JPH0254013B2 - - Google Patents

Info

Publication number
JPH0254013B2
JPH0254013B2 JP58059271A JP5927183A JPH0254013B2 JP H0254013 B2 JPH0254013 B2 JP H0254013B2 JP 58059271 A JP58059271 A JP 58059271A JP 5927183 A JP5927183 A JP 5927183A JP H0254013 B2 JPH0254013 B2 JP H0254013B2
Authority
JP
Japan
Prior art keywords
current
converter
stopping
transmission system
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58059271A
Other languages
Japanese (ja)
Other versions
JPS59185119A (en
Inventor
Shoichi Sugawara
Hidefumi Shirahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58059271A priority Critical patent/JPS59185119A/en
Publication of JPS59185119A publication Critical patent/JPS59185119A/en
Publication of JPH0254013B2 publication Critical patent/JPH0254013B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は双極直流送電系統の停止方式に係り、
特に、正極側及び負極側の直流電流の帰路を共通
とする双極直流送電系統の正極側、または負極側
のみを停止する双極直流送電系統の停止方式に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a stopping method for a bipolar DC power transmission system,
In particular, the present invention relates to a method for stopping a bipolar DC power transmission system that shuts down only the positive side or the negative side of a bipolar DC power transmission system in which the positive and negative sides have a common DC current return path.

〔発明の背景〕[Background of the invention]

第1図に一般的な双極直流送電系統の概略構成
を示す。この図は交流系統Aの電力を交流系統B
へ直流送電系統を介して輸送する場合を示してお
り、直流送電系統の双極運転時における交流系統
Aの電力は、順変換器REC1、直流リアクトル
DCL1,DCL3、直流送電線HL1、及び逆変換器
INV1から成る正極側直流送電系統Pと、順変換
器REC2、直流リアクトルDCL2,DCL4、直流送
電線HL2、及び逆変換器INV2から成る負極側直
流送電系統Nに分配され交流系統Bへ送られる。
Figure 1 shows the schematic configuration of a typical bipolar DC power transmission system. This diagram shows how power from AC system A is converted to AC system B.
The figure shows the case of transporting the power from the AC system A to the forward converter REC 1 and the DC reactor during bipolar operation of the DC transmission system.
DCL 1 , DCL 3 , DC transmission line HL 1 , and inverter
The alternating current is distributed into a positive DC transmission system P consisting of INV 1 and a negative DC transmission system N consisting of forward converter REC 2 , DC reactors DCL 2 , DCL 4 , DC transmission line HL 2 , and inverter INV 2. Sent to system B.

第1図の双極直流送電系統において、直流送電
系統P及びNを同時に停止させる全体停止は、従
来の停止方式で行なえるが、直流送電系統Pまた
はNのみを停止させる個別停止は、従来方式では
不可能であることが判明した。
In the bipolar DC transmission system shown in Figure 1, a total shutdown in which DC transmission systems P and N are stopped simultaneously can be performed using the conventional shutdown method, but an individual shutdown in which only DC transmission systems P or N is stopped cannot be performed using the conventional method. It turned out to be impossible.

以下に、全体停止の場合を例にとつて、従来の
停止方式の概要の述べ、次に、個別停止における
従来の停止方式の問題点を述べる。
An overview of the conventional stopping method will be described below, taking the case of total stopping as an example, and then problems of the conventional stopping method in individual stopping will be described.

第2図aは、全体停止時における第1図の双極
直流送電系統の動作を示したものであり、第2図
aにおける時点t0で停止指令信号S1がHighから
Lowに変化すると、図示せぬ変換器用制御装置
のソフト停止制御機能(直流電圧及び直流電流を
滑らかに低下させる制御機能)が働き、図に示す
ように、電流電圧v1、v2、直流電流i1、i2が滑ら
かに低下する。。次に、直流電圧v1、v2及び直流
電流i1、i2が、あるレベルまで低下した時点t1
バイパスペア信号SBPP1,SBPP2がLowから
Highに変化し、各変換器がバイパスペア状態と
なり、直流電圧v1、v2がO(p.u.)となる。その
後、時点t2でバイパスペア信号SBPP1,SBPP2
HighからLowに変化すると同時にゲートブロツ
ク信号SGB1,SGB2がHighからLowに変化し、各変
換器がゲートブロツク状態となり、直流電流i1
i2がO(p.u)となる。尚、この図で各信号に付し
た1、2は夫々、正極側、負極側変換器への制御
信号を意味する。
Figure 2a shows the operation of the bipolar DC power transmission system in Figure 1 when the entire system is stopped.At time t0 in Figure 2a, the stop command signal S1 changes from High to
When it changes to Low, the soft stop control function (control function that smoothly lowers the DC voltage and DC current) of the converter control device (not shown) is activated, and as shown in the figure, the current voltage v 1 , v 2 , DC current i 1 and i 2 decrease smoothly. . Next, at time t 1 when the DC voltages v 1 , v 2 and the DC currents i 1 , i 2 have decreased to a certain level, the bypass pair signals SBPP 1 , SBPP 2 change from Low to low.
The voltage changes to High, each converter enters a bypass pair state, and the DC voltages v 1 and v 2 become O(pu). Then, at time t 2 , the bypass pair signals SBPP 1 and SBPP 2
Simultaneously with the change from High to Low, the gate block signals S GB1 and S GB2 change from High to Low, each converter enters the gate block state, and the DC current i 1 ,
i 2 becomes O(pu). Note that 1 and 2 attached to each signal in this figure mean control signals to the positive and negative side converters, respectively.

以上のような停止方式を、第1図の負極側直流
送電系統Nのみを停止する個別停止に適用した場
合の動作を第2図bに示す。
FIG. 2b shows the operation when the above-described stopping method is applied to the individual stopping of stopping only the negative side DC power transmission system N shown in FIG. 1.

この場合、時点t0で負極側の直流電圧v2、及び
負極側の直流電流i2が低下し始め、時点t1で順変
換器REC2、逆変換器INV2がバイパスペア状態と
なる。その後、時点t2で順変換器REC2及び逆変
換器INV2がゲートブロツク状態となるが、第1
図の中性線HLのインピーダンスZLと負極側直流
送電線HL2のインピーダンスZHの大きさの比に応
じて、正極側直流電流i1が負極側直流送電系統N
に流れ込み、時点t2以前に導通していたサイリス
タバルブ対が、時点t2の後も導通状態を継続し、
個別停止できない。
In this case, the DC voltage v 2 on the negative side and the DC current i 2 on the negative side begin to decrease at time t 0 , and the forward converter REC 2 and the inverse converter INV 2 enter the bypass pair state at time t 1 . Thereafter, at time t 2 , the forward converter REC 2 and the inverse converter INV 2 enter the gate block state, but the first
Depending on the size ratio of the impedance Z L of the neutral line HL and the impedance Z H of the negative DC transmission line HL 2 in the figure, the positive DC current i 1 changes to the negative DC transmission system N
, the thyristor valve pair that was conducting before time t 2 continues to be conducting after time t 2 ,
Cannot be stopped individually.

したがつて、従来の停止方式では、双極直流送
電系統の正極側または負極側のみを個別停止する
ことができない。
Therefore, with the conventional shutdown method, it is not possible to individually shut down only the positive pole side or the negative pole side of a bipolar DC power transmission system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は双極直流送電系統の正極側、ま
たは負極側のみを停止することが可能な双極直流
送電系統の停止方式を提供することにある。
An object of the present invention is to provide a method for stopping a bipolar DC power transmission system that is capable of stopping only the positive side or the negative side of the bipolar DC power transmission system.

〔発明の概要〕[Summary of the invention]

本発明は双極直流送電系統において、停止すべ
きいずれか一方の極側の直流電流が低下した時点
で、停止しない極側の変換器をバイパスペア動作
をさせ、その動作期間中に停止すべき極側の順変
換器または逆変換器の点弧パルスの発生を停止さ
せることによつて、停止するための電流余裕を小
さくでき、かつ他方の極側の直流電流の流入によ
る停止不能を防止し、正極側、または負極側のみ
の停止を可能にしたものである。
In a bipolar DC transmission system, when the DC current of one of the poles to be stopped decreases, the present invention causes the converter of the pole that is not to be stopped to operate as a bypass pair, and during that operation period, the converter of the pole to be stopped is operated as a bypass pair. By stopping the generation of firing pulses in the forward converter or reverse converter on the side, the current margin for stopping can be reduced, and the inability to stop due to the inflow of DC current on the other pole side can be prevented, This makes it possible to stop only the positive electrode side or the negative electrode side.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例であり、正極側直流
送電系統P及び負極側直流送電系統Nから成る双
極直流送電系統において負極側直流送電系統Nの
みを停止する個別停止に本発明を適用した場合を
示している。
FIG. 3 shows an embodiment of the present invention, in which the present invention is applied to an individual shutdown in which only the negative side DC transmission system N is stopped in a bipolar DC transmission system consisting of a positive side DC transmission system P and a negative side DC transmission system N. This shows the case where

第4図aに直流送電系統Nの個別停止を行う場
合に順変換器REC2によつて直流電流の流入を防
止するときの、制御系の動作、順変換器REC2
の直流電圧v2r及び直流電流i2r、逆変換器INV2
の直流電圧v2i及び直流電流i2iの応動を示してい
る。
Figure 4a shows the operation of the control system when the forward converter REC 2 prevents the inflow of DC current when individually stopping the DC power transmission system N, and the DC voltage v 2r on the forward converter REC 2 side. and DC current i 2r , DC voltage v 2i on the inverter INV 2 side, and DC current i 2i responses.

第3図において中央指令局CCは予め潮流方向
を指定するために、順変換器側の群指令局LC2r
に潮流指令S2を、また逆変換器側の群指令局LC2i
に潮流指令S2′を与え、両者の定電流制御ACR
(図示せず)における電流マージン設定値の印加
の切替え操作を行つている。第3図では潮流指令
S2とS2′の印加によつて、第1図の場合と同じよ
うに交流系統Aから交流系統Bへ送電される潮流
方向になつている。この場合、第3図に示すよう
に潮流指令S2は順変換器側のバイパスペア回路
BPPrにも与えられ、同回路BPPrをロツクするよ
うにしている。また潮流指令S2′は逆変換器側の
バイパスペア回路BPPiに与えられるが、この指
令S2′は同回路BPPiのロツクに寄与しない。
In Fig. 3, the central command station CC is connected to the group command station LC 2r on the forward converter side in order to specify the flow direction in advance.
power flow command S 2 to the group command station LC 2i on the inverter side.
A power flow command S 2 ′ is given to the constant current control ACR of both.
(not shown) is performing an operation of switching the application of a current margin setting value. In Figure 3, the tidal flow command
By applying S 2 and S 2 ', the current direction is set such that power is transmitted from AC system A to AC system B, as in the case of FIG. In this case, as shown in Figure 3, the power flow command S 2 is the bypass pair circuit on the forward converter side.
It is also given to BPP r to lock the same circuit BPP r . Further, the power flow command S 2 ' is given to the bypass pair circuit BPP i on the inverter side, but this command S 2 ' does not contribute to the locking of the circuit BPP i .

いま第3図及び第4図aにおいて中央指令局
CCが時点t0で直流系統N側の停止指令S1を指令
すると、順変換器REC2と逆変換器INV2は前述し
たソフト停止制御によつて同系統の直流電圧v2r
及びv2iと直流電流i2i及びi2iを次第に低下させる。
その後、逆変換器INV2側は時点t1でバイパスペ
ア回路BPPiによるバイパスペア信号SBPPiが印
加されバイパス状態になるため、逆変換器INV2
の直流電圧v2iは0になる。しかし時点t1における
順変換器REC2は転流動作を継続しているため、
直流電流i2r及びi2iは通電が続行される。次に時点
t2においてゲートブロツク回路GBrの信号SGBr
を、順変換器REC2のパルス発生移相器APPSr
与え、パルス発生移相器APPSrの点弧パルスを
停止させ、順変換器REC2のゲートをブロツクさ
せる。この時点t2における順変換器REC2の直流
電圧v2r及び直流電流i2rは充分に低下しており、
順変換器REC2は直流系統N側の直流電流i2を停
止させ、且つ直流系統P側の直流電流の流入を防
止することができる。逆変換器INV2はその後、
時点i3においてゲートブロツク回路GBiの信号
SGBiによつてパルス発生移相器APPSiの点弧パ
ルスの発生を停止させ、逆変換器INV2のゲート
ブロツクを行い停止動作が完了される。
Now, in Figure 3 and Figure 4 a, the central command station
When CC commands a stop command S 1 on the DC system N side at time t 0 , the forward converter REC 2 and the inverse converter INV 2 control the DC voltage v 2r of the same system by the soft stop control described above.
and gradually decrease v 2i and direct current i 2i and i 2i .
After that, the bypass pair signal SBPP i from the bypass pair circuit BPP i is applied to the inverter INV 2 side at time t 1 and the inverter INV 2 enters the bypass state.
The DC voltage v 2i becomes 0. However, since the forward converter REC 2 at time t 1 continues commutation operation,
Direct currents i 2r and i 2i continue to be energized. Then the point
At t 2 , the signal SGB r of the gate block circuit GB r
is applied to the pulse generating phase shifter APPS r of the forward converter REC 2 , stopping the firing pulse of the pulse generating phase shifter APPS r and blocking the gate of the forward converter REC 2 . The DC voltage v 2r and DC current i 2r of the forward converter REC 2 at this time t 2 have sufficiently decreased,
The forward converter REC 2 can stop the DC current i 2 on the DC system N side and prevent the DC current from flowing on the DC system P side. The inverter INV 2 then
At time i 3 the signal of gate block circuit GB i
The SGB i stops the generation of firing pulses in the pulse generation phase shifter APPS i , gates the inverter INV 2 , and completes the stopping operation.

すなわち、第3図における第4図aの一実施例
では順変換器REC2にバイパスペア動作の過程を
やめさせ、直流電流が充分に低下した時点で直ち
にゲートのブロツクを行い、直流系統N側に直流
系統P側の直流電流の流入を防止することを図つ
ている。
That is, in one embodiment of FIG. 4a in FIG. 3, the forward converter REC 2 is made to stop the process of bypass pair operation, and the gate is immediately blocked when the DC current has sufficiently decreased, and the DC system N side is This is intended to prevent the inflow of DC current from the DC system P side.

次に直流系統N側を停止させる場合に、前述し
たような停止手段を逆変換器INV2で行う場合の
一実施例について説明する。この場合の停止動作
における制御回路等の構成は前述した第4図aの
場合と変りがないので第3図を用いることにし、
第4図bによつて説明する。
Next, an embodiment will be described in which, when stopping the DC system N side, the above-mentioned stopping means is performed by the inverter INV 2 . The configuration of the control circuit, etc. in the stopping operation in this case is the same as that shown in Fig. 4a, so we will use Fig. 3.
This will be explained with reference to FIG. 4b.

すでに第4図aの実施例で述べているように中
央指令局CCからは予め潮流指令S2が群指令局
LC2rに、また潮流指令S2′が群指令局LC2iに与え
られており、前述の場合と同じように電力の潮流
方向は交流系統Aから交流系統Bの方向へ流れて
いる。しかし、この実施例では中央指令局CCが
順変換器REC2側のバイパスペア回路BPPrに与え
られる潮流指令S2は、同回路BPPrのロツクを行
わない指令になつており、また逆変換器INV2
のバイパスペア回路BPPiに与えられる潮流指令
S2′は、同回路BPPiをロツクする指令になつてい
る。従つてこの場合の実施例では逆変換器INV2
側が直流送電線HL2の直流電流の停止に寄与され
る。
As already described in the embodiment shown in Figure 4a, the central command station CC sends the tidal flow command S2 to the group command station in advance.
A power flow command S 2 ' is given to LC 2r and a power flow command S 2 ' is given to the group command station LC 2i , and the power flow direction is from AC system A to AC system B as in the above case. However, in this embodiment, the power flow command S2 given by the central command station CC to the bypass pair circuit BPP r on the side of the forward converter REC 2 is a command that does not lock the circuit BPP r , and is also a command for reverse conversion. Power flow command given to bypass pair circuit BPP i on device INV 2 side
S 2 ' is a command to lock the circuit BPP i . Therefore, in the embodiment in this case the inverter INV 2
side is contributed to the termination of the DC current on the DC transmission line HL 2 .

すなわち、第3図及び第4図bにおいて中央指
令局CCが時点t0で直流送電系統Nの停止指令S1
を指令すると、順変換器REC2と逆変換器INV2
ソフト停止制御によつて同系統の直流電圧v2r
びv2iと直流電流i2r及びi2iを次第に低下させる。
その後、順変換器REC2側は時点t1でバイパスペ
ア回路BPPrによるバイパスペア信号SBPPrが印
加され順変換器REC2はバイパスペア状態になる。
このため時点t1における順変換器REC2側の直流
電流v2rは0になる。このバイパスペア電流によ
つて順変換器REC2に直流電圧の起電力がなくな
ると、転流動作を継続している逆変換器INV2
時点t1から定電流制御による順変換器の運転領域
に移行し、直流送電系統Nの直流電流i2r及びi2i
通流する。次に時点t2において逆変換器INV2
パルス発生移相器APPSiにゲートブロツク回路
GBiの信号SGBiを与え、パルス発生移相器APPSi
の点弧パルスを停止させ、逆変換器INV2のゲー
トをブロツクさせる。この時点t2における逆変換
器INV2の直流電圧v2i及び直流電流i2iは充分に低
下しているため、逆変換器INV2は直流送電系統
Nの直流電流i2を停止させ、且つ直流系統P側の
直流電流の流入を防止することができる。順変換
器REC2はその後、時点t3においてゲートブロツ
ク回路GBrの信号SGBrによつてパルス発生移相
器APPSrの点弧パルスを停止し、順変換器REC2
のゲートブロツクを行い停止動作が完了される。
That is, in FIGS. 3 and 4b, the central command station CC issues a stop command S 1 of the DC power transmission system N at time t 0 .
When commanded, the forward converter REC 2 and the inverse converter INV 2 gradually reduce the DC voltages v 2r and v 2i and the DC currents i 2r and i 2i of the same system by soft stop control.
Thereafter, the bypass pair signal SBPP r from the bypass pair circuit BPP r is applied to the forward converter REC 2 at time t 1 , and the forward converter REC 2 enters the bypass pair state.
Therefore, the direct current v 2r on the forward converter REC 2 side at time t 1 becomes zero. When the DC voltage electromotive force disappears in the forward converter REC 2 due to this bypass pair current, the inverter INV 2 , which continues commutation operation, moves from the point in time t 1 to the forward converter operating range under constant current control. , and the DC currents i 2r and i 2i of the DC transmission system N are passed through. Then, at time t 2 , the pulse generating phase shifter APPS i of the inverter INV 2 is connected to the gate block circuit.
Given the signal SGB i of GB i , pulse generation phase shifter APPS i
ignition pulse is stopped and the gate of inverter INV 2 is blocked. Since the DC voltage v 2i and DC current i 2i of the inverter INV 2 at this time t 2 have sufficiently decreased, the inverter INV 2 stops the DC current i 2 of the DC transmission system N, and It is possible to prevent direct current from flowing into the system P side. The forward converter REC 2 then stops the firing pulses of the pulse generating phase shifter APPS r at time t 3 by means of the signal SGB r of the gate block circuit GB r , and the forward converter REC 2
The stop operation is completed by performing gate blocking.

すなわち、第4図bの一実施例では逆変換器
INV2にバイパスペア動作の過程をやめさせ、直
流電流が充分に低下した時点で直ちにゲートのブ
ロツクを行い、第4図aの実施例の場合と同様
に、直流送電系統N側に直流送電系統P側の直流
電流の流入を防止することを図つている。
That is, in one embodiment of FIG. 4b, the inverse transformer
INV 2 is made to stop the process of bypass pair operation, and when the DC current has sufficiently decreased, the gate is immediately blocked, and the DC transmission system is connected to the DC transmission system N side as in the case of the embodiment shown in Fig. 4a. This is intended to prevent direct current from flowing into the P side.

双極直流送電系統における正極側、または負極
側のいずれか方の直流送電系統を停止させる場合
に、本発明の停止方式は停止すべき直流送電系統
に接続される交直変換器が、中央指令局CCの指
令に基づく停止動作から離脱することを防止した
ものであり、いずれか一方の直流系統を停止する
場合に必須の停止方式となる。
When stopping either the positive or negative side of a bipolar DC transmission system, the stopping method of the present invention is such that the AC/DC converter connected to the DC transmission system to be stopped is connected to the central control station CC. This is an essential stopping method when stopping either one of the DC systems.

第5図に本発明の停止方式において、停止すべ
き直流送電系統の送電線両端に接続される両交直
変換器の停止動作における相対的関係を示す。
FIG. 5 shows the relative relationship in the stopping operation of both AC/DC converters connected to both ends of the transmission line of the DC power transmission system to be stopped in the stopping method of the present invention.

同図のa側は停止すべき直流系統の直流電流を
停止させるための、ゲートブロツクが行われる交
直変換器の停止動作であり、またb側は過電圧の
発生を抑制するためのバイパスペア状態を行わせ
る交直変換器の停止動作である。同図に示すよう
に定常運転ROが行われているa側及びb側の交
直変換器は停止指令によつて時点t0でソフト停止
制御SCが行われた後、b側の交直変換器は時点
t1でバイパスペアBPPの状態に入る。その後、直
流送電系統の直流電流の停止を行うため、このバ
イパスペアBPPの期間中の時点t2でa側の交直変
換器がゲートブロツクGBされる。その後、時点
t3でb側の交直変換器がゲートブロツクGBされ
て、本発明の停止方式による停止動作が完了され
る。
The a side of the figure shows the stopping operation of the AC/DC converter where gate blocking is performed to stop the DC current in the DC system that should be stopped, and the b side shows the bypass pair state to suppress the generation of overvoltage. This is the stopping operation of the AC/DC converter. As shown in the figure, the AC/DC converters on the a side and the b side, which are in steady operation RO, are subjected to soft stop control SC at time t 0 by a stop command, and then the AC/DC converters on the b side are point in time
Enter the bypass pair BPP state at t 1 . Thereafter, in order to stop the DC current in the DC transmission system, the AC/DC converter on the a side is gate blocked GB at time t2 during the period of this bypass pair BPP. Then the point
At t3 , the AC/DC converter on the b side is gate-blocked, and the stopping operation according to the stopping method of the present invention is completed.

この場合、a側の交直変換器すなわち、直流送
電系統の直流電流を停止させる交直変換器のゲー
トブロツクは、過電圧発生の抑制からb側の交直
変換器のバイパスペアの期間中に行わせる。この
停止方式においてa側の交直変換器が順変換器あ
るいは逆変換器で、またb側の交直変換器が順変
換器あるいは逆変換器で運転されても、第5図に
おけるa側とb側の動作関係に変化がない。
In this case, the gate blocking of the AC/DC converter on the a side, that is, the AC/DC converter that stops the DC current of the DC power transmission system, is performed during the bypass pair period of the AC/DC converter on the b side in order to suppress the occurrence of overvoltage. In this stopping system, even if the AC/DC converter on the a side is operated as a forward converter or an inverse converter, and the AC/DC converter on the b side is operated as a forward converter or an inverse converter, the a side and b side in FIG. There is no change in the operational relationship.

このように、バイパスペア動作を併用すること
により対となつている変換器の電圧リプルが加算
されることがなくなり電流断続させないための電
流余裕を小さくできゲートブロツク時の電圧振動
を小さくできるため、先に述べたように過電圧の
発生を抑制する効果がある。
In this way, by using bypass pair operation in combination, the voltage ripples of the paired converters are not added, the current margin to prevent current interruption can be reduced, and voltage fluctuations during gate blocking can be reduced. As mentioned above, this has the effect of suppressing the occurrence of overvoltage.

第6図に本発明の他の停止方式を適用した双極
直流送電装置の一実施例を示す。
FIG. 6 shows an embodiment of a bipolar DC power transmission device to which another stopping method of the present invention is applied.

第6図の双極直流送電系統の交直変換器は、前
述に従つて交流系統A側は順変換器、また交流系
統B側は逆変換器で運転されているものとする。
同図の停止方式は停止すべき直流系統の交直変換
器を停止させる場合に、順変換器側及び逆変換器
側を共にゲートブロツクして同直流系統の直流電
流を停止させるものである。第6図の場合も直流
送電系統のN側を停止する場合を例に採つてい
る。この第6図の場合では第3図に述べたような
バイパスペア回路BPPr(及びBPPi)に、中央指
令局CCからの潮流指令S2(及びS2′)の入力をや
め、停止指令S1に追随して指令S3を出力しバイパ
スペア回路BPPr(及びBPPi)をロツクするよう
な方法が採られる。
The AC/DC converters of the bipolar DC power transmission system shown in FIG. 6 are assumed to be operated as forward converters on the AC system A side and inverse converters on the AC system B side as described above.
In the stopping method shown in the figure, when stopping an AC/DC converter of a DC system to be stopped, both the forward converter side and the inverse converter side are gate blocked to stop the DC current of the same DC system. The case of FIG. 6 also takes as an example the case where the N side of the DC power transmission system is stopped. In the case of Fig. 6, input of the power flow command S 2 (and S 2 ') from the central control station CC is stopped to the bypass pair circuit BPP r (and BPP i ) as described in Fig. 3, and a stop command is issued. A method is adopted in which the command S 3 is output following S 1 to lock the bypass pair circuit BPP r (and BPP i ).

第7図に第6図の双極直流送電系統における直
流系統N側の停止動作を示す。
FIG. 7 shows a stopping operation on the N side of the DC system in the bipolar DC transmission system of FIG.

いま直流送電系統Nの停止を行うため時点t0
中央指令局CCが停止指令S1を指令すると、順変
換器REC2と逆変換器INV2はソフト停止制御によ
つて同系統の直流電圧v2r及びv2iと直流電流i2r
びi2iを次第に低下させる。また中央指令局CCは
この停止指令S1の指令に基づいて第6図に示すよ
うに指令S3を出力し、順変換器REC2及び逆変換
器INV2のバイパスペア回路BPPr及びBPPiをロ
ツクする。その後時点t1で順変換器REC2側はゲ
ートブロツク回路GBrの信号SGBrによつてパル
ス発生移相器APPSrの点弧パルスの停止を、ま
た逆変換器INV2側はゲートブロツク回路GBr
信号SGBrによつてパルス発生移相器APPSiの点
弧パルスの停止を行つて、順変換器REC2及び逆
変換器INV2のゲートを共にブロツクさせ、直流
系統N側の直流電流を停止し、且つ直流系統P側
の直流電流の流入を防止することを図つている。
When the central command station CC issues a stop command S 1 at time t 0 to stop the DC power transmission system N, the forward converter REC 2 and the inverse converter INV 2 control the DC voltage of the same system by soft stop control. Gradually lower v 2r and v 2i and direct current i 2r and i 2i . Based on the stop command S1 , the central command station CC outputs a command S3 as shown in FIG . lock. Thereafter, at time t 1 , the forward converter REC 2 side stops the ignition pulse of the pulse generator phase shifter APPS r by the signal SGB r of the gate block circuit GB r , and the inverse converter INV 2 side stops the ignition pulse of the pulse generator phase shifter APPS r by the signal SGB r of the gate block circuit GB r. The ignition pulse of the pulse generation phase shifter APPS i is stopped by the signal SGB r of GB r , and the gates of the forward converter REC 2 and the inverse converter INV 2 are both blocked, and the DC on the N side of the DC system is The purpose is to stop the current and prevent the inflow of DC current from the DC system P side.

このように停止すべき直流系統を停止する場合
に、順変換器及び逆変換器のゲートを共にブロツ
クする方法を採つても、停止すべき直流系統の直
流電流を停止することができる。
When stopping the DC system that should be stopped in this manner, the DC current of the DC system that should be stopped can also be stopped by blocking both the gates of the forward converter and the reverse converter.

第8図は本発明の他の実施例を示すもので、第
6図の実施例と異なる点は直流電流の変化を捕え
て行うようにしており、その電流検出装置が各交
直変換器に装備される。同図に示すように順変換
器REC1に電流検出装置D1rが、順変換器REC2
同装置D2rが、逆変換器INV1に同装置D1iが、ま
た逆変換器INV2に同装置D2iが備えられ本発明の
停止方式に起用される。これらの電流検出装置に
は直流電流変成器によつて当該する交直変換器の
直流電流i1r,i2r,i1iまたはi2iと、中性線NLの当
該する直流電流io1またはio2が入力され、この電
流変化によつて得た出力信号SD1r,SD2r,SD1i
またはSD2iを当該する交直変換器の群指令局
LC1r,LC2r,LC1iまたはLC2iへ入力する。
Fig. 8 shows another embodiment of the present invention, which differs from the embodiment shown in Fig. 6 in that it detects changes in direct current, and each AC/DC converter is equipped with a current detection device. be done. As shown in the figure, the forward converter REC 1 has a current detection device D 1r , the forward converter REC 2 has the same device D 2r , the inverse converter INV 1 has the same device D 1i , and the inverse converter INV 2 has a current detection device D 1r. The same device D 2i is provided and used in the stopping method of the present invention. In these current detection devices, the DC current i 1r , i 2r , i 1i or i 2i of the relevant AC/DC converter and the relevant DC current i o1 or i o2 of the neutral line NL are detected by a DC current transformer. The input signals SD 1r , SD 2r , SD 1i obtained by this current change are
Or connect the SD 2i to the group control station of the relevant AC/DC converter.
Input to LC 1r , LC 2r , LC 1i or LC 2i .

この実施例を第6図の実施例の場合と同じよう
に、直流系統のN側を停止する場合を例に採つて
具体的に説明する。第8図に示すように順変換器
REC2の停止に起用される電流検出装置D2rには直
流電流変成器CT5によつて中性線NLの直流電流
io1と、直流電流変成器CT1によつて直流系統P側
の直流電流i1rが入力されており、また逆変換器
INV2の停止に起用される電流検出装置D2iには、
直流電流変成器CT6によつて中性線NLの直流電
流io2と、直流電流変成器CT3によつて直流系統P
側の直流電流i1iが入力されている。直流系統N側
を停止する際の順変換器REC2側の電流検出装置
D2rと、逆変換器INV2側の電流検出装置D2iの動
作は基本的に同じであるので、以下、電流検出装
置D2rの検出動作について説明し本実施例により
停止方式を述べる。
This embodiment will be explained in detail by taking as an example the case where the N side of the DC system is stopped, similar to the embodiment shown in FIG. Forward converter as shown in Figure 8
The current detection device D 2r used to stop REC 2 is connected to the DC current of the neutral wire NL by the DC current transformer CT 5 .
i o1 and the DC current i 1r on the DC system P side are input through the DC current transformer CT 1 , and the inverse converter
The current detection device D 2i used to stop INV 2 includes:
The DC current transformer CT 6 converts the DC current i o2 in the neutral line NL and the DC current transformer CT 3 converts the DC current P into the DC system P.
DC current i 1i is input on the side. Current detection device on forward converter REC 2 side when stopping DC system N side
Since the operations of D 2r and the current detection device D 2i on the side of the inverter INV 2 are basically the same, the detection operation of the current detection device D 2r will be explained below, and the stopping method will be described according to this embodiment.

電流検出装置D2rは上記したように中性線NL
の直流電流io1と直流系統P側の直流電流i1rが入
力され、この両者の電流の比較を行つて比較レベ
ルを起えた場合に信号SD2rを出力して群指令局
LC2rへ入力する。この群指令局LC2rにはすでに
中央指令局CC2から停止指令S1に追随するゲート
ブロツク信号SGB2が入力されており、この両者
の信号のアンド条件の成立によつて順変換器
REC2はゲートブロツクされる。
The current detection device D 2r is connected to the neutral wire NL as described above.
The DC current i o1 of the DC system P side and the DC current i 1r of the DC system P side are input, and when these two currents are compared and a comparison level is reached, the signal SD 2r is output and the group command station
Input to LC 2r . This group command station LC 2r has already received the gate block signal SGB 2 that follows the stop command S 1 from the central command station CC 2 , and when the AND condition of these two signals is satisfied, the forward converter
REC 2 is gateblocked.

第9図に電流検出装置のブロツク図を示す。1
は直流系統PまたはN側の直流電流入力端子、2
は中性線NLの直流電流入力端子、3及び4は増
幅器、5は比較器、6はタイマー、7はフリツプ
フロツプ、8は検出レベル設定入力端子、9は出
力端子である。
FIG. 9 shows a block diagram of the current detection device. 1
is the DC current input terminal on the DC system P or N side, 2
3 and 4 are amplifiers, 5 is a comparator, 6 is a timer, 7 is a flip-flop, 8 is a detection level setting input terminal, and 9 is an output terminal.

第10図に第9図の電流検出装置の検出動作を
示し、第8図の順変換器REC2における電流検出
装置D2rを対象としている。第8図の直流系統P
側とN側の直流電流がi1i=i2rで運転されている場
合の、中性線NLの直流電流はio1=0になつてい
る。いま、第10図において中央指令局CC2の停
止指令S1による交流変換器のソフト停止制御によ
つて直流系統N側の直流電圧v2r(及びv2i)と、直
流電流i2r(及びi2i)が低下すると前記したi1r=i2r
はi1r>i2rに変化する。この変化に追随して中性
線NLの直流電流はio1>0に増加する。このとき
の第9図の入力端子1には直流系統P側における
一定の直流電流i1rが、また入力端子2には中性
線NLにおける直流電流io1が入力されている。こ
場合、第10図に示すように停止指令S1が印加さ
れる時点t0以前の両者の差電流Δioは最大になつ
ており、停止指令S1の印加によつて前記したソフ
ト停止制御が行われるとこの差電流Δioは次第に
小さくなつてくる。やがて時刻t1でこの差電流が
検出レベルebより小さくなつた場合に信号Sepn
出力し、タイマー6及びフリツプ・フロツプ7を
介して時点t2において出力端子9に信号SD2rを出
力する。この信号SD2rを出力する場合の差電流
Δioの検出レベルebは、可能な限り最小電流値に
設定される。
FIG. 10 shows the detection operation of the current detection device of FIG. 9, and the current detection device D 2r in the forward converter REC 2 of FIG. 8 is targeted. DC system P in Figure 8
When the DC current on the side and N side is operated with i 1i = i 2r , the DC current in the neutral wire NL is i o1 =0. Now, in FIG. 10, the DC voltage v 2r (and v 2i ) on the DC system N side and the DC current i 2r (and i 2i ) decreases, the above i 1r = i 2r
changes to i 1r > i 2r . Following this change, the DC current in the neutral line NL increases to i o1 >0. At this time, a constant DC current i 1r on the DC system P side is input to the input terminal 1 in FIG. 9, and a DC current i o1 in the neutral line NL is input to the input terminal 2. In this case, as shown in FIG. 10, the difference current Δi o between the two before the time t 0 when the stop command S 1 is applied is the maximum, and the above-mentioned soft stop control is performed by applying the stop command S 1 . When this is done, this difference current Δi o gradually becomes smaller. Eventually, at time t1 , when this difference current becomes smaller than the detection level eb , the signal Sepn is output, and at time t2, the signal SD2r is outputted to the output terminal 9 via the timer 6 and flip-flop 7. . The detection level e b of the difference current Δi o when outputting this signal SD 2r is set to the lowest possible current value.

このようにして得た信号SD2rは第8図の群指
令局LC2rへ入力され、前述したように順変換器
REC2のゲートブロツクに起用される。またこの
ような検出動作は逆変換器INV2側の電流検出装
置D2iでも同様に行われ群指令局LC2iへその信号
SD2iを与え、逆変換器INV2のゲートブロツクに
起用される。
The signal SD 2r obtained in this way is input to the group command station LC 2r shown in Fig. 8, and is sent to the forward converter as described above.
Used as a gate block in REC 2 . In addition, such a detection operation is also performed in the same way in the current detection device D 2i on the side of the inverter INV 2 , and the signal is sent to the group command station LC 2i.
It provides SD 2i and is used as the gate block of the inverter INV 2 .

この実施例の大きな特徴は、停止すべき直流系
統の直流電流が最小値に達した時点で交直変換器
のゲートをブロツクするため、交直変換器を停止
する際のゲートブロツク動作が容易にできる効果
がある。
A major feature of this embodiment is that the gate of the AC/DC converter is blocked when the DC current of the DC system to be stopped reaches the minimum value, so the gate blocking operation when stopping the AC/DC converter can be easily performed. There is.

〔発明の効果〕〔Effect of the invention〕

本発明の停止方式を装備した双極直流送電系統
は、同系統におけるいずれか一方の直流系統を停
止する場合に、中央指令局の指令に基づく停止す
べき直流系統の直流電流を確実に停止させること
ができ、かつ、過電圧の発生も防止でき、双極直
流送電系統における安定した停止動作を行わせる
大きな効果がある。
A bipolar DC power transmission system equipped with the stop method of the present invention can reliably stop the DC current of the DC system to be stopped based on a command from the central control station when either one of the DC systems in the system is stopped. It is also possible to prevent the occurrence of overvoltage, which has a great effect in ensuring stable shutdown operations in bipolar DC power transmission systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は双極直流送電装置の概略図、第2図a
は従来方式の全交直変換器の一括停止動作の説明
図、第2図bは従来方式による片極直流系統の停
止動作説明図、第3図は本発明の停止方式を備え
た双極直流送電装置、第4図a,bは本発明の停
止方式の動作説明図、第5図は本発明の停止方式
の動作システム説明図、第6図は本発明の停止方
式を備えた双極直流送電装置、第7図はその動作
説明図、第8図は本発明の変形例における停止方
式を備えた双極直流送電装置、第9図は電流検出
装置、第10図は電流検出装置の動作説明図。 A及びB……交流系統、P及びN……直流系
統、REC……順変換器、INV……逆変換器、
DCL……直流リアクトル、HL……直流送電線、
NL……中性線、CT……直流電流変成器、CC…
…中央指令局、LC……群指令局、BPP……バイ
パスペア回路、GB……ゲートブロツク回路、
APPS……パルス発生移相器、D……電流検出装
置。
Figure 1 is a schematic diagram of a bipolar DC power transmission device, Figure 2 a
2 is an explanatory diagram of the conventional method for stopping all AC/DC converters at once, FIG. 2b is an explanatory diagram of the conventional method for stopping a single-polar DC system, and FIG. 3 is a bipolar DC power transmission device equipped with the stopping method of the present invention. , FIGS. 4a and 4b are explanatory diagrams of the operation of the stopping method of the present invention, FIG. 5 is an explanatory diagram of the operating system of the stopping method of the present invention, and FIG. 6 is a bipolar DC power transmission device equipped with the stopping method of the present invention, FIG. 7 is an explanatory diagram of its operation, FIG. 8 is an explanatory diagram of the bipolar DC power transmission device with a stop method in a modified example of the present invention, FIG. 9 is a current detection device, and FIG. 10 is an explanatory diagram of the operation of the current detection device. A and B...AC system, P and N...DC system, REC...forward converter, INV...inverse converter,
DCL...DC reactor, HL...DC transmission line,
NL...Neutral line, CT...DC current transformer, CC...
…Central command station, LC…Group command station, BPP…Bypass pair circuit, GB…Gate block circuit,
APPS...Pulse generation phase shifter, D...Current detection device.

Claims (1)

【特許請求の範囲】[Claims] 1 正極側及び負極側の直流電流の帰路を共通と
する双極直流送電系統の正極側、または負極側の
みを停止する双極直流送電系統の停止方式におい
て、正極側、負極側の各電力変換器の制御回路に
変換器をバイパスペア動作をさせる機能と、ゲー
トブロツク動作をさせる機能とを付加し、正極側
及び負極側の電圧、電流を低下させた後、前記電
圧、電流を低下させた極と対を成す2つの変換器
のうち、停止させない側の変換器をバイパスペア
動作をさせ、前記バイパスペア動作期間中に停止
する側の変換器をバイパスペア動作をさせずにゲ
ートブロツクすることを特徴とする双極直流送電
系統の停止方式。
1. In a bipolar DC transmission system where the positive and negative DC currents have a common return path, or in a bipolar DC transmission system where only the negative side is shut down, each power converter on the positive and negative sides. Adding a function to the control circuit to make the converter perform bypass pair operation and a function to perform gate block operation, and after reducing the voltage and current on the positive and negative electrode sides, Among the two converters forming a pair, the converter that is not to be stopped is operated as a bypass pair, and the converter that is to be stopped during the bypass pair operation period is gate-blocked without being operated as a bypass pair. A method of shutting down a bipolar DC power transmission system.
JP58059271A 1983-04-06 1983-04-06 Stopping system of bipolar dc transmission system Granted JPS59185119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059271A JPS59185119A (en) 1983-04-06 1983-04-06 Stopping system of bipolar dc transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059271A JPS59185119A (en) 1983-04-06 1983-04-06 Stopping system of bipolar dc transmission system

Publications (2)

Publication Number Publication Date
JPS59185119A JPS59185119A (en) 1984-10-20
JPH0254013B2 true JPH0254013B2 (en) 1990-11-20

Family

ID=13108539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059271A Granted JPS59185119A (en) 1983-04-06 1983-04-06 Stopping system of bipolar dc transmission system

Country Status (1)

Country Link
JP (1) JPS59185119A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839661B2 (en) * 1990-07-09 1998-12-16 株式会社東芝 Control device of AC / DC converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292327A (en) * 1976-01-29 1977-08-03 Toshiba Corp Suspension system for converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292327A (en) * 1976-01-29 1977-08-03 Toshiba Corp Suspension system for converter

Also Published As

Publication number Publication date
JPS59185119A (en) 1984-10-20

Similar Documents

Publication Publication Date Title
US4878163A (en) Pulse width modulated inverter with high-to-low frequency output converter
US4020411A (en) Static power converter controlling apparatus for reducing noise generated by phase shift control
US4263517A (en) Control method and system for an high voltage direct current system
US5003455A (en) Circuitry and method for controlling the firing of a thyristor
US4021721A (en) AC-to-DC converter
JPH02142358A (en) Power conversion device
JPH0254013B2 (en)
GB1594301A (en) Circuit for shutting down an inverter
JPS59159602A (en) Thyristor firing angle controller for ac electric rolling stock
Yarema A four quadrant magnet power supply for superconducting and conventional accelerator applications
US4244017A (en) Third harmonic auxiliary commutated inverter having selectable commutation capacitance as a function of load current
KR100346417B1 (en) Transmitting system of multi pulse
KR890000971B1 (en) Power converting system
JPS60200770A (en) Sinusoidal wave inverter
JPS58224567A (en) Reactive power compensation type cycloconverter
SU706911A1 (en) Dc-to-ac converter
JPS6334695B2 (en)
JPH0532990B2 (en)
JP2641852B2 (en) Frequency converter
SU900384A1 (en) Reversible thyristorized converter
JPS64908B2 (en)
JPH0334312B2 (en)
JPS59220074A (en) Controlling method of cycloconverter
JPH01133569A (en) Power converter
JPS6225823A (en) Individual tidal current inversion control