JPH0254552A - Manufacture of dielectric isolation substrate - Google Patents
Manufacture of dielectric isolation substrateInfo
- Publication number
- JPH0254552A JPH0254552A JP20458888A JP20458888A JPH0254552A JP H0254552 A JPH0254552 A JP H0254552A JP 20458888 A JP20458888 A JP 20458888A JP 20458888 A JP20458888 A JP 20458888A JP H0254552 A JPH0254552 A JP H0254552A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- single crystal
- forming
- shaped groove
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 238000002955 isolation Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005530 etching Methods 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000005498 polishing Methods 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 21
- 229910021419 crystalline silicon Inorganic materials 0.000 abstract description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 21
- 210000000988 bone and bone Anatomy 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、誘電体分離基板の製造方法に係り、特に基板
完成時に円弧状の面取り形状を得る方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a dielectric isolation substrate, and particularly to a method of obtaining an arcuate chamfered shape when the substrate is completed.
(従来の技術)
従来、このような分野の技術としては、例えば以下に示
すようなものがあった。(Prior Art) Conventionally, as technologies in this field, there have been the following, for example.
以下、その構成を図を用いて説明する。The configuration will be explained below using figures.
第2図はかかる従来の誘電体分離基板の製造工程断面図
、第3図はその誘電体分離基板素材の面取り加工状態を
示す図である。FIG. 2 is a cross-sectional view of the manufacturing process of such a conventional dielectric isolation substrate, and FIG. 3 is a diagram showing a chamfering state of the dielectric isolation substrate material.
まず、第2図(a)に示すように、誘電体分離基板素材
lは、単結晶シリコン基板2の表面(図では下面側)に
分離用の7字溝3を形成した後、そのV字溝3の内壁を
含む単結晶シリコン基板2の表面に分離用の絶縁膜4を
形成し、更にこの絶縁膜4上に支持体層として多結晶シ
リコン層5を形成して得られる。また、多結晶シリコン
層5を形成する際、単結晶シリコン基板2の外周側面及
び裏面にも付着するので、その分誘電体分#基板素材l
の直径が大となっている。First, as shown in FIG. 2(a), a dielectric isolation substrate material 1 is prepared by forming a 7-shaped groove 3 for isolation on the surface (lower surface side in the figure) of a single crystal silicon substrate 2, and then forming a V-shaped groove 3 for isolation. It is obtained by forming an isolation insulating film 4 on the surface of the single crystal silicon substrate 2 including the inner wall of the groove 3, and further forming a polycrystalline silicon layer 5 as a support layer on this insulating film 4. In addition, when forming the polycrystalline silicon layer 5, it also adheres to the outer circumferential side and back surface of the single crystal silicon substrate 2, so that the dielectric material #substrate material l
has a large diameter.
次に、第2図(b)に示すように、誘電体骨#基板素材
1の外周側面を面取り加工し、側面及び裏面に付着した
多結晶シリコン層5を除去しつつ、目標の直径を得るま
で凸面円弧状に加工する。この面取り加工方法は、例え
ば、第3図に示すような方法(特開昭59−1.889
21号に開示)で行われる。Next, as shown in FIG. 2(b), the outer peripheral side surface of the dielectric bone #substrate material 1 is chamfered to obtain the target diameter while removing the polycrystalline silicon layer 5 attached to the side surface and back surface. Machining into a convex arc shape. This chamfering method is, for example, the method shown in FIG.
(disclosed in No. 21).
即ち、V字溝状の研削砥石7を回転させながら、誘電体
骨′PM基板素材1の側面に押し当てて加工するもので
あり、誘電体分離基板素材1の直径は、研磨砥石7の切
り込み量を制御することによって容易に目的の寸法に仕
上げることができる。That is, processing is carried out by pressing the dielectric ribs against the side surface of the PM substrate material 1 while rotating a V-groove-shaped grinding wheel 7, and the diameter of the dielectric separated substrate material 1 is equal to the cut of the grinding wheel 7. By controlling the amount, the desired dimensions can be easily achieved.
次に、第2図(c)に示すように、この誘電体分離基板
素材lの多結晶シリコン層5の表面(図では下面側)を
、その表面が後工程での平坦な基準面となるように研磨
する。ここでの研磨量は、多結晶シリコン層5が支持体
層として充分な厚みを確保できる範囲内とする。Next, as shown in FIG. 2(c), the surface (lower surface side in the figure) of the polycrystalline silicon layer 5 of this dielectric isolation substrate material 1 is used as a flat reference surface in the subsequent process. Polish as shown. The amount of polishing here is within a range that allows the polycrystalline silicon layer 5 to have a sufficient thickness as a support layer.
次に、多結晶シリコン層5の平坦な表面を基準面として
、単結晶シリコン基vi2の裏面(図では上面側)より
V字溝3の底部露出を見るまで研磨除去することにより
、第2図(d)に示すように、絶縁膜4に囲まれた単結
晶シリコン島2a、2b2c・・・が形成された誘電体
分離基板が得られる。Next, using the flat surface of the polycrystalline silicon layer 5 as a reference plane, the monocrystalline silicon base vi2 is polished from the back surface (upper surface side in the figure) until the bottom of the V-shaped groove 3 is exposed, as shown in FIG. As shown in (d), a dielectric isolation substrate on which single crystal silicon islands 2a, 2b2c, . . . surrounded by an insulating film 4 are formed is obtained.
(発明が解決しようとする課題)
しかしながら、上記した従来の誘電体分離基板の製造方
法では、得られた誘電体分離基板の而取り形状が、単結
晶シリコン側の端面〔第2図(d)のa部分)において
、面取りを行ってもその意味をなさないような鋭利な形
状となる欠点があり、この後に行われる素子形成工程に
おいて、欠は等を発生させる原因となっていた。それは
、第2図(a)に示すように、多結晶シリコン層5の厚
みを支持体層として確保するために、通常、単結晶シリ
ヨン基板2の厚みと同程度の厚さに形成する必要がある
ことから、第2図(b)での面取り加工で得られる円弧
状の頂点が単結晶シリコン基板20表面(多結晶シリコ
ン層5が成長する面)付近に位置するためであり、更に
その後、単結晶シリコン基板2を大部分研磨除去するこ
とから(通常10〜50μm残す程度)その頂点部が端
面に来るためである。(Problem to be Solved by the Invention) However, in the above-described conventional method for manufacturing a dielectric isolation substrate, the shape of the obtained dielectric isolation substrate is limited to the end face on the single crystal silicon side [FIG. 2(d)] In part a), there is a drawback that the shape is so sharp that even if chamfering is performed, it becomes meaningless, and this causes chips etc. to occur in the subsequent element forming process. As shown in FIG. 2(a), in order to ensure the thickness of the polycrystalline silicon layer 5 as a support layer, it is usually necessary to form the polycrystalline silicon layer 5 to a thickness comparable to that of the single crystal silicon substrate 2. This is because the apex of the arc obtained by the chamfering process in FIG. This is because most of the single-crystal silicon substrate 2 is removed by polishing (usually about 10 to 50 μm is left), and its apex is located at the end face.
この欠点を解決する一方法として、第4図(特開昭60
−208841号参照)に示す方法がある。即ち、第4
図(b)に示すように、予め円弧状の頂点すが多結晶シ
リコン層5側に位置するように面取りする。この場合に
も、第4図(a)に示すように、誘電体骨is板素材1
のv字溝3が形成される単結晶シリコン基板2の外周端
は角張っており、外周面の面取りを行うには所望の形状
を有する特殊な砥石を準備する必要があった。つまり、
この種の砥石は、第4図(b)に示すように、上下が対
称でない外周面の面取りを行うために特定の形状の面を
有していなければならないので、汎用性がなく、コスト
も嵩むといった問題があった。As a way to solve this drawback, Fig. 4 (Japanese Patent Laid-Open No.
There is a method shown in (see No.-208841). That is, the fourth
As shown in Figure (b), the apex of the arc shape is chamfered in advance so that it is located on the polycrystalline silicon layer 5 side. Also in this case, as shown in FIG. 4(a), the dielectric bone IS plate material 1
The outer peripheral edge of the single crystal silicon substrate 2 on which the V-shaped groove 3 is formed is angular, and in order to chamfer the outer peripheral surface, it is necessary to prepare a special grindstone having a desired shape. In other words,
As shown in Fig. 4(b), this type of grindstone must have a surface of a specific shape in order to chamfer an outer peripheral surface that is not vertically symmetrical, so it is not versatile and is expensive. There was a problem with it being bulky.
本発明は、上記問題点を除去し、誘電体分離基板の完成
時に基板外周部に鋭利な部分が形成されることがない円
弧状の面取り形状を形成することができ、しかも低コス
トな誘電体分離基板の装造方法を提供することを目的と
する。The present invention eliminates the above-mentioned problems, makes it possible to form an arcuate chamfered shape without forming sharp parts on the outer periphery of the substrate when the dielectric isolation substrate is completed, and moreover uses a low-cost dielectric material. An object of the present invention is to provide a method for mounting a separated substrate.
(課題を解決するための手段)
本発明は、上記問題点を解決するために、誘電体分離基
板の製造方法において、単結晶半導体基板の全表面に第
1の絶縁膜を形成し、該第1の絶縁膜をパターニングす
る工程と、該パターニングされた絶縁膜をエツチングマ
スク材として、前記単結晶半導体基板をエツチングし、
該単結晶半導体基板表面に素子分離用のv字溝を形成す
る工程と、前記単結晶半導体基板の裏面外周部に外周端
より任意のエツチング幅と量からなる段差部を形成する
工程と、前記第1の絶縁膜を除去した上で素子分離用の
第2の絶縁膜を全表面に形成する工程と、前記単結晶半
導体基板の表面側に支持体層を形成する工程と、前記基
板の外周側面を円弧状に面取り加工する工程と、前記支
持体層の表面を基準面として、前記単結晶半導体基板の
裏面側より、前記v字溝の底部が露出するまで研磨し、
除去する工程とを順次施すようにしたものである。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a dielectric isolation substrate, in which a first insulating film is formed on the entire surface of a single crystal semiconductor substrate, and the first insulating film is formed on the entire surface of a single crystal semiconductor substrate. patterning the insulating film of step 1; etching the single crystal semiconductor substrate using the patterned insulating film as an etching mask material;
a step of forming a V-groove for element isolation on the surface of the single crystal semiconductor substrate; a step of forming a stepped portion having an arbitrary etching width and amount from the outer peripheral end on the outer peripheral portion of the back surface of the single crystal semiconductor substrate; forming a second insulating film for element isolation on the entire surface after removing the first insulating film; forming a support layer on the front side of the single crystal semiconductor substrate; and forming a support layer on the outer periphery of the substrate. chamfering the side surfaces into an arcuate shape, and polishing the single crystal semiconductor substrate from the back surface side using the surface of the support layer as a reference surface until the bottom of the V-shaped groove is exposed;
The step of removing the wafer and the step of removing the wafer are sequentially performed.
(作用)
本発明によれば、誘電体分離基板の製造方法において、
分離用の7字溝をエツチングして形成する際、同時に単
結晶シリコン基板の裏面外周部をエツチングして段差を
形成することにより、面取り加工の際、円弧状の頂点を
従来よりも多結晶シリコン層側に位置させることができ
、誘電体分離基板の完成時に基板外周部に鋭利な部分が
形成されることがない円弧状の面取り形状を形成するこ
とができる。(Function) According to the present invention, in the method for manufacturing a dielectric isolation substrate,
When etching and forming the 7-shaped groove for separation, at the same time etching the outer periphery of the back surface of the single crystal silicon substrate to form a step, the apex of the arc shape is made more easily than before when chamfering the polycrystalline silicon substrate. It is possible to form an arcuate chamfered shape that can be positioned on the layer side and prevent sharp parts from being formed on the outer periphery of the substrate when the dielectric isolation substrate is completed.
(実施例)
以下、本発明の実施例について図面を参照しながら詳細
に説明する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の実施例を示す誘電体分離基板の製造工
程断面図である。FIG. 1 is a cross-sectional view of the manufacturing process of a dielectric isolation substrate showing an embodiment of the present invention.
まず、第1図(a)に示すように、(100)面を有す
る単結晶シリコン基板10の全表面に酸化1ullを形
成し、周知のホトリソエツチング技術により、主表面(
図では下面側)上の所望の位置に開口部12を設けると
ともに、反対表面上には基板周辺端より任意の幅りをも
った開口部13を形成する。開口部13の幅りは、後の
面取り加工時、研磨砥石があたる幅よりも若干大きめの
値、例えば1〜2IIII+程度が適当である。First, as shown in FIG. 1(a), 1 μll of oxide is formed on the entire surface of a single crystal silicon substrate 10 having a (100) plane, and then the main surface (
An opening 12 is provided at a desired position on the lower surface (in the figure), and an opening 13 having an arbitrary width from the peripheral edge of the substrate is formed on the opposite surface. The width of the opening 13 is suitably a value slightly larger than the width to which the abrasive stone will be applied during the subsequent chamfering process, for example, about 1 to 2III+.
次に、第1図(b)に示すように、パターニングされた
酸化11111をマスクとしてKOH水溶液等のエツチ
ング液で、所謂異方性エツチングを行い、主表面上の開
口部12に分離領域となるV字溝I4を形成するととも
に、反対表面上の開口部13には段差部15を形成する
。ここで、段差部15の段差量(深さ)は、単結晶シリ
コン基板10外周の厚みがエツチング後の工程を処理す
る上で依然として充分な強度を確保する範囲内であれば
任意で良く、通常は分離用のV字溝14の完成時をエツ
チング終点と。Next, as shown in FIG. 1(b), so-called anisotropic etching is performed using an etching solution such as a KOH aqueous solution using the patterned oxide 11111 as a mask, and a separation region is formed in the opening 12 on the main surface. A V-shaped groove I4 is formed, and a stepped portion 15 is formed in the opening 13 on the opposite surface. Here, the amount of step (depth) of the step portion 15 may be arbitrary as long as the thickness of the outer periphery of the single crystal silicon substrate 10 still maintains sufficient strength for the post-etching process, and usually The etching end point is when the separation V-shaped groove 14 is completed.
するのが望ましいことから、v字溝14の深さ(10〜
50μm程度)と同程度の深さをもった段差とな次に、
第1図(C)に示すように、エツチングマスク材として
使用した酸化膜11を全面除去した後、V字溝14及び
段差部15を含む単結晶シリコン基板10の全表面に分
離用の酸化膜16を形成し、更にV字溝14を含む主表
面(図では下面側)上に支持体層となる多結晶シリコン
層17を単結晶シリコン塞板10の厚みと同等の厚さに
形成する。これにより、研暦工程前の誘電体分離基板素
材18を得ることができる。なお、誘電体骨#基板素材
18の直径は、多結晶シリコン層17を形成する際、単
結晶シリコン基板10の外周側面及び裏面にも多少付着
するので、その分草結晶シリコン基板lOの直径より大
きな状態となる。Since it is desirable to
Next, there is a step with a depth of about 50 μm).
As shown in FIG. 1C, after the oxide film 11 used as an etching mask material is completely removed, an oxide film for isolation is formed on the entire surface of the single crystal silicon substrate 10, including the V-shaped groove 14 and the stepped portion 15. 16 is formed, and a polycrystalline silicon layer 17 serving as a support layer is formed on the main surface including the V-shaped groove 14 (lower surface side in the figure) to a thickness equivalent to that of the single-crystal silicon cover plate 10. Thereby, the dielectric isolation substrate material 18 before the Kenreki process can be obtained. Note that the diameter of the dielectric bone #substrate material 18 is smaller than the diameter of the overgrown crystalline silicon substrate 10 since it will adhere to the outer circumferential side and back surface of the single crystal silicon substrate 10 to some extent when forming the polycrystalline silicon layer 17. It becomes a big state.
次に、第1図(d)に示すように、従来と同様の方法に
より、外周側面を面取り加工し、側面及び裏面に付着し
た多結晶シリコン層17を除去すると共に、目標の直径
を得るまで凸面円弧状に加工する。この時、凸面円弧状
の頂点Cは、第1図(b)で設けた段差部15によって
単結晶シリコン基板10の外周部の厚みが薄くなった分
だけ、多結晶シリコン層17側に必然的に移動して形成
される(図中点線はその中心を示す)。Next, as shown in FIG. 1(d), the outer circumferential side surface is chamfered using a method similar to the conventional method, and the polycrystalline silicon layer 17 attached to the side and back surfaces is removed until the target diameter is obtained. Machining into a convex arc shape. At this time, the apex C of the convex arc shape is inevitably located on the polycrystalline silicon layer 17 side by the amount that the thickness of the outer peripheral part of the single crystal silicon substrate 10 is thinned due to the step part 15 provided in FIG. 1(b). (The dotted line in the figure indicates the center).
次に、第1図(e)に示すように、多結晶シリコンJ1
!i17が支持体層″として充分な厚みを確保しうる範
囲でその表面を研磨し、後工程での平坦な基準面となる
ような面を形成する。Next, as shown in FIG. 1(e), polycrystalline silicon J1
! The surface of i17 is polished to the extent that a sufficient thickness can be ensured as a support layer, thereby forming a surface that will serve as a flat reference surface in subsequent steps.
次に、多結晶シリコン層17の平坦な表面を基準面とし
て、単結晶シリコン基板10の反対表面側よりV字溝1
4の底部露出を見るまで研磨除去する。Next, using the flat surface of the polycrystalline silicon layer 17 as a reference plane, the V-shaped groove 1 is opened from the opposite surface side of the single crystal silicon substrate 10.
Polish and remove until you see the bottom exposed at 4.
これにより、第1図(f> に示すように、酸化膜16
に囲まれた単結晶シリコン島10a、10b、loc・
・・が形成され、誘電体分離基板を得ることができる。As a result, as shown in FIG. 1 (f>), the oxide film 16
Single crystal silicon islands 10a, 10b, loc・
... is formed, and a dielectric isolation substrate can be obtained.
ところで、完成した誘電体分離基板の外周面取り形状は
、第1図(d)で説明したように、凸面円弧状の頂点C
が従来より多結晶シリコン層17側に位置しているため
、第1図(f)に示すように、dとして示す単結晶シリ
コン層側の端面部は鋭利な角度とはならず、全体に良好
な円弧状を形成することができる。By the way, the outer circumferential chamfered shape of the completed dielectric isolation substrate has a convex arc-shaped apex C, as explained in FIG. 1(d).
is located on the polycrystalline silicon layer 17 side than in the past, so as shown in FIG. A circular arc shape can be formed.
なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
(発明の効果)
以上、詳細に説明したように、本発明によれば、単結晶
シリコン基板の裏面外周に段差を設けるようにし、だの
で、面取り加工によって得られる凸面円弧状の頂点は従
来より多結晶シリコン層側に確実に位置することができ
、その結果、誘電体分離基板が完成時、外周部に鋭利な
部分のない円弧形状を形成することができる。従って、
後工程中で発生していた誘電体分!l!基板の周囲が欠
けるといった事故をなくすことができ、しかも従来使用
していた面取り砥石や、誘電体分離基板の製造方法を格
別に変更することなく対処することができる。(Effects of the Invention) As described in detail above, according to the present invention, a step is provided on the outer periphery of the back surface of a single crystal silicon substrate, so that the apex of the convex arc shape obtained by chamfering is different from the conventional one. It can be reliably located on the polycrystalline silicon layer side, and as a result, when the dielectric isolation substrate is completed, it can be formed into an arcuate shape with no sharp parts on the outer periphery. Therefore,
Dielectric material generated during post-processing! l! Accidents such as chipping around the substrate can be eliminated, and this can be done without making any particular changes to the conventionally used chamfering grindstone or the manufacturing method of the dielectric separation substrate.
第1図は本発明の実施例を示す誘電体分離基板の製造工
程断面図、第2図は従来の誘電体分離基板の製造工程断
面図、第3図は従来の誘電体分離基板素材の面取り加工
状態を示す図、第4図は従来の他の誘電体骨jiI基板
素材の加工工程部分断面図である。
10・・・単結晶シリコン基板、10a、10b、10
c・・・単結晶シリコン島、11.16・・・酸化膜、
12.13・・・開口部、14・・・7字溝、15・・
・段差部、17・・・多結晶シリコン層、18・・・誘
電体分離基板素材。
特許出願人 沖電気工業株式会社
代理人 弁理士 清 水 守(外1名)第
図
第
図
第
図Figure 1 is a sectional view of the manufacturing process of a dielectric isolation substrate showing an embodiment of the present invention, Figure 2 is a sectional view of the manufacturing process of a conventional dielectric isolation substrate, and Figure 3 is a chamfering of the conventional dielectric isolation substrate material. FIG. 4, which is a diagram showing the processing state, is a partial sectional view of the processing process of another conventional dielectric bone jiI substrate material. 10... Single crystal silicon substrate, 10a, 10b, 10
c... Single crystal silicon island, 11.16... Oxide film,
12.13...opening, 14...7-shaped groove, 15...
- Stepped portion, 17... Polycrystalline silicon layer, 18... Dielectric isolation substrate material. Patent applicant: Oki Electric Industry Co., Ltd. Agent: Patent attorney: Mamoru Shimizu (1 other person)
Claims (1)
し、該第1の絶縁膜をパターニングする工程と、 (b)該パターニングされた絶縁膜をエッチングマスク
材として、前記単結晶半導体基板をエッチングし、該単
結晶半導体基板表面に素子分離用のV字溝を形成する工
程と、 (c)前記単結晶半導体基板の裏面外周部に外周端より
任意のエッチング幅と量からなる段差部を形成する工程
と、 (d)前記第1の絶縁膜を除去した上で素子分離用の第
2の絶縁膜を全表面に形成する工程と、(e)前記単結
晶半導体基板の表面側に支持体層を形成する工程と、 (f)前記基板の外周側面を円弧状に面取り加工する工
程と、 (g)前記支持体層の表面を基準面として、前記単結晶
半導体基板の裏面側より前記V字溝の底部が露出するま
で研磨し、除去する工程とを順次施してなる誘電体分離
基板の製造方法。[Claims] (a) a step of forming a first insulating film on the entire surface of a single crystal semiconductor substrate and patterning the first insulating film; (b) using an etching mask to cover the patterned insulating film; (c) etching the single crystal semiconductor substrate as a material to form a V-shaped groove for element isolation on the surface of the single crystal semiconductor substrate; (d) forming a second insulating film for element isolation on the entire surface after removing the first insulating film; (e) forming a second insulating film for element isolation on the entire surface; (f) chamfering the outer peripheral side surface of the substrate into an arc shape; (g) using the surface of the support layer as a reference plane; A method for manufacturing a dielectric isolation substrate, which comprises sequentially performing the steps of polishing and removing the bottom of the V-shaped groove from the back side of the single crystal semiconductor substrate until it is exposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20458888A JPH0254552A (en) | 1988-08-19 | 1988-08-19 | Manufacture of dielectric isolation substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20458888A JPH0254552A (en) | 1988-08-19 | 1988-08-19 | Manufacture of dielectric isolation substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0254552A true JPH0254552A (en) | 1990-02-23 |
Family
ID=16492950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20458888A Pending JPH0254552A (en) | 1988-08-19 | 1988-08-19 | Manufacture of dielectric isolation substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0254552A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5205475A (en) * | 1988-12-16 | 1993-04-27 | Kabushiki Kaisha Challenge Five | Sealed letters, postcards and like confidential sheets, and paper, continuous form or document sheet for preparing same |
CN111463138A (en) * | 2020-04-20 | 2020-07-28 | 长江存储科技有限责任公司 | Semiconductor device and method for manufacturing the same |
-
1988
- 1988-08-19 JP JP20458888A patent/JPH0254552A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5205475A (en) * | 1988-12-16 | 1993-04-27 | Kabushiki Kaisha Challenge Five | Sealed letters, postcards and like confidential sheets, and paper, continuous form or document sheet for preparing same |
CN111463138A (en) * | 2020-04-20 | 2020-07-28 | 长江存储科技有限责任公司 | Semiconductor device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5727990A (en) | Method for mirror-polishing chamfered portion of wafer and mirror-polishing apparatus | |
JPS5958827A (en) | Semiconductor wafer and method and apparatus for manufacturing semiconductor wafer | |
US5110764A (en) | Method of making a beveled semiconductor silicon wafer | |
EP0854500A1 (en) | Method of manufacturing a bonding substrate | |
US6113721A (en) | Method of bonding a semiconductor wafer | |
JPH08316180A (en) | Fabrication method of semiconductor wafer | |
JP3328193B2 (en) | Method for manufacturing semiconductor wafer | |
JPH069194B2 (en) | Integrated circuits from wafers with improved flatness | |
JP2662495B2 (en) | Method for manufacturing bonded semiconductor substrate | |
EP0860862B1 (en) | Method of manufacturing a bonding substrate | |
JP2658135B2 (en) | Semiconductor substrate | |
JPH03177023A (en) | Preparation of epitaxial wafer | |
JPH05226305A (en) | Manufacture of laminated wafer | |
JPH0254552A (en) | Manufacture of dielectric isolation substrate | |
JPH10209408A (en) | Manufacture of soi substrate | |
US5597410A (en) | Method to make a SOI wafer for IC manufacturing | |
JP2588326B2 (en) | Method for manufacturing semiconductor wafer | |
JP2644069B2 (en) | Method for manufacturing semiconductor device | |
JPS58100432A (en) | Bevelling process of wafer | |
JPS59188921A (en) | Manufacture of dielectric isolation substrate | |
WO1997027621A9 (en) | Selective-etch edge trimming process for manufacturing semiconductor-on-insulator wafers | |
WO1997027621A1 (en) | Selective-etch edge trimming process for manufacturing semiconductor-on-insulator wafers | |
JPH09251934A (en) | Manufacturing method of semiconductor integrated circuit device and semiconductor wafer | |
JPH0387012A (en) | Adhered wafer and manufacture thereof | |
JP2500772B2 (en) | Sample preparation method for transmission electron microscope |