JPH0253923B2 - - Google Patents

Info

Publication number
JPH0253923B2
JPH0253923B2 JP61079988A JP7998886A JPH0253923B2 JP H0253923 B2 JPH0253923 B2 JP H0253923B2 JP 61079988 A JP61079988 A JP 61079988A JP 7998886 A JP7998886 A JP 7998886A JP H0253923 B2 JPH0253923 B2 JP H0253923B2
Authority
JP
Japan
Prior art keywords
voltage nonlinear
nonlinear resistor
oxide
container
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079988A
Other languages
Japanese (ja)
Other versions
JPS62237708A (en
Inventor
Masami Nakada
Osamu Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61079988A priority Critical patent/JPS62237708A/en
Publication of JPS62237708A publication Critical patent/JPS62237708A/en
Publication of JPH0253923B2 publication Critical patent/JPH0253923B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電圧非直線抵抗体の製造法に関し、特
に、電気的諸特性のバラツキが少ない避雷素子に
適した電圧非直線抵抗体の製造法に関するもので
ある。 (従来の技術) 従来、添加物と酸化亜鉛とからなる原料粉末を
造粒、成形、焼成して焼結体を得る電圧非直線抵
抗体の製造においては、各成分が均一に分散した
原料粉末を得るため、添加物を一旦仮焼して粉砕
した後酸化亜鉛粉末と混合して原料粉末を得てい
た。このの仮焼に際しては、単に耐火物のルツボ
状の容器内に添加物を入れて例えば900℃の温度
で仮焼していた。 (発明が解決しようとする問題点) しかしながら、上述した従来の仮焼方法におい
ては、仮焼時の焼成容器が密閉容器でないため添
加物のうち特にBi2O3,Sb2O3成分が気散してし
まい、その結果得られた仮焼物の成分が均一にな
らない欠点があつた。また、添加物を焼成容器内
に充填するに際し容器内の充填物の表面が平面に
なるよう充填しているため、焼成容器に充填され
た添加物の中央部において添加物の反応が遅れ、
この場合も得られた焼結体の成分が均一にならな
い欠点があつた。 そのため、これらの原料粉末を使用して電圧非
直線抵抗体を作成すると、電圧非直線性、課電寿
命、雷サージ耐量等の電気的諸特性が各電圧非直
線抵抗体間で変動する欠点があつた。 本発明の目的は上述した不具合を解消して、電
圧非直線性、課電寿命、雷サージ耐量等の電気的
特性が良好で変動の少ない電圧非直線抵抗体の製
造法を提供しようとするものである。 (問題点を解決するための手段) 本発明の電圧非直線抵抗体の製造法は、粒界相
を形成する添加物を仮焼して予め反応させ、これ
を微粉砕して酸化亜鉛粉末に加えて原料混合物を
得た後、この原料混合物を造粒、成形、焼成して
焼結体を得る電圧非直線抵抗体の製造法におい
て、前記仮焼工程で添加物を耐火物の容器中に入
れ蓋をした密閉状態で750〜850℃の温度で焼成す
ることを特徴とするものである。 (作 用) 上述した構成において、添加物を密閉容器内に
入れ好ましくは充填した添加物の中央部を30容量
%以上あけた状態で750〜850℃の温度で仮焼を実
施することにより、仮焼後の添加物の成分が均一
となり、その結果本発明により得られた原料粉末
を使用して作成した電圧非直線抵抗体の電圧非直
線性、課電寿命、雷サージ耐量等の電気的特性が
良好で変動の少ないものを得ることができる。 なお、本発明において仮焼温度を750〜850℃と
限定する理由は、750℃未満だと仮焼の効果が充
分発揮できず成分が均一とならないとともに、
850℃を越えると添加物の反応が進みすぎて粉砕
が困難となるためである。 以下、本発明の方法により得た原料粉末を使用
して電圧非直線抵抗体を作成する方法について説
明する。まず、例えばモル%でBi2O30.1〜2.0、
Co2O30.1〜2.0%、MnO20.1〜2.0%、Sb2O30.1〜
2.0%、Cr2O3、0.1〜2.0%、Ni0.1〜2.0%、
SiO21.0〜11.0%、の混合物及び所要の場合にさ
らにAl2O30.001〜0.05%、ホウケイ酸ビスマスガ
ラス等の添加物を加えた混合物を、好ましくは湿
式ボールミルで2μm以下に微粉砕した後、乾燥、
解砕して添加物の微粉砕物を得る。次に、好まし
くはマグネシア質またはムライト質からなる耐火
物の容器内に微粉砕物を充填する。このとき、充
填した微粉砕物の中央部に約30容量%以上の空間
を設けると、仮焼が充分に実施できるため好まし
い。さらに、同一形状の容器を積み重ねて仮焼す
る場合は、一番上の容器のみに蓋をすれば充分で
ある。次に、密閉した容器を炉の中に入れ、昇温
速度150〜250℃/hrで750〜850℃の適当な温度に
した後所定時間保持し、さらに降温速度50〜150
℃/hrで冷却して仮焼を実施する。仮焼時間は2
〜7時間程度が好ましい。 その後、仮焼後の添加物を好ましくは湿式のポ
ツトミル等により微粉砕し、酸化亜鉛粉末と混合
する。 この際結合剤としてポリビニルアルコール水溶
液を所定量加える。この混合操作は好ましくはデ
イスパーミルを用いる。得られた泥漿を減圧脱気
後好ましくはスプレードライヤーで微細粒子に造
粒した後、造粒物を成形圧力800〜1000Kg/cm2
下で所定の形状に成形する。その成形体を昇降温
速度50〜70℃/hrで800〜1000℃保持時間1〜5
時間という条件で仮焼成して結合剤を飛散除去す
る。次に、仮焼成した仮焼体の側面に絶縁被覆層
を形成する。この絶縁被覆層はBi2O3,Sb2O3
SiO2等に有機結合剤としてエチルセルロース、
ブチルカルビトール、酢酸nブチル等を加えた酸
化物ペーストであり、これを60〜300μmの厚さに
仮焼体の側面に塗布する。次にこれを昇降温速度
40〜60℃/hr、1000〜1300℃好ましくは1200℃3
〜7時間という条件で本焼成する。 そして、ガラス粉末に有機結合剤としてエチル
セルロース、ブチルカルビトール、酢酸nブチル
等を加えたガラスペーストを前記絶縁被覆上に
100〜300μmの厚さに塗布し、空気中で昇降温速
度100〜200℃/hr、400〜600℃保持時間0.5〜2
時間という条件で熱処理することによりガラス層
を形成すると好ましい。そして最後に電圧非直線
抵抗体の両端面を平滑に研磨し、アルミニウム電
極を溶射により設けて電圧非直線抵抗体を得る。 実施例 1 上述した方法作成した直径47mm、厚さ20mmの電
圧非直線抵抗体において、マグネシア容器にマグ
ネシアの蓋をして密閉した状態で添加物を仮焼し
て得た原料粉末を使用した本発明の試料No.1〜4
と、蓋をしない開放状態で添加物を仮焼して得た
原料粉末を使用した比較例No.1,2を準備した。
さらに、本発明の試料No.1〜4および比較例No.
1,2の中でも、容器内中央部の空隙率を第1表
に示すように変化させた。なお、仮焼はすべての
試料に対して、昇降温速度200℃/hrで800℃まで
昇温後800℃で5時間保持した後降温速度100℃/
hrで冷却するスケジユールで実施した。なお、こ
れらすべての試料の絶縁被覆層の厚さは300〜
100μmの範囲内であるとともに、絶縁被覆層上に
50〜100μmの厚さのガラス層を設けた。 その後、得られた電圧非直線抵抗体の各々に対
して電圧非直線指数、雷サージ後のΔV1nA、漏洩
電流の比を測定し、それらの平均値および標準偏
差を求めた。結果を第1表に示す。第1表中電圧
非直線指数αはI=KV〓(I:電流、V:電圧、
K:比例定数)に基づいてV1nAとV100Aとの値か
ら求めた。また、雷サージ後のΔV1nAは4×10μs
の電流波形で40KAの電流を10回印加した後の
V1nAの低下率を示す。さらに、漏洩電流の比は
素子を周囲温度130℃課電率95%で課電し、課電
直後に対する課電100時間後の電流比I100時間/I0
時間から求めた。
(Industrial Application Field) The present invention relates to a method for manufacturing a voltage nonlinear resistor, and in particular to a method for manufacturing a voltage nonlinear resistor suitable for a lightning arrester element with little variation in electrical characteristics. (Prior art) Conventionally, in manufacturing a voltage nonlinear resistor in which a sintered body is obtained by granulating, molding, and firing a raw material powder consisting of additives and zinc oxide, a raw material powder in which each component is uniformly dispersed is used. In order to obtain the raw material powder, the additives were once calcined and pulverized, and then mixed with zinc oxide powder to obtain the raw material powder. When calcining this, additives were simply placed in a refractory crucible-shaped container and calcined at a temperature of, for example, 900°C. (Problems to be Solved by the Invention) However, in the above-mentioned conventional calcination method, since the calcination container during calcination is not a closed container, the Bi 2 O 3 and Sb 2 O 3 components among the additives are particularly sensitive. There was a drawback that the components of the calcined product obtained as a result were not uniform. In addition, when filling the firing container with additives, the surface of the filling inside the container is flat, so the reaction of the additives is delayed in the center of the filling in the firing container.
In this case as well, there was a drawback that the components of the obtained sintered body were not uniform. Therefore, when creating voltage nonlinear resistors using these raw material powders, there is a drawback that various electrical properties such as voltage nonlinearity, energized life, and lightning surge resistance vary between each voltage nonlinear resistor. It was hot. An object of the present invention is to eliminate the above-mentioned problems and provide a method for manufacturing a voltage nonlinear resistor with good electrical characteristics such as voltage nonlinearity, energized life, and lightning surge resistance, and with little variation. It is. (Means for Solving the Problems) The method for manufacturing the voltage nonlinear resistor of the present invention involves calcining the additives that form the grain boundary phase to react in advance, and finely pulverizing the additives to form zinc oxide powder. In addition, in a method for manufacturing a voltage nonlinear resistor in which a sintered body is obtained by obtaining a raw material mixture, this raw material mixture is granulated, molded, and fired, additives are placed in a refractory container in the calcination step. It is characterized by being baked at a temperature of 750 to 850°C in a sealed state with a lid on. (Function) In the above-mentioned configuration, by placing the additive in a closed container and performing calcination at a temperature of 750 to 850°C, preferably with at least 30% by volume open in the center of the filled additive, The ingredients of the additive after calcination become uniform, and as a result, the voltage nonlinearity, energized life, lightning surge resistance, etc. of the voltage nonlinear resistor made using the raw material powder obtained by the present invention are improved. It is possible to obtain products with good characteristics and little variation. In addition, the reason why the calcination temperature is limited to 750 to 850°C in the present invention is that if it is lower than 750°C, the effect of calcination cannot be sufficiently exhibited and the components will not be uniform.
This is because if the temperature exceeds 850°C, the reaction of the additives will proceed too much, making pulverization difficult. Hereinafter, a method for producing a voltage nonlinear resistor using the raw material powder obtained by the method of the present invention will be described. First, for example Bi 2 O 3 0.1-2.0 in mol%,
Co2O3 0.1 ~2.0%, MnO2 0.1 ~2.0%, Sb2O3 0.1 ~
2.0%, Cr2O3 , 0.1~2.0%, Ni0.1 ~2.0%,
After pulverizing a mixture of SiO 2 1.0 to 11.0% and, if necessary, additional additives such as Al 2 O 3 0.001 to 0.05% and bismuth borosilicate glass to a size of 2 μm or less, preferably using a wet ball mill. , drying,
Crush to obtain finely ground additives. Next, the finely ground material is filled into a refractory container preferably made of magnesia or mullite. At this time, it is preferable to provide a space of about 30% by volume or more in the center of the packed finely pulverized material, since sufficient calcination can be carried out. Furthermore, if containers of the same shape are stacked and calcined, it is sufficient to cover only the topmost container. Next, the sealed container is placed in a furnace, heated to an appropriate temperature of 750 to 850°C at a heating rate of 150 to 250°C/hr, held for a predetermined period of time, and further heated to an appropriate temperature of 750 to 850°C at a cooling rate of 50 to 150°C.
Calcination is performed by cooling at °C/hr. The calcination time is 2
About 7 hours is preferable. Thereafter, the calcined additive is pulverized, preferably by a wet pot mill, and mixed with zinc oxide powder. At this time, a predetermined amount of a polyvinyl alcohol aqueous solution is added as a binder. This mixing operation preferably uses a disper mill. The obtained slurry is degassed under reduced pressure and then granulated into fine particles, preferably using a spray dryer, and then the granulated product is molded into a predetermined shape under a molding pressure of 800 to 1000 kg/cm 2 . The molded body is held at 800 to 1000℃ for 1 to 5 hours at a heating/cooling rate of 50 to 70℃/hr.
The binder is scattered and removed by pre-firing under certain conditions. Next, an insulating coating layer is formed on the side surface of the calcined body. This insulating coating layer consists of Bi 2 O 3 , Sb 2 O 3 ,
Ethyl cellulose as an organic binder to SiO 2 , etc.
It is an oxide paste containing butyl carbitol, n-butyl acetate, etc., and is applied to the side surface of the calcined body to a thickness of 60 to 300 μm. Next, change this to the temperature increase/decrease rate
40-60℃/hr, 1000-1300℃ preferably 1200℃3
Main firing is performed for ~7 hours. Then, a glass paste made by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to glass powder is applied onto the insulating coating.
Apply to a thickness of 100 to 300 μm, heat up and cool down in air at a rate of 100 to 200°C/hr, and hold at 400 to 600°C for 0.5 to 2
It is preferable to form the glass layer by heat treatment under the condition of time. Finally, both end faces of the voltage nonlinear resistor are polished smooth, and aluminum electrodes are provided by thermal spraying to obtain a voltage nonlinear resistor. Example 1 A voltage nonlinear resistor with a diameter of 47 mm and a thickness of 20 mm produced by the method described above was manufactured using raw material powder obtained by calcining additives in a magnesia container with a lid of magnesia sealed. Invention samples No. 1 to 4
Comparative Examples Nos. 1 and 2 were prepared using raw material powder obtained by calcining additives in an open state without a lid.
Furthermore, samples No. 1 to 4 of the present invention and comparative example No.
Among Examples 1 and 2, the porosity at the center of the container was changed as shown in Table 1. For calcination, all samples were heated to 800°C at a heating/cooling rate of 200°C/hr, held at 800°C for 5 hours, and then heated at a cooling rate of 100°C/hr.
It was carried out on a cooling schedule of hr. The thickness of the insulation coating layer of all these samples is 300~
Within the range of 100μm and on the insulation coating layer
A glass layer with a thickness of 50-100 μm was provided. Thereafter, the voltage nonlinearity index, ΔV 1nA after lightning surge, and leakage current ratio were measured for each of the obtained voltage nonlinear resistors, and their average value and standard deviation were determined. The results are shown in Table 1. In Table 1, the voltage nonlinearity index α is I=KV〓(I: current, V: voltage,
K: constant of proportionality) was calculated from the values of V 1nA and V 100A. Also, ΔV 1nA after lightning surge is 4×10μs
After applying a current of 40KA 10 times with a current waveform of
The rate of decrease in V 1nA is shown. Furthermore, the leakage current ratio is calculated by applying a current to the element at an ambient temperature of 130°C and a current application rate of 95%, and the current ratio after 100 hours of application to the current immediately after application: I 100 hours/I 0
I asked for it from time.

【表】 第1表から明らかなように、本発明の添加物の
仮焼を密閉容器中で実施して得た原料粉末を使用
した試料No.1〜4は、比較例No.1,2に比べて高
い電圧非直線指数および少ない雷サージ後の
ΔV1nA、少ない漏洩電流を達成でき、その結果電
圧非直線性、課電寿命、雷サージ耐量の電気的諸
特性が良好であるとともに、それらの標準偏差値
も小さく特性の変動が少ないことがわかつた。 さらに本発明の試料No.1〜4のうちでも、容器
内に充填した添加物の中央部を30容量%以上空間
とすると、さらに良好な特性で特性の変動が少な
い電圧非直線抵抗体が得られることがわかつた。 実施例 2 同様に上述した方法で作成した直径47mm、厚さ
20mmの電圧非直線抵抗体において、添加物の仮焼
温度の影響を仮焼温度を変化させて得た原料粉末
を使用した試料No.1〜5から調べた。このとき、
仮焼はすべての試料に対して容器に蓋をした密閉
状態で行なうとともに、添加物の焼成容器内中央
部の空隙40容量%と一定にして行なつた。その後
実施例1と同様に、得られた電圧非直線抵抗体の
各々に対して電圧非直線指数、雷サージ後の
ΔV1nA漏洩電流の比を測定し、それらの平均値お
よび標準偏差を求めた。結果を第2表に示す。
[Table] As is clear from Table 1, Samples Nos. 1 to 4 using raw material powder obtained by calcining the additive of the present invention in a closed container are different from Comparative Examples Nos. 1 and 2. It is possible to achieve a higher voltage nonlinearity index, lower ΔV 1nA after lightning surge, and lower leakage current compared to the previous model, resulting in better electrical characteristics such as voltage nonlinearity, energized life, and lightning surge withstand capacity. It was found that the standard deviation value of was also small and there was little variation in characteristics. Furthermore, among Samples Nos. 1 to 4 of the present invention, if the center part of the additive filled in the container is made to have a space of 30% or more by volume, a voltage nonlinear resistor with even better characteristics and less fluctuation in characteristics can be obtained. I found out that it can be done. Example 2 Diameter 47 mm and thickness made in the same manner as described above
In a 20 mm voltage nonlinear resistor, the influence of the calcination temperature of additives was investigated using sample Nos. 1 to 5 using raw material powders obtained by varying the calcination temperature. At this time,
Calcination was performed for all samples in a sealed state with a lid on the container, and the void space in the center of the firing container for additives was kept constant at 40% by volume. Thereafter, in the same manner as in Example 1, the voltage nonlinear index and the ratio of ΔV 1nA leakage current after lightning surge were measured for each of the obtained voltage nonlinear resistors, and their average value and standard deviation were determined. . The results are shown in Table 2.

【表】 第2表から明らかなように、本発明の添加物の
仮焼を密閉容器中で実施して得た原料粉末を使用
した試料でも、仮焼温度が750℃未満だと電圧非
直線性が劣化し、雷サージ後のΔV1nAおよび漏洩
電流も増えることがわかつた。また、850℃を越
えると各種特性は良好であるが反応が進みすぎて
粉砕が困難であることがわかつた。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明の電圧非直線抵抗体の製造法によれ
ば、添加物の仮焼を密閉状態で実施するとともに
仮焼時の温度を750〜850℃と規定することによ
り、電圧非直線性、課電寿命、雷サージ耐量等の
電気的特性が良好で変動の少ない電圧非直線抵抗
体を得ることができる。
[Table] As is clear from Table 2, even in samples using raw material powder obtained by calcining the additive of the present invention in a closed container, the voltage becomes non-linear when the calcining temperature is less than 750°C. It was found that the ΔV 1nA and leakage current after a lightning surge increased. Furthermore, it was found that when the temperature exceeds 850°C, although various properties are good, the reaction progresses too much and pulverization becomes difficult. (Effects of the Invention) As is clear from the detailed explanation above, according to the method for manufacturing a voltage nonlinear resistor of the present invention, the additives are calcined in a sealed state, and the temperature during calcining is controlled. By specifying the temperature to be 750 to 850°C, it is possible to obtain a voltage nonlinear resistor with good electrical properties such as voltage nonlinearity, charging life, and lightning surge resistance, and with little fluctuation.

Claims (1)

【特許請求の範囲】 1 粒界相を形成する添加物を仮焼して予め反応
させ、これを微粉砕して酸化亜鉛粉末に加えて原
料混合物を得た後、この原料混合物を造粒、成
形、焼成して焼結体を得る電圧非直線抵抗体の製
造法において、前記仮焼工程で添加物を耐火物の
容器中に入れ蓋をした密閉状態で750〜850℃の温
度で焼成することを特徴とする電圧非直線抵抗体
の製造法。 2 前記添加物が所定量の酸化ビスマス、酸化コ
バルト、酸化マンガン、酸化アンチモン、酸化ク
ロム、酸化ニツケル、酸化ケイ素である特許請求
の範囲第1項記載の電圧非直線抵抗体の製造法。 3 前記添加物の容器内への充填に際し、容器の
中央部に30容量%以上の空間を設ける特許請求の
範囲第1項記載の電圧非直線抵抗体の製造法。
[Claims] 1. Additives that form a grain boundary phase are calcined and reacted in advance, and this is pulverized and added to zinc oxide powder to obtain a raw material mixture. This raw material mixture is then granulated, In a method for manufacturing a voltage nonlinear resistor in which a sintered body is obtained by molding and firing, in the calcination step, additives are placed in a refractory container and fired at a temperature of 750 to 850°C in a sealed state with a lid. A method for manufacturing a voltage nonlinear resistor characterized by: 2. The method of manufacturing a voltage nonlinear resistor according to claim 1, wherein the additive is a predetermined amount of bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, nickel oxide, or silicon oxide. 3. The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein a space of 30% by volume or more is provided in the center of the container when filling the additive into the container.
JP61079988A 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element Granted JPS62237708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079988A JPS62237708A (en) 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079988A JPS62237708A (en) 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element

Publications (2)

Publication Number Publication Date
JPS62237708A JPS62237708A (en) 1987-10-17
JPH0253923B2 true JPH0253923B2 (en) 1990-11-20

Family

ID=13705688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079988A Granted JPS62237708A (en) 1986-04-09 1986-04-09 Manufacture of voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS62237708A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674317B2 (en) * 2010-01-13 2015-02-25 コーア株式会社 Zinc oxide varistor and method for producing the same

Also Published As

Publication number Publication date
JPS62237708A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
JPH0253923B2 (en)
JPH02143502A (en) Manufacture of ntc thermistor
US4906964A (en) Voltage non-linear resistor
JP3353015B2 (en) Method of manufacturing voltage non-linear resistor
JPH0253922B2 (en)
JPH0252405B2 (en)
JP2619129B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JPH0525364B2 (en)
JPS6249961B2 (en)
JP2793578B2 (en) Method for manufacturing voltage non-linear resistor and sagger used for the same
JPH0528883B2 (en)
JPH0379850B2 (en)
JPH0321083B2 (en)
JPH0253924B2 (en)
JPH0322720Y2 (en)
JP3139584B2 (en) Method for manufacturing voltage non-linear resistor
JPH07249505A (en) Manufacture of nonlinear resistor
JPH0515041B2 (en)
JPH08293403A (en) Manufacture of voltage nonlinear resistor element
JPS6364301A (en) Manufacture of voltage nonlinear resistor
JPH0773082B2 (en) Method for producing zinc oxide varistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH0516641B2 (en)
JPS625321B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term