JPH025285B2 - - Google Patents
Info
- Publication number
- JPH025285B2 JPH025285B2 JP57191576A JP19157682A JPH025285B2 JP H025285 B2 JPH025285 B2 JP H025285B2 JP 57191576 A JP57191576 A JP 57191576A JP 19157682 A JP19157682 A JP 19157682A JP H025285 B2 JPH025285 B2 JP H025285B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- zinc
- capacitor
- znmpp
- metallized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 claims description 26
- 239000010408 film Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000004743 Polypropylene Substances 0.000 claims description 10
- -1 polypropylene Polymers 0.000 claims description 10
- 229920001155 polypropylene Polymers 0.000 claims description 10
- 239000011104 metalized film Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
- H01G4/145—Organic dielectrics vapour deposited
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
本発明は金属化フイルムコンデンサに関するも
のである。
一般に2〜6Ω/□の膜抵抗値を有するアルミ
ニウム金属化ポリプロピレンフイルム(以下
AlMPPという)を使用したコンデンサが用いら
れている。
フイルムの製膜技術や蒸着技術が進み年々電位
傾度がアツプされてきており、さらには乾式化コ
ンデンサへの移行が進んでいる。特に湿式
AlMPPコンデンサにおいては、電位傾度アツプ
によるコロナ量の増加、コンデンサ絶縁油やフイ
ルム自身に含まれる水分、絶縁油に含まれる溶存
酸素などにより、第1図に示すようにアルミニウ
ム蒸着金属1が電気化学反応(コロージヨン)を
起し、酸化アルミニウム(Al2O3)2になる。第
1図に示した状態の酸化アルミニウム部2は、電
圧印加時間により生長してゆく。Al2O3は絶縁物
体であり、このためコンデンサの容量は減少して
ゆく。さらにAlMPPコンデンサにおいては、第
2図の矢印Dの距離が異極間の最も短い距離とな
りコロナ電界も一番厳しい部分にあたり、このた
めアルミニウム蒸着金属1とマージンの境界線上
のアルミニウム蒸着金属部が上述した原因により
酸化してAl2O3になり、さらには飛散して第1図
に示すようにマージン幅の後退が起りマージン幅
AはBに拡大する。つまりコンデンサの容量減少
が生じる。3はポリプロピレンフイルム、4はメ
タリコン部、Dはフイルム幅である。
以上述べた電極平面上のコロージヨン現象と、
マージン部のコロージヨンおよびアルミニウム蒸
着金属の飛散による2つの現象でコンデンサの容
量減少が拡大する。これらの現象は乾式コンデン
サにおいてはさらに激しく生じ、容量減少は非常
に大きくなる。
またポリプロピレンフイルムに亜鉛金属を蒸着
した金属化ポリプロピレンフイルムを使用するこ
とによりこのコロージヨン現象が押えられること
は一般的にいわれているが、アルミニウム蒸着品
と同程度である2〜5Ω/□の亜鉛蒸着膜抵抗を
有する金属化ポリプロピレンフイルム(以下
ZnMPPという)は、JIS4908に記載されている
断続耐用性試験、連続耐用性試験を実施した場
合、第3図に示すように矢印Dで示した異極間に
コロナが発生する。6はメタリコン部、7はポリ
プロピレンフイルム3の劣化部である。このため
AlMPPコンデンサは、上述した通りアルミニウ
ム金属の飛散とAl2O3への変化により、矢印Dで
示した異極間距離が広がつて容量減少を起すだけ
で、ベースフイルムであるポリプロピレンフイル
ム3にはほとんど影響を与えないため、品質的に
は容量減少以外問題はなかつた。しかし2〜
5Ω/□の膜抵抗値を有するZnMPPコンデンサに
おいては、亜鉛蒸着金属5の飛散が生じにくいた
め、発生したコロナが亜鉛蒸着部とマージンの境
界線上に集中して当ることになり、このためベー
スフイルムのポリプロピレンフイルム3がコロナ
により第3図に示すように劣化し、コンデンサの
損失が大幅に増加し、ひいては異常破壊を起しパ
ンクしてしまうためと、亜鉛は水分に弱いため製
造工程中のトラブルがたえないための2点の大き
な欠点によりZnMPPは使用されていなかつた。
本発明は上述の欠点を解消し、AlMPPコンデ
ンサよりも容量減少の少ない品質の極めて安定し
たZnMPPコンデンサを提供するものである。
すなわち、6〜10Ω/□の膜抵抗値を有する
ZnMPPを使用し、また完成品において熱処理す
ることにより解決することができた。すなわち、
第4図に示す亜鉛蒸着金属5の膜抵抗値を6〜
10Ω/□にすることにより、若干亜鉛金属膜の飛
散を起こさせることによりマージン部と亜鉛蒸着
膜境界線下のベースフイルムにあたるコロナを
徐々に移動させることにより、異常破壊を防ぐこ
とができた。この考えはアルミの後退現象と同様
であるが、アルミニウムの場合Al2O3の絶縁物に
なる方が大きいため容量減少が大きかつたのであ
り、亜鉛の場合は膜抵抗値6〜10Ω/□にするこ
とによりマージン幅の後退にとどめるため、つま
りマージン部でのコロージヨン現象がないことと
平面部のコロージヨン現象が生じないためであ
る。また亜鉛蒸着膜抵抗値が10Ω/□を越える場
合はメタリコン部4で接触抵抗が大きくなり損失
が増加し品質が不安定になる。
基本的に熱処理をしなくてもよいが、容量をよ
り安定化させるためには、90〜100℃、2時間以
上の熱処理をした方がよい。この時ケースに収納
するなど外装した後、完成品の密閉試験を兼ねて
実施する。
この理由は、亜鉛蒸着膜は水分に対して弱いた
め多量のZnMPPエレメントおよびコンデンサを
一度に熱処理または加熱真空処理をすると、温度
分布および真空度の分布の差によりエレメント内
部が蒸焼状態となり、亜鉛蒸着金属が消失して損
失増加の要因となる。完成品で実施すれば一個の
コンデンサ内部の含有水分の影響にとどまり、他
のエレメントや製造条件による水分の影響を受け
ないことと、ZnMPP自身の含有水分量が0.02%
以下と非常に少ないため亜鉛蒸着金属の消失はほ
とんど認められないためである。
次にポリプロピレンに亜鉛(Zn)、アルミニウ
ム(Al)を蒸着して膜抵抗を変えて分類し、こ
れを用いて定格40μF、400Vの乾式、湿式の
AlMPP、ZnMPPコンデンサを製作し耐用性試
験を行なつた。
第1表は80℃中において、WV×1.4倍の交流
電圧を各試料に断続的に印加した断続耐用性試験
結果を示す。また第2表は80℃中においてWV×
1.2倍の交流電圧を各試料に連続的に印加した連
続耐用性試験結果を示す。試料数は各々10個で、
測定値は平均値である。
表中試料番号2、8、12、18は本発明品で他は
比較のための試料で、tanδは75℃中で定格電圧を
印加し測定した値である。
The present invention relates to metallized film capacitors. Aluminum metallized polypropylene film (hereinafter referred to as
A capacitor using AlMPP) is used. As film production technology and vapor deposition technology progress, the potential gradient is increasing year by year, and the transition to dry type capacitors is progressing. Especially wet
In AlMPP capacitors, the aluminum vapor-deposited metal 1 undergoes an electrochemical reaction as shown in Figure 1 due to an increase in the amount of corona due to the increase in potential gradient, moisture contained in the capacitor insulating oil and film itself, dissolved oxygen contained in the insulating oil, etc. (corrosion) and becomes aluminum oxide (Al 2 O 3 )2. The aluminum oxide portion 2 in the state shown in FIG. 1 grows depending on the voltage application time. Al 2 O 3 is an insulating material, so the capacitance of the capacitor decreases. Furthermore, in the AlMPP capacitor, the distance indicated by arrow D in Fig. 2 is the shortest distance between different poles, and the corona electric field is also the most severe. Due to this reason, it oxidizes to become Al 2 O 3 and is further scattered, causing the margin width to recede as shown in FIG. 1, and the margin width A expands to B. In other words, the capacitance of the capacitor decreases. 3 is a polypropylene film, 4 is a metallicon portion, and D is a film width. The above-mentioned corrosion phenomenon on the electrode plane,
Two phenomena, corrosion in the margin and scattering of aluminum-deposited metal, increase the reduction in capacitance of the capacitor. These phenomena occur even more severely in dry capacitors, and the capacitance decrease becomes very large. Furthermore, it is generally said that this corrosion phenomenon can be suppressed by using a metalized polypropylene film in which zinc metal is vapor-deposited. Metallized polypropylene film with membrane resistance (hereinafter referred to as
When ZnMPP is subjected to intermittent durability tests and continuous durability tests as described in JIS4908, corona occurs between different poles indicated by arrow D as shown in Figure 3. Reference numeral 6 indicates a metallicon portion, and reference numeral 7 indicates a deteriorated portion of the polypropylene film 3. For this reason
As mentioned above, in the AlMPP capacitor, due to the scattering of aluminum metal and the change to Al 2 O 3 , the distance between different electrodes shown by arrow D increases and the capacitance decreases, but the polypropylene film 3 that is the base film Since it had almost no effect, there were no problems in terms of quality other than a decrease in capacity. But 2~
In a ZnMPP capacitor with a film resistance value of 5Ω/□, the zinc evaporated metal 5 is less likely to scatter, so the generated corona will concentrate on the boundary line between the zinc evaporated part and the margin, and as a result, the base film As shown in Figure 3, the polypropylene film 3 deteriorates due to corona, resulting in a significant increase in loss in the capacitor, which can lead to abnormal breakdown and punctures. Also, zinc is sensitive to moisture, which can cause problems during the manufacturing process. ZnMPP has not been used due to two major drawbacks: The present invention overcomes the above-mentioned drawbacks and provides a highly stable ZnMPP capacitor of quality with less capacitance loss than AlMPP capacitors. That is, it has a membrane resistance value of 6 to 10Ω/□.
This problem could be solved by using ZnMPP and by heat treating the finished product. That is,
The film resistance value of the zinc-deposited metal 5 shown in FIG.
By setting the resistance to 10 Ω/□, it was possible to prevent abnormal destruction by causing some scattering of the zinc metal film and gradually moving the corona that corresponds to the base film under the border between the margin and the zinc evaporated film. This idea is similar to the regression phenomenon of aluminum, but in the case of aluminum, the capacitance decrease was large because the Al 2 O 3 insulator was larger, and in the case of zinc, the film resistance was 6 to 10 Ω/□ By doing so, the margin width is limited to a setback, that is, there is no corrosion phenomenon at the margin portion, and no corrosion phenomenon occurs at the flat portion. Further, if the resistance value of the zinc-deposited film exceeds 10Ω/□, the contact resistance in the metallized contact portion 4 increases, the loss increases, and the quality becomes unstable. Basically, heat treatment is not necessary, but in order to further stabilize the capacity, it is better to perform heat treatment at 90 to 100°C for 2 hours or more. At this time, after packaging the product by storing it in a case, the completed product is also tested for sealing. The reason for this is that the zinc evaporated film is weak against moisture, so if a large amount of ZnMPP elements and capacitors are heat treated or heated and vacuum treated at once, the inside of the element becomes evaporated due to the difference in temperature distribution and vacuum degree distribution, and the zinc evaporated film The metal disappears, causing an increase in loss. If carried out on a finished product, the effect will be limited to the moisture content inside a single capacitor, and will not be affected by moisture from other elements or manufacturing conditions, and the moisture content of ZnMPP itself will be 0.02%.
This is because the amount of zinc evaporated metal is so small that almost no disappearance of the zinc-deposited metal is observed. Next, zinc (Zn) and aluminum (Al) are vapor-deposited on polypropylene to change the film resistance and classify them.
We fabricated AlMPP and ZnMPP capacitors and conducted durability tests. Table 1 shows the results of an intermittent durability test in which an AC voltage of 1.4 times WV was intermittently applied to each sample at 80°C. In addition, Table 2 shows WV × at 80℃
The results of a continuous durability test in which 1.2 times the AC voltage was continuously applied to each sample are shown. The number of samples was 10 each.
Measured values are average values. In the table, sample numbers 2, 8, 12, and 18 are products of the present invention, and the others are samples for comparison, and tan δ is a value measured by applying the rated voltage at 75°C.
【表】【table】
【表】【table】
【表】
これよりAlMPP品においては乾式、湿式とも
損失変動はないが容量減少は明らかに大きいこと
がわかる。またZnMPPにおいては容量減少は非
常に少ないが、膜抵抗値が2〜6未満Ω/□であ
れば損失の増加とパンクが発生するが、本発明品
である6〜10Ω/□品においては非常に安定した
特性を示している。また膜抵抗が10超過〜15Ω/
□のZnMPP品においては、品質的には比較的安
定しているが、初期値の損失が大きくなつている
ことと、蒸着時の高い膜管理技術に問題があり安
定した10〜15Ω/□のZnMPPを得ることが難し
い点より、量産時の製品の安定化が得られない点
がある。
叙上のように本発明は損失変動および容量減少
の少ない非常に安定したコンデンサを得ることが
でき、工業的ならびに実用的価値の大なるもので
ある。[Table] This shows that for AlMPP products, there is no change in loss in both dry and wet processes, but the capacity reduction is clearly large. In addition, in ZnMPP, the capacitance decrease is very small, but if the membrane resistance value is less than 2 to 6 Ω/□, loss increases and punctures occur, but in the 6 to 10 Ω/□ product, which is the product of the present invention, it is very small. It shows stable characteristics. Also, the membrane resistance exceeds 10~15Ω/
The ZnMPP product with □ is relatively stable in terms of quality, but the loss of the initial value is large and there are problems with the advanced film control technology during vapor deposition, resulting in a stable 10 to 15 Ω/□. In addition to the difficulty in obtaining ZnMPP, there is also the difficulty in achieving product stability during mass production. As described above, the present invention makes it possible to obtain a very stable capacitor with little loss fluctuation and capacitance reduction, and is of great industrial and practical value.
第1図は従来のアルミニウム金属蒸着膜を有す
る金属化フイルムコンデンサの電極要部の平面
図、第2図は同従来の金属化フイルムコンデンサ
の電極要部の断面図、第3図は亜鉛蒸着膜厚の薄
い金属化フイルムコンデンサの電極要部の断面
図、第4図は本発明の亜鉛蒸着膜厚の厚い金属化
フイルムコンデンサの電極要部の断面図である。
3:ポリプロピレンフイルム、4,6:メタリ
コン部、5:亜鉛蒸着金属。
Fig. 1 is a plan view of the main part of the electrode of a conventional metallized film capacitor having an aluminum metallized film, Fig. 2 is a cross-sectional view of the main part of the electrode of the conventional metallized film capacitor, and Fig. 3 is a zinc-deposited film. FIG. 4 is a sectional view of a main part of an electrode of a metallized film capacitor with a thin thickness. FIG. 3: Polypropylene film, 4, 6: Metallicon portion, 5: Zinc-deposited metal.
Claims (1)
極を形成し、これを巻回または積層し、電極端部
にメタリコンして電極部を構成し外装してなる金
属化フイルムコンデンサにおいて、上記蒸着金属
は亜鉛からなり、かつその蒸着膜抵抗が6〜
10Ω/□の範囲内にあることを特徴とする金属化
フイルムコンデンサ。 2 上記金属化フイルムコンデンサを外装した後
熱処理することを特徴とする特許請求の範囲第1
項記載の金属化フイルムコンデンサ。[Scope of Claims] 1. A metallized film capacitor in which an electrode is formed by vapor-depositing a metal on a polypropylene film, which is wound or laminated, and the end of the electrode is covered with metallized to form an electrode part, The vapor-deposited metal is made of zinc, and the vapor-deposited metal has a resistance of 6 to 6.
A metallized film capacitor characterized by a resistance within the range of 10Ω/□. 2. Claim 1, characterized in that the metallized film capacitor is heat treated after being packaged.
Metallized film capacitors as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19157682A JPS5980920A (en) | 1982-10-30 | 1982-10-30 | Metallized film condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19157682A JPS5980920A (en) | 1982-10-30 | 1982-10-30 | Metallized film condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5980920A JPS5980920A (en) | 1984-05-10 |
JPH025285B2 true JPH025285B2 (en) | 1990-02-01 |
Family
ID=16276955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19157682A Granted JPS5980920A (en) | 1982-10-30 | 1982-10-30 | Metallized film condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5980920A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60187528U (en) * | 1984-05-22 | 1985-12-12 | ニチコン株式会社 | metallized film capacitor |
JPS62183506A (en) * | 1986-02-07 | 1987-08-11 | 松下電器産業株式会社 | Metallized film capacitor |
JPS63273308A (en) * | 1987-05-01 | 1988-11-10 | Toray Ind Inc | Oil-impregnated condenser |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132370A (en) * | 1974-09-12 | 1976-03-18 | Toyota Motor Co Ltd | SUIRYOKUSOKUTEISOCHI |
JPS5195268A (en) * | 1975-02-19 | 1976-08-20 | Yushinkondensano seizohoho | |
JPS529851A (en) * | 1975-07-13 | 1977-01-25 | Matsushita Electric Ind Co Ltd | Battery |
JPS52129962A (en) * | 1976-04-22 | 1977-10-31 | Matsushita Electric Ind Co Ltd | Capacitor |
JPS54127557A (en) * | 1978-03-28 | 1979-10-03 | Honshu Paper Co Ltd | Metalized dielectric capacitor |
JPS54164245A (en) * | 1978-06-16 | 1979-12-27 | Fujikura Ltd | Capacitor using doubleeside evaporated film |
JPS55158618A (en) * | 1979-05-29 | 1980-12-10 | Matsushita Electric Ind Co Ltd | Capacitor |
-
1982
- 1982-10-30 JP JP19157682A patent/JPS5980920A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132370A (en) * | 1974-09-12 | 1976-03-18 | Toyota Motor Co Ltd | SUIRYOKUSOKUTEISOCHI |
JPS5195268A (en) * | 1975-02-19 | 1976-08-20 | Yushinkondensano seizohoho | |
JPS529851A (en) * | 1975-07-13 | 1977-01-25 | Matsushita Electric Ind Co Ltd | Battery |
JPS52129962A (en) * | 1976-04-22 | 1977-10-31 | Matsushita Electric Ind Co Ltd | Capacitor |
JPS54127557A (en) * | 1978-03-28 | 1979-10-03 | Honshu Paper Co Ltd | Metalized dielectric capacitor |
JPS54164245A (en) * | 1978-06-16 | 1979-12-27 | Fujikura Ltd | Capacitor using doubleeside evaporated film |
JPS55158618A (en) * | 1979-05-29 | 1980-12-10 | Matsushita Electric Ind Co Ltd | Capacitor |
Also Published As
Publication number | Publication date |
---|---|
JPS5980920A (en) | 1984-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2408910A (en) | Electrical condenser | |
EP0289601A1 (en) | Zinc-metallized base material for metallized capacitor and process for its production | |
JPH025285B2 (en) | ||
US10083794B2 (en) | Metallized film capacitor | |
SU1426472A3 (en) | Versions of method for manufacturing self-regenerating capacitor | |
US3179862A (en) | Dual-film metallized condensers | |
US2336091A (en) | Electrical condenser | |
US3359468A (en) | Boron nitride film capacitor | |
JPS6323646B2 (en) | ||
Rahman et al. | Dielectric properties of vacuum-deposited bismuth oxide films | |
JPS645870Y2 (en) | ||
US4019101A (en) | Corrosion-resistant regenerable electrical capacitor | |
JPS5824005B2 (en) | metallized dielectric capacitor | |
JPH0227551Y2 (en) | ||
US3284685A (en) | Electrical capacitor formed from thin films | |
US850166A (en) | Electrical condenser and method of making the same. | |
JPH0227553Y2 (en) | ||
JPS5946312B2 (en) | Method for preventing oxidation of heat-treated copper coatings | |
JPH0227552Y2 (en) | ||
US3130475A (en) | Electrical capacitor | |
JPH0121544Y2 (en) | ||
JPH02138719A (en) | Capacitor | |
JPS5823732B2 (en) | capacitor | |
JPH0423299Y2 (en) | ||
JPS6336676Y2 (en) |