JPH0253641B2 - - Google Patents

Info

Publication number
JPH0253641B2
JPH0253641B2 JP56006704A JP670481A JPH0253641B2 JP H0253641 B2 JPH0253641 B2 JP H0253641B2 JP 56006704 A JP56006704 A JP 56006704A JP 670481 A JP670481 A JP 670481A JP H0253641 B2 JPH0253641 B2 JP H0253641B2
Authority
JP
Japan
Prior art keywords
pressure
valve
tank
spring chamber
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56006704A
Other languages
Japanese (ja)
Other versions
JPS57120702A (en
Inventor
Megumi Myake
Hiroshi Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP670481A priority Critical patent/JPS57120702A/en
Publication of JPS57120702A publication Critical patent/JPS57120702A/en
Publication of JPH0253641B2 publication Critical patent/JPH0253641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、圧力補償弁と方向切換弁とを組合
せ、アクチユエータの作動方向と速度を制御する
複合弁に係り、油圧ポンプのアンロード運転時の
圧力損失を小くするように改良したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a composite valve that combines a pressure compensating valve and a directional control valve to control the operating direction and speed of an actuator, and the present invention relates to a composite valve that controls the operating direction and speed of an actuator during unloading operation of a hydraulic pump. This has been improved to reduce pressure loss.

(従来の技術) 本発明の属する従来の技術としては、第3図
(実開昭54−97594号)に示されるものがある。以
下この技術に付いて説明する。
(Prior Art) A conventional art to which the present invention pertains is shown in FIG. 3 (Utility Model Application No. 54-97594). This technique will be explained below.

第3図によつて示された装置は、いずれも本願
発明より、油圧ポンプのアンロード運転時の圧力
損失が大きな値となるものです。(尚、油圧ポン
プのアンロード運転時の圧力損失を小さな値にす
る理由は、不要な動力損失を極力少なくする事に
ある。)以下この点を中心に従来の技術に付いて
のべる。なを、本発明と同一の技術の分野にかか
る引例の圧力補償弁は、方向切換弁2と組み合わ
せて、アクチユエータAの負荷変動に関係なく、
方向切換弁2の操作量に応じた流量をアクチユエ
ータAに供給させる事を目的とするものである。
この目的を達成するために、圧力補償弁4は、圧
力流体源1とタンク3との間に設けられ、圧力流
体源1の吐出圧油の一部をタンク3に排出する油
量を加減して、前記圧力流体源1に接続する方向
切換弁2が形成する絞り9の前後の差圧を、アク
チユエータAの負荷変動に関係なく一定に保もつ
機能を有する。
The devices shown in Figure 3 each have a large pressure loss during unloading operation of the hydraulic pump compared to the present invention. (Incidentally, the reason why the pressure loss during unloading operation of the hydraulic pump is kept to a small value is to minimize unnecessary power loss.) The conventional technology will be discussed below with a focus on this point. Moreover, the pressure compensating valve of the reference according to the same technical field as the present invention can be used in combination with the directional control valve 2, regardless of the load fluctuation of the actuator A.
The purpose is to supply the actuator A with a flow rate corresponding to the amount of operation of the directional switching valve 2.
To achieve this purpose, a pressure compensation valve 4 is provided between the pressure fluid source 1 and the tank 3 to adjust the amount of oil discharged into the tank 3 from a portion of the pressure oil discharged from the pressure fluid source 1. It has a function of keeping the differential pressure across the throttle 9 formed by the directional switching valve 2 connected to the pressure fluid source 1 constant regardless of load fluctuations of the actuator A.

従来の技術がこの様な機能を果たす為に、圧力
補償弁4は、圧力流体源1とタンク3との間を制
御するスプール36を有し、このスプール36を
介して圧力室39と、スプール36を押すバネ4
9が設けてあるバネ室52とを対抗して設け、こ
の圧力室39に、絞り9の上流側の油圧(圧力流
体源1の吐出圧)を作用させ、バネ室52に絞り
9の下流側の油圧を(アクチユエータAの負荷
圧)を作用させる構成とされる。
In order for the conventional technology to perform such a function, the pressure compensating valve 4 has a spool 36 that controls between the pressure fluid source 1 and the tank 3, and the pressure chamber 39 and the spool are connected via this spool 36. Spring 4 pushing 36
The pressure chamber 39 is provided opposite to the spring chamber 52 in which the throttle 9 is provided, and the hydraulic pressure (discharge pressure of the pressure fluid source 1) on the upstream side of the throttle 9 is applied to the pressure chamber 39. The structure is such that the hydraulic pressure (load pressure of actuator A) is applied.

このような構成を有する圧力補償弁4は、方向
切換弁2が操作されその絞り9の上流側と下流側
の油圧が、圧力室39とバネ室52に作用する
と、絞り9の前後の差圧を、バネ49の押力に応
じた一定の値(方向切換弁2が有する圧力損失よ
り大きい値。)に制御する様に、スプール36が
圧力流体源1の吐出油圧のタンク3への排出量を
制御する様に作動する。
In the pressure compensation valve 4 having such a configuration, when the directional control valve 2 is operated and the hydraulic pressure on the upstream and downstream sides of the throttle 9 acts on the pressure chamber 39 and the spring chamber 52, the pressure difference before and after the throttle 9 is reduced. The spool 36 controls the amount of hydraulic pressure discharged from the pressure fluid source 1 into the tank 3 so as to control the amount to a constant value (a value larger than the pressure loss of the directional control valve 2) according to the pushing force of the spring 49. It operates to control the

圧力補償弁4の上述の作動において、方向切換
弁2が操作されたとき、圧力補償弁4のバネ室5
2にアクチユエータAの負荷圧力が作用するもの
であり、この時の圧力流体源1の吐出油圧は、負
荷圧力とバネ49の押力の加算値に応じた値にな
る。この時の圧力流体源1の吐出油圧とアクチユ
エータAの負荷圧力との差は、方向切換弁2の圧
力降下を上回る圧力にしておく必要がある。こ
の、圧力流体源1の吐出油圧を、この圧力降下分
を上回る圧力にする働きは、バネ室52に設けた
バネ49である。
In the above-described operation of the pressure compensation valve 4, when the directional control valve 2 is operated, the spring chamber 5 of the pressure compensation valve 4
The load pressure of the actuator A acts on the actuator A, and the discharge oil pressure of the pressure fluid source 1 at this time has a value corresponding to the sum of the load pressure and the pushing force of the spring 49. At this time, the difference between the discharge oil pressure of the pressure fluid source 1 and the load pressure of the actuator A must be set to a pressure that exceeds the pressure drop of the directional control valve 2. The spring 49 provided in the spring chamber 52 functions to make the hydraulic pressure discharged from the pressure fluid source 1 into a pressure that exceeds this pressure drop.

(発明が解決しようとする課題) 上述した従来の技術は、方向切換弁2が中立位
置である時においても、圧力流体源1の吐出油圧
(アンロード圧力)は、バネ49の押力に相当す
る圧力となつている。この、圧力は、アクチユエ
ータAが作動するために必要な圧力でない。つま
り、動力損失となる。
(Problems to be Solved by the Invention) In the conventional technology described above, even when the directional control valve 2 is in the neutral position, the discharge oil pressure (unload pressure) of the pressure fluid source 1 is equivalent to the pushing force of the spring 49. There is growing pressure to do so. This pressure is not the pressure necessary for actuator A to operate. In other words, there is a power loss.

本発明は、従来技術の前記の問題点を解決した
するものである。
The present invention solves the above-mentioned problems of the prior art.

(課題を解決するための技術的手段) 上記の問題点を解決するす本発明の技術的手段
は、圧力補償弁4を、圧力流体源1とタンク3と
の間を制御する制御部30と、方向切換弁2の差
圧を設定するバネ49を有するバネ室52が設け
てあるパイロツト弁部31とに分離し、制御部3
0の圧力室40をパイロツト弁部31で制御する
と共に、圧力室40とタンク3との間に遮断弁5
を介在させ、前記パイロツト弁部31と遮断弁5
とを、方向切換弁2が中立位置にある時タンク3
に接続し、切換位置にある時アクチユエータAの
負荷側に接続するパイロツト通路51に接続し、
この遮断弁5が、パイロツト通路51にアクチユ
エータAの負荷圧力が作用したとき、制御部30
の圧力室40とタンク3との間を遮断する構成と
したものである。
(Technical Means for Solving the Problems) The technical means of the present invention for solving the above problems is to connect the pressure compensating valve 4 to the control unit 30 that controls the connection between the pressure fluid source 1 and the tank 3. , a pilot valve section 31 which is provided with a spring chamber 52 having a spring 49 for setting the differential pressure of the directional control valve 2, and a control section 3.
0 pressure chamber 40 is controlled by a pilot valve section 31, and a shutoff valve 5 is installed between the pressure chamber 40 and the tank 3.
are interposed between the pilot valve section 31 and the shutoff valve 5.
and, when the directional control valve 2 is in the neutral position, the tank 3
connected to the pilot passage 51 connected to the load side of the actuator A when in the switching position,
When the load pressure of the actuator A acts on the pilot passage 51, the shutoff valve 5 closes the control section 30.
The structure is such that the pressure chamber 40 and the tank 3 are isolated from each other.

(作用) 以上の構成を有する本発明は、その圧力補償弁
が、方向切換弁2が中立位置の時に、制御部30
の圧力室40を遮断弁5により直接タンク3に接
続する。そして、方向切換弁2が操作されるとア
クチユエータAの負荷圧力で遮断弁5が圧力室4
0とタンク3との間を閉塞するので、圧力室40
がパイロツト弁部31で制御される。このため、
本願発明のアンロード油圧は、方向切換弁2が有
する圧力降下に関係なく、制御部30の圧力室4
0内に設けたばね41(このばね41の押力は、
圧力室40と圧力室39内の油圧が等しくなると
スプール36を、圧力流体源1とタンク3を絞る
方向に作動させるだけのものでよい。)の押圧力
に相当する低い値にする事ができる。この様に本
発明は、方向切換弁2が操作された時、自動的に
圧力流体源1の油圧を上昇させるので、方向切換
弁2は中立位置にある時のアンロード油圧を極め
て小さい値にする事ができるものである。
(Function) In the present invention having the above configuration, when the directional control valve 2 is in the neutral position, the pressure compensation valve
A pressure chamber 40 is directly connected to the tank 3 by a shutoff valve 5. When the directional control valve 2 is operated, the load pressure of the actuator A causes the cutoff valve 5 to open in the pressure chamber 4.
Since the space between the pressure chamber 40 and the tank 3 is closed, the pressure chamber 40
is controlled by the pilot valve section 31. For this reason,
The unloading hydraulic pressure of the present invention is applied to the pressure chamber 4 of the control section 30 regardless of the pressure drop of the directional control valve 2.
0 (the pushing force of this spring 41 is
When the oil pressures in the pressure chambers 40 and 39 become equal, it is sufficient to operate the spool 36 in a direction that throttles the pressure fluid source 1 and the tank 3. ) can be set to a low value equivalent to the pressing force of . In this manner, the present invention automatically increases the oil pressure of the pressure fluid source 1 when the directional control valve 2 is operated, so that the unloading oil pressure when the directional control valve 2 is in the neutral position is reduced to an extremely small value. It is something that can be done.

<実施例> 以下、本発明の実施例の回路図を示す第1図及
び断面図を含む回路図を示す第2図によつて説明
する。
<Example> Hereinafter, an explanation will be given with reference to FIG. 1 showing a circuit diagram of an example of the present invention and FIG. 2 showing a circuit diagram including a sectional view.

第1図において、Aは、アクチユエータであ
る。このアクチユエータは、圧力流体源1(以下
ポンプ1と記す。)が吐出回路8a,8bを介し
て接続する方向切換弁2に、負荷通路20a,2
0bを介して接続してある。方向切換弁2は、そ
のスプール16が操作されると負荷通路20a又
は20bと吐出回路8bとの間に絞り9a又は9
bを形成すると共に、パイロツト通路51を、負
荷通路20a又は20bの負荷側へ接続する。吐
出回路8aとタンク3との間には、圧力補償弁4
が設けてある。この圧力補償弁4は、ポンプ1の
吐出側に接続する圧力室39とばね41を有する
ばね室40を有し、その押圧力によつてポンプ1
の吐出圧力流体の一部を、タンク3へ流出される
制御部30と、この制御部30のばね室40とタ
ンクとの間に配置してあり、前記パイロツト通路
51が接続するばね室52を有するパイロツト弁
部31とで形成される。この圧力補償弁4のばね
室40は、遮断弁5を介してタンク接続する。こ
の遮断弁5は、パイロツト通路51が接続する圧
力室51の負荷圧力でばね室40とタンク3との
間を閉鎖し、パイロツト通路51がタンクに接続
されると、ばね室40を、タンク3に連通する。
In FIG. 1, A is an actuator. In this actuator, a pressure fluid source 1 (hereinafter referred to as pump 1) is connected to a directional control valve 2 via discharge circuits 8a and 8b, and load passages 20a and 2
It is connected via 0b. When the spool 16 of the directional control valve 2 is operated, a throttle 9a or 9 is created between the load passage 20a or 20b and the discharge circuit 8b.
b, and connects the pilot passage 51 to the load side of the load passage 20a or 20b. A pressure compensation valve 4 is provided between the discharge circuit 8a and the tank 3.
is provided. This pressure compensating valve 4 has a pressure chamber 39 connected to the discharge side of the pump 1 and a spring chamber 40 having a spring 41.
A part of the discharged pressure fluid is discharged into the tank 3 from the control section 30, and the spring chamber 52 is arranged between the spring chamber 40 of the control section 30 and the tank, and the spring chamber 52 is connected to the pilot passage 51. The pilot valve section 31 has a pilot valve section 31. The spring chamber 40 of this pressure compensating valve 4 is connected to a tank via a shutoff valve 5 . This shutoff valve 5 closes the gap between the spring chamber 40 and the tank 3 by the load pressure of the pressure chamber 51 to which the pilot passage 51 is connected, and when the pilot passage 51 is connected to the tank, the spring chamber 40 is closed to the tank 3 communicate with.

以上の構成において方向切換弁2が操作される
と、アクチユエータAの負荷圧力がパイロツト通
路51を介して、パイロツト弁部31と遮断弁5
に作用する。すると遮断弁5がばね室40とタン
クとの間を遮断し、制御弁部30のばね室40の
油圧が、パイロツト弁31によつて制御される。
このとき、制御弁部30のばね室40内の油圧
は、パイロツト弁部31のばね室52のばね49
による押圧力分だけ高く保持されるので、方向切
換弁2の絞りの前後差圧を、ばね49によつて得
られる分だけ、負荷圧力より高くなるようにポン
プ1の吐出流体圧力を保持する。ポンプ1からア
クチユエータAへの流量は、アクチユエータの負
荷変動に関係なく方向切換弁の操作量に応じた値
に制御される。なお、圧力補償弁4の制御部30
のばね室40のばね41の押圧力は、圧力流体が
作用しなくなつたとき、そのスプール36を第2
図の位置に保持するためのものであるから、極め
て弱い値にしてある。同様に遮断弁5のばね62
の押圧もパイロツト圧力が低下したとき、スプー
ル57を図示の位置に保持するためのものである
から弱い値でよい。パイロツト弁部31のバネ室
52のばね49の押圧力は、方向切換弁2が形成
する絞りの前後差圧を決定するものである。な
お、制御部30のばね室40に設けたばね41も
ばね49と同様の働きをするが、ばね41は、第
2図からも明かなように制御部30のスプール3
6に直接当接しているので、制御時のタワミ量が
大きくなる。方向切換弁が形成する絞りの前後の
差圧を決定するばねは、圧力補償弁の特性上、タ
ワミ量に対する押圧力の変化が少ないばね(ばね
定数を低くする。)を用いる必要があるので、ば
ね41にばね49と同様の働きを行わせるとタワ
ミ量に対する押圧力の変化を少なくするためばね
を大型化する必要がある。しかし、ばね49は、
その移動量が極めて微少(球弁50のリフトに対
する開口面積が大きいため)にできる。このた
め、方向切換弁2が形成する絞りの前後差圧を設
定するためのばね力は、ばね49によるものとし
た。
When the directional control valve 2 is operated in the above configuration, the load pressure of the actuator A is transferred to the pilot valve portion 31 and the cutoff valve 5 via the pilot passage 51.
It acts on Then, the shutoff valve 5 shuts off the spring chamber 40 and the tank, and the hydraulic pressure in the spring chamber 40 of the control valve section 30 is controlled by the pilot valve 31.
At this time, the hydraulic pressure in the spring chamber 40 of the control valve section 30 is
Therefore, the discharge fluid pressure of the pump 1 is maintained so that the differential pressure across the throttle of the directional control valve 2 is higher than the load pressure by the amount obtained by the spring 49. The flow rate from the pump 1 to the actuator A is controlled to a value according to the operation amount of the directional switching valve, regardless of load fluctuations on the actuator. Note that the control section 30 of the pressure compensation valve 4
The pressing force of the spring 41 in the spring chamber 40 causes the spool 36 to move to the second position when the pressure fluid ceases to act.
Since it is intended to hold the position in the figure, it is set to an extremely weak value. Similarly, the spring 62 of the shutoff valve 5
Since the pressing force is to hold the spool 57 in the illustrated position when the pilot pressure decreases, it may be a weak value. The pressing force of the spring 49 of the spring chamber 52 of the pilot valve portion 31 determines the differential pressure across the throttle formed by the directional control valve 2. Note that the spring 41 provided in the spring chamber 40 of the control section 30 also functions in the same way as the spring 49, but as is clear from FIG.
6, the amount of deflection during control increases. Due to the characteristics of the pressure compensation valve, the spring that determines the differential pressure before and after the throttle formed by the directional control valve needs to be a spring whose pressing force changes little with respect to the amount of deflection (lower spring constant). If the spring 41 were to perform the same function as the spring 49, it would be necessary to increase the size of the spring in order to reduce the change in pressing force with respect to the amount of deflection. However, the spring 49 is
The amount of movement can be made extremely small (because the opening area of the ball valve 50 for lift is large). For this reason, the spring force for setting the differential pressure across the throttle formed by the directional switching valve 2 is provided by the spring 49.

次に第2図に示す断面図を含む回路図によつて
各部品の構成を説明する。
Next, the configuration of each component will be explained using a circuit diagram including a cross-sectional view shown in FIG.

複合弁は、圧力流体源1(以下ポンプと記す。)
の吐出側とアクチユエータ(図示せず。)の間に
配置してあり、ポンプ1の吐出側とアクチユエー
タAとの間に絞りを形成する方向切換弁2と、圧
力流体源1の吐出側とタンク3との間に配置して
あり、方向切換弁2が形成する絞りの上流側の流
体圧力が作用する圧力室とアクチユエータAの負
荷側(下流側)の負荷圧力が作用しばねを有する
ばね室とを備え、前記方向切換弁2が形成する絞
りの上流側と下流側の流体圧力の差を一定の値に
制御する圧力補償弁4と、この圧力補償弁4のば
ね室とタンク3との間に配置してあり前記方向切
換弁2の絞りの下流側の流体圧力により作動しば
ね室とタンク3との間を遮断する遮断弁5とによ
り構成する。
The composite valve is a pressure fluid source 1 (hereinafter referred to as pump).
A directional control valve 2 is disposed between the discharge side of the pump 1 and the actuator (not shown) and forms a restriction between the discharge side of the pump 1 and the actuator A, and a directional control valve 2 is disposed between the discharge side of the pressure fluid source 1 and the tank. 3, a pressure chamber on which the fluid pressure on the upstream side of the throttle formed by the directional control valve 2 acts, and a spring chamber with a spring on which the load pressure on the load side (downstream side) of the actuator A acts. and a pressure compensation valve 4 that controls the difference in fluid pressure between the upstream side and the downstream side of the throttle formed by the directional control valve 2 to a constant value, and a spring chamber of the pressure compensation valve 4 and a tank 3. A cutoff valve 5 is disposed between the spring chamber and the tank 3 and is operated by fluid pressure downstream of the throttle of the directional control valve 2 to cut off the connection between the spring chamber and the tank 3.

方向切換弁2は、複数のランド部10a,10
b,11a,11b及び12と、環状溝13a,
13b,14a,14bと、内部通路15とを備
えたスプール16と、このスプール16のランド
部10a,10b,11a,11b,12が摺動
自在に嵌入し、後述する複数の通路が開口する内
孔17と、供給通路18及びロードチエツク弁1
9を有する。前記、内孔17に開口する複数の通
路は、アクチユエータに接続する負荷通路20
a,20bと、タンク3に接続するタンク通路2
1と、供給通路18にロードチエツク弁19を介
して接続するブリツジ通路22、ポンプ1の吐出
側が接続する第1アンロード通路23a,23b
と、後段に方向切換弁を接続したときは、後段の
第1アンロード通路へ、後段に方向切換弁を接続
しないときはタンク3へ接続する第2アンロード
通路24とより構成してある。なお、パイロツト
通路26a,26bの一方は、後述する圧力補償
弁4、遮断弁5に接続すると共に、その他方は、
環状溝25a,25bに接続する。
The directional control valve 2 includes a plurality of land portions 10a, 10.
b, 11a, 11b and 12, and annular groove 13a,
13b, 14a, 14b and an internal passage 15, and the lands 10a, 10b, 11a, 11b, 12 of this spool 16 are slidably fitted into the spool 16, and a plurality of passages (to be described later) are opened inside the spool 16. hole 17, supply passage 18 and load check valve 1
It has 9. The plurality of passages opening into the inner hole 17 are load passages 20 connected to the actuator.
a, 20b, and tank passage 2 connecting to tank 3
1, a bridge passage 22 connected to the supply passage 18 via a load check valve 19, and first unload passages 23a, 23b connected to the discharge side of the pump 1.
When a directional control valve is connected to the rear stage, a first unload passage 24 is connected to the rear stage, and a second unload passage 24 is connected to the tank 3 when a directional control valve is not connected to the rear stage. Note that one of the pilot passages 26a and 26b is connected to a pressure compensation valve 4 and a cutoff valve 5, which will be described later, and the other
Connected to the annular grooves 25a and 25b.

このような、各通路とスプールを有するこの方
向切換弁2は、スプール16が第1図に示す中立
位置にあるとき、負荷通路20a,20bの夫々
をサンド部10,11aと10b,11bとが遮
断し、第1、第2アンロード通路23a,23
b,24を環状溝14a,14bが接続すると共
にパイロツト通路26a,26bは、スプール1
6の内部通路15を介してタンク通路21へ接続
する。次にスプール16を中立位置から右方向へ
操作し始めると、ランド部11a,12は、第
1、第2アンロード通路23,23b,24を閉
塞した時パイロツト通路26aが負荷通路20a
に接続され、パイロツト通路26がタンク通路2
1から遮断される。環状溝13bが、負荷通路2
0bとタンク通路21を接続する。そしてさらに
移動すると、ブリツジ通路22と負荷通路20a
が、ランド部11aの絞り9a、環状溝13aを
介して接続する。この位置では、ポンプ1から供
給通路18に供給される圧力流体が、ロードチエ
ツク弁19、ブリツジ通路22、絞り9a、負荷
通路20aを介してアクチユエータAへ流入す
る。そして、アクチユエータAからの排出流体は
負荷通路20b、環状溝13b、タンク通路21
を介してタンク3に流入する。なお、このとき、
パイロツト通路26aには、負荷通路20aの負
荷圧力が作用する。
This directional control valve 2 having each passage and a spool is configured so that when the spool 16 is in the neutral position shown in FIG. The first and second unloading passages 23a, 23
b, 24 are connected to the annular grooves 14a, 14b, and the pilot passages 26a, 26b are connected to the spool 1.
It is connected to the tank passage 21 via the internal passage 15 of 6. Next, when the spool 16 is started to be operated from the neutral position to the right, the lands 11a and 12 close the first and second unload passages 23, 23b and 24, and the pilot passage 26a moves to the load passage 20a.
The pilot passage 26 is connected to the tank passage 2.
It is blocked from 1. The annular groove 13b is the load passage 2
0b and the tank passage 21 are connected. Then, when moving further, the bridge passage 22 and the load passage 20a
are connected via the aperture 9a of the land portion 11a and the annular groove 13a. In this position, the pressure fluid supplied from the pump 1 to the supply passage 18 flows into the actuator A via the load check valve 19, the bridge passage 22, the throttle 9a, and the load passage 20a. The discharge fluid from the actuator A is transferred to the load passage 20b, the annular groove 13b, and the tank passage 21.
Flows into tank 3 via. Furthermore, at this time,
The load pressure of the load passage 20a acts on the pilot passage 26a.

以上が中間操作位置でアクチユエータAへ供給
される圧力流体の流量を絞り9aの絞り量により
制御するものである。そして、さらにスプール1
6を右方向へ操作すると負荷通路20とブリツジ
通路22とが環状溝13aを介して接続する完全
操作位置となる。このとき他の通路の接続関係
は、中間操作位置と同様である。逆にスプール1
6を左方向へ操作するときも、負荷通路20aが
タンク通路21へ接続し負荷通路20bがブリツ
ジ通路22に接続し、中間操作位置では、絞り9
bがこの間を絞る以外、すなわち通路の接続の関
係が逆になるのみで前述の場合とほぼ同一である
ので、その詳細な説明は省略する。
The above describes how the flow rate of the pressure fluid supplied to the actuator A at the intermediate operating position is controlled by the throttle amount of the throttle 9a. And further spool 1
6 to the right, a fully operated position is reached where the load passage 20 and bridge passage 22 are connected via the annular groove 13a. At this time, the connection relationships of the other passages are the same as in the intermediate operation position. On the other hand, spool 1
6 to the left, the load passage 20a is connected to the tank passage 21, the load passage 20b is connected to the bridge passage 22, and in the intermediate operating position, the throttle 9
Since this case is almost the same as the above case except that b narrows down the gap, that is, the connection relationship of the passages is reversed, detailed explanation thereof will be omitted.

圧力補償弁4は、ポンプ1の吐出圧力流体をタ
ンク3へ排出する機能を有する制御部30とこの
制御部30に連設してあり前記方向切換弁に接続
したアクチユエータに作用する負荷に応じた圧力
流体(以下、負荷圧力と記す。)が作用するパイ
ロツト部31とより構成している。
The pressure compensating valve 4 is connected to a control section 30 having a function of discharging the discharge pressure fluid of the pump 1 to the tank 3, and is connected to the control section 30, and is configured to adjust the pressure compensating valve 4 according to the load acting on the actuator connected to the directional switching valve. It consists of a pilot section 31 on which pressure fluid (hereinafter referred to as load pressure) acts.

制御部30は、ポンプ1の吐出側に接続した吐
出回路8a及び前記方向切換弁2の供給通路18
へ接続する吐出回路8bが接続する環状溝32と
タンク3に接続する環状溝32と、2つのランド
部34a,34b、小径部35を有するスプール
36が摺動自在に嵌入する内孔37を形成してな
る本体38と、この本体38の内孔37とスプー
ル36で形成し、スプール36の内部通路42を
介して環状溝32に接続する圧力室39とスプー
ル36を左方向へ常時押圧する張力を有するばね
41を有し内部通路42を介して環状溝32に接
続すると共に後述するパイロツト部31の球弁5
0で閉鎖される通路43が開口するばね室40と
より形成する。パイロツト部31は、制御部30
の本体38と一体的に形成し、内部にプランジヤ
46が摺動自在に嵌入する内孔47と、通路51
を介してタンク3に連通し内孔47に連設すると
共に球弁50が内在する内孔48とで形成してあ
り、パイロツト通路51が接続すると共にばね4
9を張設するばね室52とより形成する。
The control unit 30 controls a discharge circuit 8a connected to the discharge side of the pump 1 and a supply passage 18 of the directional control valve 2.
An annular groove 32 connected to the discharge circuit 8b connected to the tank 3, an annular groove 32 connected to the tank 3, and an inner hole 37 into which a spool 36 having two land parts 34a, 34b and a small diameter part 35 is slidably fitted. A pressure chamber 39 formed by the inner hole 37 of the main body 38 and the spool 36 and connected to the annular groove 32 via the internal passage 42 of the spool 36 and a tension force that constantly presses the spool 36 to the left. The ball valve 5 of the pilot section 31 is connected to the annular groove 32 through an internal passage 42 and is
A spring chamber 40 is formed with a passage 43 that is closed at 0 and a spring chamber 40 that is open. The pilot section 31 is connected to the control section 30
an inner hole 47 formed integrally with the main body 38 and into which the plunger 46 is slidably fitted, and a passage 51.
It communicates with the tank 3 through the inner hole 47 and is formed with an inner hole 48 in which the ball valve 50 is located.
9 is formed by a spring chamber 52 in which the spring 9 is stretched.

この圧力補償弁4のスプール36は、圧力室3
9内に作用する流体圧力による押圧力と、ばね室
40内に作用する流体圧力による押圧力とばね4
1の押圧力との和、との差によつて作動し環状溝
32,33の間に絞りを形成する。そして、ばね
室40内の流体圧力は、パイロツトプランジヤ3
1によつて制御されるように構成してある。
The spool 36 of this pressure compensating valve 4 is connected to the pressure chamber 3.
9, the pressing force due to the fluid pressure acting inside the spring chamber 40, and the pressing force due to the fluid pressure acting inside the spring chamber 40.
It operates by the difference between the sum of the pressing forces of 1 and 1, and forms a diaphragm between the annular grooves 32 and 33. Then, the fluid pressure in the spring chamber 40 is controlled by the pilot plunger 3.
1.

圧力補償弁4のばね室40とタンク3との間に
配置した遮断弁5は、圧力補償弁4のばね室40
が接続する環状溝55とタンク3に接続する環状
溝56を備えてスプール57が摺動自在に嵌入す
る内孔58を有する本体45と、この本体45の
内孔58とスプール57のランド59によつて形
成しパイロツト通路51が接続する圧力室61
と、内孔58とランド60によつて形成してあ
り、スプール57の内部通路63を介して常時タ
ンク3に接続すると共にばね62を張設したばね
室64とで構成する。この遮断弁5は、パイロツ
ト通路51内の流体圧力によりスプール57が左
方に移動して、圧力補償弁4のばね室40とタン
ク3との間を遮断する。なお70は、ポンプ1の
吐出回路8aとタンク3との間に設けたリリーフ
弁でありポンプ1の吐出流体圧力を制御する。
The cutoff valve 5 disposed between the spring chamber 40 of the pressure compensation valve 4 and the tank 3 is connected to the spring chamber 40 of the pressure compensation valve 4.
A main body 45 has an annular groove 55 connected to the tank 3, an annular groove 56 connected to the tank 3, and an inner hole 58 into which the spool 57 is slidably fitted, and the inner hole 58 of the main body 45 and the land 59 of the spool 57 are connected to each other. A pressure chamber 61 is thus formed and connected to the pilot passage 51.
and a spring chamber 64 which is formed by an inner hole 58 and a land 60, is constantly connected to the tank 3 via an internal passage 63 of the spool 57, and has a spring 62 tensioned therein. In this shutoff valve 5, the spool 57 moves to the left due to the fluid pressure in the pilot passage 51, thereby shutting off between the spring chamber 40 of the pressure compensating valve 4 and the tank 3. Note that 70 is a relief valve provided between the discharge circuit 8a of the pump 1 and the tank 3, and controls the discharge fluid pressure of the pump 1.

以下、この実施例の作用について述べる。 The operation of this embodiment will be described below.

方向切換弁2が中立位置にある状態でポンプ1
の吐出圧力流体は、吐出回路8a,8bを介して
供給通路18、第1、第2アンロード通路23
a,23b,24に流入する。供給通路18は、
ブリツジ通路22がスプール16で閉塞してある
ので、第1、第2アンロード通路23a,23
b,24を介してタンク3へ流出する一方、圧力
補償弁4のばね室40は、遮断弁5を介してタン
ク3へ接続しているので、圧力補償弁4のスプー
ル36は右方向に移動して吐出回路8aをタンク
3へ接続する。従つて、ポンプ1の吐出圧力流体
は、切換弁2及び圧力補償弁4を介してタンク3
に流出する。このとき吐出回路8a,8b内の流
体圧力は、ばね室40のばね41の張力に応じた
値になる。
Pump 1 with directional valve 2 in neutral position
The discharge pressure fluid is supplied to the supply passage 18, the first and second unload passages 23 via the discharge circuits 8a and 8b.
a, 23b, and 24. The supply passage 18 is
Since the bridge passage 22 is closed by the spool 16, the first and second unload passages 23a, 23
b, 24 to the tank 3, while the spring chamber 40 of the pressure compensating valve 4 is connected to the tank 3 via the shutoff valve 5, so the spool 36 of the pressure compensating valve 4 moves to the right. Then, the discharge circuit 8a is connected to the tank 3. Therefore, the discharge pressure fluid of the pump 1 is transferred to the tank 3 via the switching valve 2 and the pressure compensating valve 4.
leaks to. At this time, the fluid pressure in the discharge circuits 8a, 8b becomes a value corresponding to the tension of the spring 41 of the spring chamber 40.

次に方向切換弁2のスプール16を右方向へ操
作し、第1、第2アンロード通路23a,23b
と24との間が遮断された後、ブリツジ通路22
と負荷通路20aが絞り9aを介して接続する中
間操作位置に達すると、ポンプ1の吐出圧力流体
は、供給通路18、ロードチエツク弁19、ブリ
ツジ通路22、絞り9aを介して負荷通路20a
に流入する。このとき、負荷通路20a内の流体
圧力は、パイロツト通路26a,51を介して、
遮断弁5の圧力室61と、圧力補償弁4のパイロ
ツト部31のばね室52とに作用する。このた
め、遮断弁5のスプール57は、右方向に移動し
てタンク3と圧力補償弁4のばね室40との間を
遮断するので、ばね室40内の流体圧力は、パイ
ロツト部31のばね室52内の流体圧力ばね49
の押圧力に応じた流体圧力になり、スプール36
が左方向へ移動し、環状溝32と33との間を絞
り始める。
Next, operate the spool 16 of the directional control valve 2 to the right, and the first and second unload passages 23a, 23b
After the bridge passage 22 and 24 are cut off, the bridge passage 22
When reaching the intermediate operating position where the load passage 20a and the load passage 20a are connected via the throttle 9a, the discharge pressure fluid of the pump 1 is transferred to the load passage 20a via the supply passage 18, the load check valve 19, the bridge passage 22, and the throttle 9a.
flows into. At this time, the fluid pressure in the load passage 20a is increased via the pilot passages 26a and 51.
It acts on the pressure chamber 61 of the shutoff valve 5 and the spring chamber 52 of the pilot section 31 of the pressure compensation valve 4. Therefore, the spool 57 of the cutoff valve 5 moves to the right to cut off the gap between the tank 3 and the spring chamber 40 of the pressure compensating valve 4. Fluid pressure spring 49 within chamber 52
The fluid pressure becomes in accordance with the pressing force of the spool 36.
moves to the left and begins to squeeze the space between the annular grooves 32 and 33.

ポンプ1の吐出回路8a,8b内の流体圧力
は、圧力補償弁4の環状溝32と33間の絞り量
に応じて上昇し供給通路18、ロードチエツク弁
19、ブリツジ通路22、絞り9a、負荷通路2
0aを介してアクチユエータは流入する。このと
き、絞り9aの上流側の流体圧力は、圧力補償弁
4のスプール36の内部通路42を介して圧力室
39に作用するので、スプール36は、環状溝3
2と33との間を絞り9aの上流側と下流側の流
体圧力が、パイロツト部31のばね49の押圧力
に応じた値に保持するように絞る。
The fluid pressure in the discharge circuits 8a and 8b of the pump 1 increases according to the amount of restriction between the annular grooves 32 and 33 of the pressure compensating valve 4, and the fluid pressure increases depending on the amount of restriction between the annular grooves 32 and 33 of the pressure compensation valve 4. aisle 2
The actuator flows in via 0a. At this time, the fluid pressure on the upstream side of the throttle 9a acts on the pressure chamber 39 via the internal passage 42 of the spool 36 of the pressure compensating valve 4, so the spool 36
2 and 33 so that the fluid pressure on the upstream and downstream sides of the pilot section 31 is maintained at a value corresponding to the pressing force of the spring 49 of the pilot section 31.

次に、アクチユエータの作動中に、負荷の増加
または、減少があつても、その負荷圧力は、パイ
ロツト通路26a,51を介してパイロツト部3
1のばね室52に作用するので、圧力補償弁4の
スプール36が負荷圧力の増加、減少に応じて、
方向切換弁2の絞り9aの上流側と下流側の流体
圧力を負荷圧力に応じて作動し、その差圧をパイ
ロツト部31のばね室52のばね49の押圧力に
応じた一定の値に保つ。このためアクチユエータ
は、スプールの操作量に応じた一定の速度で作動
する。
Next, even if the load increases or decreases during operation of the actuator, the load pressure is transferred to the pilot section 3 through the pilot passages 26a and 51.
1 of the spring chamber 52, the spool 36 of the pressure compensating valve 4 responds to increases and decreases in load pressure.
The fluid pressure on the upstream and downstream sides of the throttle 9a of the directional control valve 2 is operated according to the load pressure, and the differential pressure is maintained at a constant value according to the pressing force of the spring 49 in the spring chamber 52 of the pilot section 31. . Therefore, the actuator operates at a constant speed depending on the amount of operation of the spool.

以上方向切換弁2のスプール16を右方向へ操
作した場合について述べたが、左方向へ操作した
場合も絞り9bの上流側と下流側の流体圧力の差
を圧力補償弁4が、そのパイロツト部31のばね
室52内のばね49の押圧力に応じた一定の値に
保つ。なお、その他の作動は、前述の作用とほぼ
同一であるのでその詳細な説明は省く。
The case where the spool 16 of the directional control valve 2 is operated to the right has been described above, but when the spool 16 of the directional control valve 2 is operated to the left, the pressure compensating valve 4 compensates for the difference in fluid pressure between the upstream side and the downstream side of the throttle 9b. 31 is maintained at a constant value according to the pressing force of the spring 49 in the spring chamber 52. Note that other operations are substantially the same as those described above, so detailed explanation thereof will be omitted.

なお、上記した実施例において、方向切換弁2
は、センタバイパス型の方向切換弁としたが、特
にこの構造に限定されないものである。
In addition, in the above-mentioned embodiment, the directional control valve 2
Although this is a center bypass type directional control valve, the present invention is not limited to this structure.

すなわち、実施例の説明からも明かなように方
向切換弁2が中立位置にあるとき、ポンプ1の吐
出圧力流体は、圧力補償弁4でタンク3へ流出さ
せられるものであるから、方向切換弁2にセンタ
バイパス通路を必要としない。しかし、センタバ
イパス型であつても特に不都合は生じないもので
ある。
That is, as is clear from the description of the embodiment, when the directional control valve 2 is in the neutral position, the discharge pressure fluid of the pump 1 is caused to flow out to the tank 3 by the pressure compensating valve 4. 2. No center bypass passage is required. However, even if it is a center bypass type, no particular inconvenience will occur.

(発明の効果) 以上述べた様に本発明は、圧力流体源とアクチ
ユエータとの間に絞りを形成するスプールを有す
る方向切換弁を設け、この方向切換弁の上流側に
圧力流体源の吐出圧力流体の一部をタンクに分流
して、前記方向切換弁の絞りの前後差圧を一定の
値に制御する圧力補償弁を設けてある複合弁にお
いて、 前記圧力補償弁を圧力流体源の吐出側に接続す
る圧力室と絞りを介して接続するばね室を有し、
前記圧力流体源とタンクとの間を制御するスプー
ルを設けた制御部を備え、この制御部のばね室の
油圧を、前記制御部のばね室とタンクの間に設け
てあり、差圧設定用のばねが設けられるばね室を
有するパイロツト弁部で制御し、このパイロツト
弁部のばね室に、前記方向切換弁が中立位置にあ
る時タンクに接続され、切換位置への操作によつ
てアクチユエータの負荷側に接続されるパイロツ
ト通路を接続した構成とし、前記制御部のばね室
とタンクの間に前記パイロツト通路からの負荷圧
力によつて、前記制御部のばね室とタンクの間を
閉鎖する遮断弁を設けた構成を有する。
(Effects of the Invention) As described above, the present invention provides a directional control valve having a spool that forms a restriction between a pressure fluid source and an actuator, and a discharge pressure of the pressure fluid source is provided on the upstream side of the directional control valve. A compound valve equipped with a pressure compensation valve that divides a part of the fluid into a tank and controls the differential pressure across the throttle of the directional control valve to a constant value, wherein the pressure compensation valve is connected to the discharge side of the pressure fluid source. It has a pressure chamber connected to the spring chamber and a spring chamber connected through the throttle.
A control section is provided with a spool for controlling the connection between the pressure fluid source and the tank, and the hydraulic pressure in the spring chamber of the control section is controlled by a control section provided between the spring chamber of the control section and the tank, for setting a differential pressure. The directional control valve is connected to the tank when the directional control valve is in the neutral position, and when the directional control valve is in the neutral position, the actuator is activated. A pilot passage connected to the load side is connected, and a barrier is provided between the spring chamber of the control unit and the tank to close the gap between the spring chamber of the control unit and the tank by load pressure from the pilot passage. It has a configuration with a valve.

方向切換弁を中立位置にし負荷圧力がタンク圧
となると圧力補償弁のばね室が遮断弁によつてタ
ンクに接続する。また、方向切換弁を操作パイロ
ツト通路に負荷圧力が作用すると圧力補償弁のば
ね室とタンクの間を遮断弁が遮断するので、圧力
補償弁のばね室の油圧がパイロツト弁により、パ
イロツト通路の負荷圧力に応じて制御され、圧力
補償弁が作動する。
When the directional control valve is placed in the neutral position and the load pressure reaches the tank pressure, the spring chamber of the pressure compensating valve is connected to the tank via the shutoff valve. In addition, when the directional control valve is operated and load pressure acts on the pilot passage, the shutoff valve shuts off between the spring chamber of the pressure compensation valve and the tank. Controlled according to pressure, pressure compensation valve operates.

以上の様に、本発明は圧力補償弁がその機能が
必要な時にのみばね室の油圧を、パイロツト通路
の負荷圧力に応じて制御する構成したので、方向
切換弁が中立位置にある時のアンロード油圧を低
くすることができる。(この点、従来の技術は、
圧力補償弁が常に方向切換弁の圧力損失以上のア
ンロード油圧を確保しておき、方向切換弁が操作
された時、この油圧のよつてアクチユエータへの
圧油の流れを確保するので、方向切換弁が中立位
置にある時も高いアンロード圧となる。) さらに、遮断弁の作動をパイロツト弁部に接続
した1本のパイロツト通路ので制御するので、方
向切換弁の操作に連動する事ができるので、アク
チユエータの操作性が良好になりしかも、動力損
失を少なくする効果を有する。
As described above, the present invention is configured such that the pressure compensating valve controls the hydraulic pressure in the spring chamber according to the load pressure in the pilot passage only when its function is necessary. Load oil pressure can be lowered. (In this regard, the conventional technology
The pressure compensating valve always secures unloading hydraulic pressure that is greater than the pressure loss of the directional control valve, and when the directional control valve is operated, this hydraulic pressure ensures the flow of pressure oil to the actuator, so directional control is possible. High unload pressure also occurs when the valve is in the neutral position. ) Furthermore, since the operation of the shutoff valve is controlled by a single pilot passage connected to the pilot valve section, it can be linked to the operation of the directional control valve, which improves the operability of the actuator and reduces power loss. It has the effect of reducing

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の回路図。第2図
は、第1図に示す回路と同様の断面図を含む回路
図。第3図は、従来技術の回路図。 1……圧力流体源、2……方向切換弁、3……
タンク、4……圧力補償弁、30……制御部、3
1……パイロツト部、36……スプール、39…
…圧力室、40……ばね室、41……第1ばね、
47……内孔、52……ばね室、57……スプー
ル、58……内孔、60……ランド、61……圧
力室、62……ばね室、5……遮断弁。
FIG. 1 is a circuit diagram of an embodiment of the present invention. 2 is a circuit diagram including a cross-sectional view similar to the circuit shown in FIG. 1; FIG. FIG. 3 is a circuit diagram of the prior art. 1... Pressure fluid source, 2... Directional switching valve, 3...
Tank, 4...Pressure compensation valve, 30...Control unit, 3
1... Pilot section, 36... Spool, 39...
...pressure chamber, 40...spring chamber, 41...first spring,
47...Inner hole, 52...Spring chamber, 57...Spool, 58...Inner hole, 60...Land, 61...Pressure chamber, 62...Spring chamber, 5...Shutoff valve.

Claims (1)

【特許請求の範囲】 1 圧力流体源とアクチユエータとの間に絞りを
形成するスプールを有する方向切換弁を設け、こ
の方向切換弁の上流側に圧力流体源の吐出圧力流
体の一部をタンクに分流して、前記方向切換弁の
絞りの前後差圧を一定の値に制御する圧力補償弁
を設けてなる複合弁において、 前記圧力補償弁を圧力流体源の吐出側に接続す
る圧力室と絞りを介して接続するばね室を有し、
前記圧力流体源とタンクとの間を制御するスプー
ルを設けた制御部を備え、この制御部のばね室の
油圧を、前記制御部のばね室とタンクの間に設け
てあり、差圧設定用のばねが設けられるばね室を
有するパイロツト弁部で制御し、このパイロツト
弁部のばね室に、前記方向切換弁が中立位置にあ
る時タンクに接続され、切換位置への操作によつ
てアクチユエータの負荷側に接続されるパイロツ
ト通路を接続した構成とし、前記制御部のばね室
とタンクの間に前記パイロツト通路からの負荷圧
力によつて、前記制御部のばね室とタンクの間を
閉鎖する遮断弁を設けたことを特徴とする複合
弁。
[Scope of Claims] 1. A directional switching valve having a spool forming a restriction between the pressure fluid source and the actuator is provided, and a part of the pressure fluid discharged from the pressure fluid source is transferred to a tank on the upstream side of the directional switching valve. A compound valve comprising a pressure compensating valve that divides the flow and controls the differential pressure across the throttle of the directional control valve to a constant value, the pressure chamber connecting the pressure compensating valve to the discharge side of the pressure fluid source and the throttle. has a spring chamber connected through
A control section is provided with a spool for controlling the connection between the pressure fluid source and the tank, and the hydraulic pressure in the spring chamber of the control section is controlled by a control section provided between the spring chamber of the control section and the tank, for setting a differential pressure. The directional control valve is connected to the tank when the directional control valve is in the neutral position, and when the directional control valve is in the neutral position, the actuator is activated. A pilot passage connected to the load side is connected, and a barrier is provided between the spring chamber of the control unit and the tank to close the gap between the spring chamber of the control unit and the tank by load pressure from the pilot passage. A composite valve characterized by having a valve.
JP670481A 1981-01-19 1981-01-19 Composite valve Granted JPS57120702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP670481A JPS57120702A (en) 1981-01-19 1981-01-19 Composite valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP670481A JPS57120702A (en) 1981-01-19 1981-01-19 Composite valve

Publications (2)

Publication Number Publication Date
JPS57120702A JPS57120702A (en) 1982-07-27
JPH0253641B2 true JPH0253641B2 (en) 1990-11-19

Family

ID=11645692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP670481A Granted JPS57120702A (en) 1981-01-19 1981-01-19 Composite valve

Country Status (1)

Country Link
JP (1) JPS57120702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017609A1 (en) * 1993-12-22 1995-06-29 Komatsu Ltd. Unloading device for a hydraulic circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939203Y2 (en) * 1977-12-20 1984-11-01 ダイキン工業株式会社 fluid control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017609A1 (en) * 1993-12-22 1995-06-29 Komatsu Ltd. Unloading device for a hydraulic circuit

Also Published As

Publication number Publication date
JPS57120702A (en) 1982-07-27

Similar Documents

Publication Publication Date Title
JP3090275B2 (en) Pressure compensated flow amplification poppet valve
JP2579202Y2 (en) Operating valve with pressure compensation valve
US6158462A (en) Hydraulic pressure control device
JP2004019873A (en) Hydraulic control device and industrial vehicle with the hydraulic control device
JPS6234963B2 (en)
JPH07279906A (en) Hydraulic control
JPH0253641B2 (en)
KR960016819B1 (en) Flow control hydraulic circuit for a pump
JP3534324B2 (en) Pressure compensating valve
JPH03125001A (en) Hydraulic driving system
JPH0262405A (en) Hydraulic control device
JPS6022201B2 (en) fluid equipment
JPS6033446Y2 (en) Pilot pressure regulating valve for pressure control valve equipment
JPS6113762Y2 (en)
KR960006359B1 (en) Pilot check valve having low-velocity-return function
JP2001193704A (en) Hydraulic control circuit
JPS59113379A (en) Counterbalance valve
JPS5918561B2 (en) Pressure control servo device
JPH0755361Y2 (en) Directional switching valve with pressure compensation valve
JPS605121Y2 (en) fluid equipment
JP3793662B2 (en) Flow control valve for power steering device
JP2652791B2 (en) Flow control device
JPS642805B2 (en)
JPS5849722B2 (en) fluid equipment
JPS5831486B2 (en) compound valve