解しているCI−、F”イオンの1種あるいは2種の
イオンのダラムイオン数 =O,OO1〜0.02グラムイオン/rとなるように
し、かつ、陰極で電解処理する場合の電流密度 = 0.1〜40 A/dm” で処理するものである。
(See Examples) From the above results, in the present invention, when performing electrolytic chromate treatment in a bath in which chromic anhydride, cations, and anions coexist, chromic anhydride or
Concentration of chromate or dichromate converted to chromic anhydride = 0.05 to 1 mol/l Dissolved Cu", Zn, Ni", Co",
Number of dulam ions of one or more types of Mn"+ ions = 0.01 to 0.2 gram ions/l Number of dulam ions of one or two types of dissolved CI- and F" ions = O, OO 1 to 0.02 gram ions/r, and the current density in the case of electrolytic treatment at the cathode is 0.1 to 40 A/dm''.

また、本結果はZn−Ni系合金めっき鋼板に実施した
例について示したが、本処理はあらゆる金属、あらゆる
合金にクロメート皮膜を形成することが可能で、かつ、
電気量によってCr付着量を自由にコントロールするこ
とができる。
Furthermore, although the present results were shown for an example performed on a Zn-Ni alloy plated steel sheet, this treatment is capable of forming a chromate film on any metal or any alloy, and
The amount of Cr deposited can be freely controlled by the amount of electricity.

従来のクロメートが素地から溶出してくるイオンとの反
応によって皮膜が形成されるのに対し、本処理の場合は
素地からのイオンの溶出に無関係に皮膜が形成されると
いう特徴を有し、従来のクロメート処理とは本質的に異
なる。
While conventional chromates form a film through reaction with ions eluted from the substrate, this treatment has the characteristic that a film is formed regardless of the ion elution from the substrate. This is essentially different from chromate treatment.

また、本処理によって得られたクロメート皮膜は優れた
耐食性を有するとともに、有機樹脂との密着性に優れて
いる。本結果では例としてポリアクリル酸エステルにつ
いて示したが、オレフィン/アクリル酸共重合体樹脂、
ポリメタクリル酸及びその共重合体樹脂、ポリメタクリ
ル酸エステル及びその共重合体樹脂、ポリアクリル酸及
びその共重合体樹脂、ポリアクリル酸エステル及びその
共重合体樹脂等の水系樹脂分散体や、エポキシ樹脂、メ
ラミン樹脂をはじめとする各種溶剤系樹脂等いずれの有
機樹脂とも優れた密着性が確保される。したがって、前
述した有機複合鋼板の有機樹脂の下地用クロメートとし
て最適である。
Furthermore, the chromate film obtained by this treatment has excellent corrosion resistance and excellent adhesion to organic resins. In this result, polyacrylic acid ester was shown as an example, but olefin/acrylic acid copolymer resin,
Water-based resin dispersions such as polymethacrylic acid and its copolymer resin, polymethacrylic acid ester and its copolymer resin, polyacrylic acid and its copolymer resin, polyacrylic acid ester and its copolymer resin, and epoxy Excellent adhesion is ensured with any organic resin such as resin or various solvent-based resins including melamine resin. Therefore, it is most suitable as a chromate for the organic resin base of the above-mentioned organic composite steel sheet.

一方、有機樹脂との密着性が優れていることから、本ク
ロメート皮膜にED塗装したり、あるいはスプレー塗装
した場合の塗膜との密着性に優れていることから、塗装
鋼板の下地用としても最適である。
On the other hand, since it has excellent adhesion with organic resins, it also has excellent adhesion with paint films when applied with ED coating or spray painting, so it can also be used as a base for painted steel sheets. Optimal.

以下本発明の実施例を比較例と共に示す。Examples of the present invention will be shown below along with comparative examples.

〈実施例1〉 Zn−Ni系合金めっき鋼板(Ni−11,2%)に次
の条件で陰極電解処理した。
<Example 1> A Zn-Ni alloy plated steel sheet (Ni-11.2%) was subjected to cathodic electrolysis treatment under the following conditions.

Cr(h     30g/ff1 co4+         2.5g)2CI−0,2
5g/E 電解条件: 電流密度    5へ/dm2電解時間 
   1秒 〈実施例2〉 Zn −Fe系合金めっき鋼板(Fe=40%)に次の
条件で陰極電解処理した。
Cr (h 30g/ff1 co4+ 2.5g)2CI-0,2
5g/E Electrolysis conditions: Current density to 5/dm2 Electrolysis time
1 second (Example 2) A Zn-Fe alloy plated steel sheet (Fe=40%) was subjected to cathodic electrolysis treatment under the following conditions.

Cry320g/j! Zn十◆          2.0 g/ ECl−
0,2g/l 電解条件: 電流密度    2 A/dm”電解時間
    2.5秒 〈実施例3〉 Zn−Ajli系合金めっき鋼板(八2=12%)に次
の条件で陰極電解処理した。
Cry320g/j! Zn◆ 2.0 g/ECl-
0.2 g/l Electrolytic conditions: Current density 2 A/dm Electrolytic time 2.5 seconds (Example 3) A Zn-Ajli alloy plated steel sheet (82=12%) was subjected to cathodic electrolysis treatment under the following conditions.

Cr0340g/l Ni”     2.7 g/ I Cl−0,3g/ff 電解条件: 電流密度    10A/dm”電解時間
    0.5秒 〈実施例4〉 Zn −Cr系合金めっき鋼板(Cr= 12%)に次
の条件で陰極電解処理した。
Cr0340g/l Ni" 2.7 g/I Cl-0.3g/ff Electrolysis conditions: Current density 10A/dm" Electrolysis time 0.5 seconds <Example 4> Zn-Cr alloy plated steel plate (Cr = 12% ) was subjected to cathodic electrolysis treatment under the following conditions.

Cr0310g/j2 Mn−3,5g/ Q Cl −0,15g/ I!。Cr0310g/j2 Mn-3,5g/Q Cl -0.15g/I! .

電解条件: 電流密度    3 A/dm2電解時間
    1.7秒 〈実施例5〉 Zn −Mn系合金めっき鋼板(Mn=56%)を次の
条件で陰極電解処理した。
Electrolysis conditions: Current density: 3 A/dm2 Electrolysis time: 1.7 seconds (Example 5) A Zn-Mn alloy plated steel sheet (Mn=56%) was subjected to cathode electrolysis treatment under the following conditions.

Cr(h      50g/l Cu−2,5g/ 42 F−0,15g#! 電解条件: 電流密度    10^/dm”電解時間
    0.7秒 〈実施例6〉 Zn−Nt−Co系合金めっき鋼板(Ni−10,5%
、Co=0.5%)を次の条件で陰極電解処理した。
Cr (h 50g/l Cu-2.5g/ 42 F-0.15g#! Electrolysis conditions: Current density 10^/dm" Electrolysis time 0.7 seconds <Example 6> Zn-Nt-Co alloy plated steel sheet (Ni-10.5%
, Co = 0.5%) was subjected to cathodic electrolysis treatment under the following conditions.

Cry340g/I Co”     4.0 g/ I Cl−0,2g7N 電解条件: 電流密度    15A/dm”電解時間
    0.8秒 〈実施例7〉 Zn−Ni−Cr系合金めっき鋼板(Ni= 10.8
%、Cr=1.5%)を次の条件で陰極電解処理した。
Cry340g/ICo" 4.0g/ICl-0,2g7N Electrolysis conditions: Current density 15A/dm" Electrolysis time 0.8 seconds <Example 7> Zn-Ni-Cr alloy plated steel plate (Ni=10. 8
%, Cr=1.5%) was subjected to cathodic electrolytic treatment under the following conditions.

Cr0i      15g/j2 CO〜     2.0 g/ I Cl −0,15g/ 1 電解条件: 電流密度   7.5 A/dm”電解時
間   0.6秒 〈比較例1〉 Zn−Ni系合金めっき鋼板(Ni= 11.8%)を
次の条件で陰極電解処理した。
Cr0i 15g/j2 CO~2.0g/I Cl -0.15g/1 Electrolysis conditions: Current density 7.5 A/dm Electrolysis time 0.6 seconds <Comparative example 1> Zn-Ni alloy plated steel sheet ( Ni=11.8%) was subjected to cathodic electrolysis treatment under the following conditions.

Cry)      50g/1 11□504    0.25g/42電解条件: 電
流密度   50 A/dm”電解時間   2秒 〈比較例2〉 Zn−Ni−Co系合金めっき鋼板(Ni= 11.5
%Co=0.5%)を次の条件で陰極電解処理した。
Cry) 50g/1 11□504 0.25g/42 Electrolysis conditions: Current density 50 A/dm" Electrolysis time 2 seconds <Comparative example 2> Zn-Ni-Co alloy plated steel plate (Ni = 11.5
%Co=0.5%) was subjected to cathodic electrolysis treatment under the following conditions.

CrO:+      40g/i!。CrO:+ 40g/i! .

H,SO,0,2g/ 1 電解条件: 電流密度   60A/dm”電解時間 
  1.5秒 第1表に各実施例及び比較例の塩水噴霧試験による耐食
性及びCr付着量を示し、第2表はオレフィン/アクリ
ル酸共重合体樹脂を2μ塗布した場合の樹脂の密着性を
示す。塩水噴霧試験法及び評価法は第1図、第4図、第
7図、第10図と同じ方式である。樹脂の密着性の評価
法は第2図、第5図、第8図、第11図と同じ方式であ
る。
H, SO, 0.2g/1 Electrolysis conditions: Current density 60A/dm” Electrolysis time
1.5 seconds Table 1 shows the corrosion resistance and Cr adhesion amount by salt spray test of each example and comparative example, and Table 2 shows the adhesion of the resin when 2μ of olefin/acrylic acid copolymer resin was applied. show. The salt spray test method and evaluation method are the same as those shown in FIGS. 1, 4, 7, and 10. The evaluation method of resin adhesion is the same as that shown in FIGS. 2, 5, 8, and 11.

第1表から明らかなように、各種合金めっき鋼板に本発
明を実施した場合、耐食性はSST 600hでほとん
ど変化なく、1200hで1部にわずかに赤錆が発生す
るものがある程度である。これに対し公知のクロメート
浴で処理した場合(比較例1.2〉では、SST 40
0h後ですでに白錆が70%前後発生し、600hで赤
錆がかなり認められた。
As is clear from Table 1, when the present invention is applied to various alloy-plated steel sheets, the corrosion resistance hardly changes after 600 hours of SST, and a slight red rust occurs in some parts after 1200 hours of SST. On the other hand, when treated with a known chromate bath (Comparative Example 1.2), SST 40
After 0 hours, around 70% white rust had already occurred, and after 600 hours, a considerable amount of red rust was observed.

一方、第2表から明らかなように本発明を実施した場合
、有機樹脂との密着性はきわめて優れているが、公知の
クロメート浴で処理した場合〈比較例1.2〉では、剥
離の形跡が認められる。
On the other hand, as is clear from Table 2, when the present invention is implemented, the adhesion with the organic resin is extremely excellent, but when treated with a known chromate bath (Comparative Example 1.2), there is no evidence of peeling. is recognized.

〈発明の効果〉 従来、公知のクロメート処理には、各種金属や合金に処
理して目的量のクロメートを安定して確保し、耐食性と
有機樹脂との密着性を十分満足するものは存在しなかっ
た。これに対し、無水クロム酸、特殊なアニオン、カチ
オンをそれぞれ特定の濃度範囲にコントロールし、かつ
、特定の条件で陰極電解処理することにより、これらの
相乗効果によって、きわめて優れた耐食性と有機樹脂と
の密着性に優れた皮膜が形成され、本発明を適用するこ
とにより、その経済的効果はきわめて大なるものである
<Effects of the Invention> Conventionally, there has been no known chromate treatment that can stably secure the desired amount of chromate by treating various metals and alloys and sufficiently satisfy corrosion resistance and adhesion with organic resins. Ta. On the other hand, by controlling the concentrations of chromic anhydride, special anions, and cations within specific ranges, and performing cathodic electrolysis treatment under specific conditions, the synergistic effect of these results in extremely excellent corrosion resistance and organic resins. A film with excellent adhesion is formed, and by applying the present invention, the economic effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はCo”イオン濃度、CI−、イオン濃
度、電流密度を固定し、無水クロム酸の濃度をかえた場
合の耐食性、有機皮膜との密着性、Cr付着量の関係を
示したものである。 第4図〜第6図は無水クロム酸濃度、CI−イオン濃度
、電流密度を固定し、Co″“イオンの濃度をかえた場
合の耐食性、有機皮膜との密着性、Cr付着量の関係を
示したものである。 第7図〜第9図は無水クロム酸濃度、Co〜イオン濃度
、電流密度を固定しCI−イオンの濃度をかえた場合の
耐食性、有機皮膜との密着性、Cr付着量の関係を示し
たものである。 第10図〜第12図は無水クロム酸濃度、CO〜イオン
濃度、CI−イオン濃度、を固定し、電流密度をかえた
場合の耐食性、有機皮膜との密着性、Cr付着量の関係
を示したものである。 特許出願人 新日本製鐵株式會社
Figures 1 to 3 show the relationship between corrosion resistance, adhesion to organic film, and amount of Cr deposited when the Co" ion concentration, CI-, ion concentration, and current density are fixed and the concentration of chromic anhydride is changed. Figures 4 to 6 show the corrosion resistance, adhesion to the organic film, and Figures 7 to 9 show the relationship between the amount of Cr deposited. Figures 7 to 9 show the corrosion resistance, organic film and Figures 10 to 12 show the relationship between the adhesion of chromic acid and the amount of Cr deposited. Figures 10 to 12 show the relationship between the chromic anhydride concentration, CO~ ion concentration, and CI~ ion concentration when changing the current density. This shows the relationship between corrosion resistance, adhesion to organic film, and amount of Cr deposited. Patent applicant: Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 無水クロム酸又はクロム酸塩もしくは重クロム酸塩を、
無水クロム酸に換算して、0.05モル/l〜1モル/
l含む浴に、Cu^+^+、Zn^+^+、Ni^+^
+、Co^+^+、Mn^+^+のイオンの1種または
2種以上を0.01グラムイオン/l〜0.2グラムイ
オン/l含有せしめ、さらにCl^−、F^−イオンの
1種または2種を0.001グラムイオン/l〜0.0
2グラムイオン/l含有せしめた浴で、0.1A/dm
^2〜40A/dm^2の電流密度で陰極電解処理する
ことを特徴とする金属の表面処理方法。
Chromic anhydride or chromate or dichromate,
0.05 mol/l to 1 mol/l in terms of chromic anhydride
In the bath containing l, Cu^+^+, Zn^+^+, Ni^+^
+, Co^+^+, Mn^+^+ ions or two or more ions at a concentration of 0.01 to 0.2 gram ions/l, and further Cl^- and F^- ions. 0.001 gram ion/l to 0.0 of one or two of the following
0.1 A/dm in a bath containing 2 g ions/l
A metal surface treatment method characterized by cathodic electrolytic treatment at a current density of ^2 to 40 A/dm^2.
JP20300888A 1988-08-15 1988-08-15 Surface treatment of metal Granted JPH0254797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20300888A JPH0254797A (en) 1988-08-15 1988-08-15 Surface treatment of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20300888A JPH0254797A (en) 1988-08-15 1988-08-15 Surface treatment of metal

Publications (2)

Publication Number Publication Date
JPH0254797A true JPH0254797A (en) 1990-02-23
JPH057477B2 JPH057477B2 (en) 1993-01-28

Family

ID=16466806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20300888A Granted JPH0254797A (en) 1988-08-15 1988-08-15 Surface treatment of metal

Country Status (1)

Country Link
JP (1) JPH0254797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249741A (en) * 1992-05-04 1993-10-05 International Business Machines Corporation Automatic fan speed control
US5474120A (en) * 1991-10-15 1995-12-12 Sundstrand Corporation Two-channel cooling for providing back-up cooling capability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523893A (en) * 1975-06-26 1977-01-12 Henkel & Cie Gmbh Production of acid protease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523893A (en) * 1975-06-26 1977-01-12 Henkel & Cie Gmbh Production of acid protease

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474120A (en) * 1991-10-15 1995-12-12 Sundstrand Corporation Two-channel cooling for providing back-up cooling capability
US5249741A (en) * 1992-05-04 1993-10-05 International Business Machines Corporation Automatic fan speed control

Also Published As

Publication number Publication date
JPH057477B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
US7641981B2 (en) Surface treated metal material
Verberne Zinc-cobalt alloy electrodeposition
KR20020068533A (en) Organic composite coated zinc-based metal plated steel sheet
JPH0513828B2 (en)
JPH0254797A (en) Surface treatment of metal
JP2020503440A (en) Aqueous alkaline electrolyte for depositing a zinc-containing film on the surface of a piece of metal
CN101413121A (en) Galvanizing layer phosphatization and chromium-free passivation combined metal surface treatment process
JPS6314071B2 (en)
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
JPH0142356B2 (en)
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPS5938313B2 (en) Highly corrosion resistant electrolytic zinc alloy plated steel sheet and its manufacturing method
JPH01290797A (en) Composite electroplated steel sheet having superior corrosion resistance
JP3229893B2 (en) Weldable black steel plate with excellent design
JPH0351124A (en) High corrosion resistant surface treatment steel sheet
JPH04246193A (en) Galvanized metal material excellent in resistance to heat and corrosion
KR920010778B1 (en) Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making
Chatterjee Electrodeposition of zinc alloys
JP2808649B2 (en) Post-processing method of zinc or zinc alloy coated steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
CN116288303A (en) Cobalt-free passivation solution for zinc and zinc alloy surface deposition and preparation method thereof
JPH04304388A (en) Organic composite plated steel sheet of zn-cr-co system having excellent post-working corrosion resistance, painting corrosion resistance and end face rust preventing property
JPH0129874B2 (en)
JPS6043498A (en) Galvanized steel sheet having high corrosion resistance and its production
JPH04304387A (en) Organic composite plated steel sheet of zn-cr-co system having excellent post-working corrosion resistance, painting corrosion resistance and end face rust preventing property