JPH0252654B2 - - Google Patents

Info

Publication number
JPH0252654B2
JPH0252654B2 JP19769982A JP19769982A JPH0252654B2 JP H0252654 B2 JPH0252654 B2 JP H0252654B2 JP 19769982 A JP19769982 A JP 19769982A JP 19769982 A JP19769982 A JP 19769982A JP H0252654 B2 JPH0252654 B2 JP H0252654B2
Authority
JP
Japan
Prior art keywords
polyethylene
weight
present
blow molding
radical generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19769982A
Other languages
Japanese (ja)
Other versions
JPS5989341A (en
Inventor
Yoshinori Akana
Seiki Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP19769982A priority Critical patent/JPS5989341A/en
Publication of JPS5989341A publication Critical patent/JPS5989341A/en
Publication of JPH0252654B2 publication Critical patent/JPH0252654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は中空成形用ポリエチレン組成物に関す
る。更に詳しくは耐ドローダウン性優れ且つ耐環
境応力亀裂性を有する中空成形用ポリエチレン組
成物に関する。 中空成形法は一的な熱可塑性樹脂の成形法の一
つであり、洗剤瓶、シヤンプー瓶、化粧瓶を始め
灯油缶、工業用薬品缶等の成形法として広く使用
されている。しかしながら中空成形法は一旦押出
機よりパリソンと呼ばれている筒状の溶融樹脂を
押出した後、金型内でパリソン内に空気を吹込ん
で製品とするため、大型製品になるほど金型で挾
持する前にパリソンの自重で垂れ下がる(ドロー
ダウン)現象が激しく、成形が難しくなる傾向に
あつた。パリソンのドローダウンを小さくする方
法としては、成形温度を下げる、押出速度を上げ
る、あるいはメルトフローレートの小さな樹脂を
使用する方法が知られているが、このような方法
はいずれも押出機に対する負荷が大くなるという
欠点を有し、又パリソンの押出肌も悪くなるとか
ら得られる成形の外観も悪くなるという欠点も有
している。一方、パリソンのドローダウンは樹脂
の溶融張力と相関があり、溶融張力の大きい樹脂
はドローダウンが小さい。インフレーシヨンフイ
ルム成形時の樹脂の溶融張力を改良する方法とし
て、ポリオレフイン樹脂に少量のラジカル発生剤
を添加する方法(特開昭57−38837号)が提案さ
れているが、該方法をそのまま中空成形用ポリエ
チレンの溶融張力の改良に適用しても、ドローダ
ウンは改善されない。そこで本発明者は、更に耐
ドローダウン性に優れ、且つ耐環境応力亀裂性を
有する中空成形用ポリエチレンの開発について検
討した結果、本発明に到達した。 すなわち本発明は下記(A)〜(E)を充たすポリエチ
レン():100重量部に対して、ラジカル発生剤
を0.002ないし0.10重量部及び架橋助剤を0ない
し0.05重量部添加してなる中空成形用ポリエチレ
ン組成物。 (A) 溶融張力(MT)が式(1)及び式(2)で規定され
る範囲であること、 〔η〕≦3.23において 3.14log10〔η〕−0.529≦log10(MT)≦3
.11log10〔η〕−0.267……(1) 〔η〕>3.23において 0.749log10〔η〕+0.690≦log10(MT)≦
0.150log10〔η〕+1.24……(2) 〔η〕:デカリン溶媒、135℃におけ極限粘度 (B) メルトフローレート(ASTM D 1238:
E)が0.01ないし5.0g/10min、 (C) 密度が0.915ないし0.970g/cm3、 (D) メルトフローレート比が8ないし50、及び (E) HSFRが30ないし600sec-1。 を提供するものである。 本発明に用いるポリエチレン()とはエチレ
ンの単独重合体もしくはエチレンを主体としたエ
チレンと他のα−オレフイン、例えばプロピレ
ン、1−ブテン、1−ペンテン、1−ヘキセン、
4−メチル−1−ペンテン、1−オクテン、1−
デセン等との共重合体である。 本発明に用いるポリエチレン()はMTが式
(1)及び式(2)で規定される範囲である。 〔η〕≦3.23において、 3.14log10〔η〕−0.529≦log10(MT)≦3
.11log10〔η〕−0.267……(1) 〔η〕>3.23において 0.749log10〔η〕+0.690≦log10(MT)≦
0.150log10〔η〕+1.24……(2) 〔η〕:デカリン溶媒、135℃におけ極限粘度 MTが上記式の範囲外のポリエチレンでMTが
上限を越すポリエチレンはフイツシユ・アイが多
く実用的でない。又、下限未満のポリエチレンは
全て分子量分布が著しく狭く、成形時にパリソン
が肌荒れを起こし、良好な外観の製品が得られな
い。 本発明におけるMTは、東洋精機(株)製メルトテ
ンシヨンテスターを用い、溶融温度190℃で、シ
リンダー(内径:9.55mm)内で溶融したポリエチ
レンを、ノズル(孔径:2.10mm、長さ:8.00mm)
より一定速度(ピストン下降速度:10mm/min)
で押出し、ロードセルを介して押出された溶融ス
トランドを一定速度(100rpm)で回転している
ローラー(外径:5.0cm)で引き取る時に発生す
る応力(g)である。尚ローラーの回転数が100rpm
に達する前に、ストランドが溶融切れを起こした
場合は、その時点での応力(g)をMTとした。 本発明に用いるポリエチレン()はメルトフ
ローレート(ASTM D 1238:E以下MFR2
略す)が0.01ないし5.0g/10min、好ましくは
0.01ないし1.0g/10minの範囲内である。MFR2
が0.01g/10min未満のものは、後述のラジカル
発生剤及び架橋助剤を添加して成形する場合に、
MFR2が小さくなり、成形性が著しく低下する。
一方、MFR2が5.0g/10minを越えるのはMTを
改良するのに、多量のラジカル発生剤を添加する
必要があり、その結果ゲルの生を来たし、また耐
環境応力亀裂性も低下する。 本発明に用いるポリエチレン()は密度が
0.915ないし0.970g/cm3、好ましくは0.915ないし
0.965g/cm3の範囲内である。密度が0.915g/cm3
満のものは、剛性が低く、密度が0.970g/cm3を越
えるものは、耐環境応力亀裂性に劣る。 本発明に用いるポリエチレン()はメルトフ
ローレート比(ASTM D 1238:Nにおける
値:MFR10とASTM D 1238、Eにおける値:
MFR2との比MFR10/MFR2;以下FRRと略す)
が8ないし50、好ましくは10ないし30の範囲であ
る。MRRが8未満のものは、押出成形時にパリ
ソンが肌荒れを起こし、良好な外観の製品が得ら
れず、50を越えるものは製品の強度が著しく低下
する。 本発明に用いるポリエチレン()はHSFRが
30ないし600sec-1、好ましくは40ないし500sec-1
の範囲である。HSFRが30sec-1未満のものは、
押出成形時にパリソンが肌荒れを起こし、良好な
外観の製品が得られず、600sec-1を越えるもの
は、破断点伸びが低下するので好ましくない。尚
本発明におけるHSFRはL/D=30(D:ノズル
孔径、L:ノズルランド長)のノズルを装着した
キヤピラリーレオメータを用いて、190℃で測定
したときの一定剪断応力(2.4×106dyne/cm2)下
での剪断速度(sec-1)である。 本発明に用いるポリエチレン()が、高密度
低分子量エチレン重合体と低密度高分子量エチレ
ン共重合体とからなる組成物であれば、更に耐環
境応力亀裂性に優れた中空成形体が得られるので
好ましい。 本発明に用いる前記性状のポリエチレン()
は、周期律表の−族の遷移金属の化合物と
〜族の金属からなるアルキル金属の2成分から
なる、いわゆるチーグラー触媒を用い低圧でエチ
レンを単独にあるいはエチレンとα−オレフイン
とを前記範囲内に入る様に重合して得られるもの
である。エチレンを高温高圧下にラジカル重合さ
せて得られる高圧法ポリエチレン、及びシリカー
アルミナを担体とした酸化クロムからなるフイリ
ツプス触媒を用いて中圧下にエチレンを重合して
得られる中圧法ポリエチレンは、ラジカル発生剤
と混合すると、更に耐環境応力亀裂性が低下し、
本発明の目的を達成できない。 本発明に用いるポリエチレン()には、酸化
防止剤、紫外線吸収剤、滑剤、帯電防止剤、難燃
剤、顔料、染料、無機または有機の充填剤、発泡
剤、低結晶性もしくは非晶性のエチレン・1−ブ
テン共重合体、エチレン−プロピレン共重合体な
どの通常ポリオレフインに用いる各種配合剤を本
発明の目的を損わない範囲で添加してもよい。 本発明に用いるラジカル発生剤は、半減期1分
となる分解温度が150ないし270℃のものが好まし
く、具体的には例えば、クメンヒドロペルオキシ
ド、ジイソプロピルベンゼンヒドロペルオキシ
ド、2,5−ジメチル−2,5−ジヒドロペルオ
キシヘキサン、2,5−ジメチル−2,5−ジヒ
ドロペルオキシヘキシン−3等のヒドロペルオキ
シド、ジ−t−ブチル−ペルオキシド、ジ−t−
アミル−ペルオキシド、t−ブチル−クミル−ペ
ルオキシド、ジクミル−ペルオキシド、2,5−
ジメチル−2,5−ジ(t−ブチル−ペルオキ
シ)ヘキサン、2,5−ジメチル−2,5−ジ
(t−ブチル−ペルオキシ)ヘキシン−3,α,
α′−ビス(t−ブチル−ペルオキシ)ジイソプロ
ピル−ベンゼン、2,2−ビス(4,4−ジ−t
−ブチル−ペルオキシ−シクロヘキシル)プロパ
ン等のジアルキルペルオキシド、t−ブチル−ペ
ルオキシ−アセテート、t−ブチル−ペルオキシ
−ラウレート、t−ブチル−ペルオキシ−ベンゾ
エート、ジ−t−ブチル−ジペルオキシ−フタレ
ート等のペルオキシエステル等が挙げられる。 前記ラジカル発生剤はポリエチレン():100
重量部に対して、0.002ないし0.10重量部、好ま
しくは0.005ないし0.03重量部の範囲の量を添加
する必要がある。添加量が0.002重量部未満では
ドローダウン性の改良効果が現われず、0.10重量
部を越えると、組成物の耐環境応力亀裂性が低下
し、更にはゲルが発生して製品の外観が悪なる。 本発明のポリエチレン()には、前記ラジカ
ル発生剤とあわせて、更に架橋助剤を0ないし
0.05重量部添加してもよい。かかる架橋助剤を添
加することにより、ラジカル発生剤の量を減ら
し、効率よく分岐を生じさせることができる。 前記架橋助剤としては、具体的には、例えばト
リアリールシアヌレート、トリアリールイソシア
ヌレート、1,3,5−トリアクリロイルヘキサ
ヒドロトリアジン、トリス(2−ヒドロキシエチ
ル)イソシアヌルアクリレート、トリス(2−ヒ
ドロキシエチル)イソシアヌルメタクリレート、
1,2−ポリブタジエン、エチレングリコールジ
メタクリレート、1,3−ブチレングリコールジ
メタクリレート、1,6−ヘキサンジオールジメ
タクリレート、ジエチレングリコールジメタクリ
レート、トリエチレングリコールジメタクリレー
ト、ポリエチレングリコールジアクリレート、ト
リメチロールプロパントリメタクリレート等が挙
げられる。 本発明の中空成形用ポリエチレン組成物を得る
には、前記ポリエチレン()とラジカル発生剤
と架橋助剤とを上記範囲で種々公知の方法、例え
ばヘンシエルミキサー、V−ブレンダー、リボン
ブレンダー、タンブラーブレンダー等により混合
する方法、更には混合後、単軸押出機、多軸押機
で混練造粒することにより得る方法、バンバリー
ミキサー、ニーダー、単軸押出機、多軸押出機で
溶融混練する方法により得られる。上記方法にお
いて混練する場合は、前記ラジカル発生剤の分解
温度以上の温度、すなわち通常150ないし280℃の
温度で混練することにより、後述の中空成形方法
において、パリソンのドローダウン性が改良され
る。尚、上記混練は必ずしも必要ではなく、単に
ヘンシエルミキサー等で混合して得た組成物で
も、後述の中空成形において、押出機の温度を前
記ラジカル発生剤の分解温度以上の温度、すなわ
ち通常150ないし280℃の温度にすることにより、
パリソンのドローダウン性は改良される。 本発明のポリエチレン組成物を加熱処理するこ
とにより、変性された組成物は、以下の式(3)及び
式(4)に示される如く、MTが大きくなる。すなわ
ちドローダウン性が改良されることにより、中空
成形が容易となる。 〔η〕≦3.23において 3.11log10〔η〕−0.267<log10(MT)……(3) 〔η〕>3.23において 0.150log10〔η〕+1.24<log10(MT)……(4) 本発明の中空成形用ポリエチレン組成物を用い
て中空成形する方法としては、とくに限定はされ
ず、一般の中空成形法である。押出中空成形法、
インラインスクリユープランジヤ中空成形法、ア
キユムレータチヤンバのある中空成形法が挙げら
れる。前記方法で中空成形する場合は、いずれも
190ないし260℃の温度で溶融後、ダイよりパリソ
ンを押出し、金型内で空気を吹込み冷却すること
により行い得る。 本発明の中空成形用ポリエチレン組成物は、従
来のポリエチレンに比べドローダウン性が改良さ
れ、しかも耐環境応力亀裂性にも優れているの
で、ガソリンタンク、工業用薬品缶、灯油缶、ロ
ーリータンク、太陽熱集熱器、網端等の大型容器
に特に好適である。 次に実施例を挙げて本発明を更に具体的に説明
するが、本発明はその要旨を越えない限り、これ
らの実施例に制約されるものではない。 実施例 1〜3 (1) 触媒合成 窒素気流中で無水塩化マグネシウム5molを
脱水精製したヘキサン10に懸濁させ、撹拌し
ながらエタノール25molを1時間かけて滴下
後、室温にて1時間反応した。これに12molの
ジエチルアルミニウムクロリドを室温で滴下
し、2時間撹拌した。続いて四塩化チタン
10molを加えた後、60℃に昇温して3時間撹拌
しながら反応を行つた。生成た固体部は傾瀉に
よつて分離し、精製ヘキサンによりくり返し洗
浄した後ヘキサンの懸濁液とした。 ヘキサン懸濁液中のチタン濃度は滴定によつ
て定量した。また、得られた固体の1部を減圧
乾燥して触媒組成を調べたところ、固体1g当
りチタンが74mg、マグネシウムが202mg、塩素
が618mgそれぞれ存在していた。 (2) 重 合 内容積200の第1段重合器にヘキサン50
/hr、トリエチルアルミニウム140mmol/
hr担体付触媒をチタン原子換算で2.8mmol/
hrの速度で連続的に供給し、重合器内容物を所
要速度で排出しながら80℃においてエチレンを
15Kg/hr、水素を250/hrの速度で導入し、
全圧7Kg/cm2、平均滞留時間2時間の条件下で
連続的に第1段重合を行う。重合で生成したポ
リエチレンを含むヘキサンの懸濁溶液(エチレ
ン重合体含量300g/、ポリエチレンのMFR2
=50g/10min、極限粘度〔η〕=0.92dl/g、
密度=0.972g/cm3)を同温度においてフラツシ
ユ・ドラムに導き、溶液中に含まれる水素を分
離後、そのまま内容積200の第2段重合器に
全量導入し、触媒を追加することなく、精製ヘ
キサン50/hrを供給し、重合器内容物を所要
速度で排出しながら、70℃においてエチレンを
15Kg/hr、1−ブテンを150g/hr、水素5
/hrの速度で導入して全圧を3.5Kg/cm2、滞
留時間2時間の条件下に連続的に第2段重合を
行う。 第2段重合器からの流出物はエチレン重合体
組成物300g/・hrを含み、該重合体(以下
PE−Iと呼ぶ)のMFR2は0.05g/10min、
〔η〕は3.32dl/g、FRRは19、HSFRは
60sec-1、MTは14g、密度は0.956g/cm3であつ
た。 (3) 中空成形用ポリエチレン組成物の製造 前記重合により得られたPE−:100重量部
に対して、ラジカル発生剤として2,5ジメチ
ル−2,5−ジ(t−ブチルペルオキシ)ヘキ
サンを、架橋助剤として1,3,5トリアクリ
ロイルヘキサヒドロトリアジンをそれぞれ第1
表に示す割合で添加混合し、20mmφ押出機(樹
脂温度:280℃)で溶融混合造粒することによ
り組成物を得た。次いで該組成物の評価を以下
の方法で行つた。 耐環境応力亀裂性(ESCR):ASTM D 1693
に準じ、試験片厚さ:2mm、温度:50℃及び
界面活性剤:アンタロツクス(Antarox)
CO−630 10%溶液の条件下で測定した。 ドローダウン性:中空成形を用いて樹脂温度
220℃で一定重量のパリソンを押出し、該パ
リソンの先端が10秒間に垂れ下がる距離
(cm)を測定することにより評価した。 結果を第1表に示す。 比較例 1,2 実施例1で得られたPE−にラジカル発生剤
等を添加せずに評価した結果、及びフイリツプス
触媒系により得られたポリエチレン(以下PE−
と呼ぶ)の評価結果をそれぞれ第1表に示す。 実施例 4,5 実施例1に記載した重合方法と同様な方法で、
第1段目のポリエチレンの物性がMFR2=150g/
10min、〔η〕=0.74dl/g及び密度=0.974g/cm3
であり、第2段重合器からの流出物が、MFR2
0.34g/10min、〔η〕=2.30dl/g、FRR=16、
HSFR=430sec-1、MT=6g及び密度=0.959g/
cm3の重合体(以下PE−と呼ぶ)を得た。次い
でPE−と実施例1で用いたラジカル発生剤及
び架橋助剤とを第1表に示す割合で添加して得た
組成物を実施例1と同様な方法で評価した。結果
を第1表に示す。 比較例 3,4 実施例4で得られたPE−にラジカル発生剤
等を添加せずに評価した結果及びフイリツプス触
媒系により得られたポリエチレン(以下PE−
と呼ぶ)の評価結果をそれぞれ第1表に示す。
The present invention relates to polyethylene compositions for blow molding. More specifically, the present invention relates to a polyethylene composition for blow molding that has excellent drawdown resistance and environmental stress cracking resistance. Blow molding is one of the methods for molding thermoplastic resins, and is widely used for molding detergent bottles, shampoo bottles, cosmetic bottles, kerosene cans, industrial chemical cans, and the like. However, in the blow molding method, once a cylindrical molten resin called a parison is extruded from an extruder, air is blown into the parison in a mold to create a product, so the larger the product, the more it must be held between the molds. Previously, the phenomenon of drooping (drawdown) due to the parison's own weight was severe, making molding difficult. Methods to reduce parison drawdown include lowering the molding temperature, increasing the extrusion speed, or using a resin with a low melt flow rate, but all of these methods increase the load on the extruder. It also has the disadvantage that the extrusion surface of the parison becomes large and the appearance of the resulting molded product also deteriorates. On the other hand, the drawdown of the parison is correlated with the melt tension of the resin, and resins with high melt tension have small drawdowns. As a method for improving the melt tension of resin during inflation film molding, a method has been proposed in which a small amount of radical generator is added to polyolefin resin (Japanese Patent Application Laid-Open No. 57-38837). Even when applied to improve the melt tension of polyethylene for molding, drawdown is not improved. Therefore, the present inventors have studied the development of polyethylene for blow molding that has excellent drawdown resistance and environmental stress cracking resistance, and as a result, has arrived at the present invention. That is, the present invention is a blow molded product obtained by adding 0.002 to 0.10 parts by weight of a radical generator and 0 to 0.05 parts by weight of a crosslinking aid to 100 parts by weight of polyethylene () satisfying the following (A) to (E). Polyethylene composition for use. (A) Melt tension (MT) is within the range specified by formula (1) and formula (2), [η]≦3.23, 3.14log 10 [η]−0.529≦log 10 (MT)≦3
.11log 10 [η]−0.267……(1) At [η]>3.23 0.749log 10 [η]+0.690≦log 10 (MT)≦
0.150log 10 [η]+1.24……(2) [η]: Decalin solvent, intrinsic viscosity at 135℃ (B) Melt flow rate (ASTM D 1238:
E) 0.01 to 5.0 g/10 min, (C) density 0.915 to 0.970 g/cm 3 , (D) melt flow rate ratio 8 to 50, and (E) HSFR 30 to 600 sec -1 . It provides: The polyethylene used in the present invention is a homopolymer of ethylene or ethylene mainly composed of ethylene and other α-olefins, such as propylene, 1-butene, 1-pentene, 1-hexene,
4-methyl-1-pentene, 1-octene, 1-
It is a copolymer with decene etc. The polyethylene () used in the present invention has the formula MT
This is the range defined by (1) and formula (2). When [η]≦3.23, 3.14log 10 [η]−0.529≦log 10 (MT)≦3
.11log 10 [η]−0.267……(1) At [η]>3.23 0.749log 10 [η]+0.690≦log 10 (MT)≦
0.150log 10 [η] + 1.24...(2) [η]: Decalin solvent, intrinsic viscosity at 135℃ Polyethylene whose MT is outside the range of the above formula and whose MT exceeds the upper limit is often used in practical use. Not on target. In addition, all polyethylenes below the lower limit have extremely narrow molecular weight distributions, causing rough skin of the parison during molding, making it impossible to obtain a product with a good appearance. MT in the present invention uses a melt tension tester manufactured by Toyo Seiki Co., Ltd. to melt polyethylene in a cylinder (inner diameter: 9.55 mm) at a melting temperature of 190°C through a nozzle (hole diameter: 2.10 mm, length: 8.00 mm). mm)
More constant speed (piston descending speed: 10mm/min)
This is the stress (g) generated when the molten strand extruded through a load cell is taken up by a roller (outer diameter: 5.0 cm) rotating at a constant speed (100 rpm). The rotation speed of the roller is 100 rpm.
If the strand melts and breaks before reaching , the stress (g) at that point is defined as MT. The polyethylene used in the present invention has a melt flow rate (ASTM D 1238: E hereinafter abbreviated as MFR 2 ) of 0.01 to 5.0 g/10 min, preferably
It is within the range of 0.01 to 1.0g/10min. MFR2
is less than 0.01g/10min, when molding with the addition of the radical generator and crosslinking aid described below,
MFR 2 becomes small and formability decreases significantly.
On the other hand, when MFR 2 exceeds 5.0 g/10 min, it is necessary to add a large amount of radical generator to improve MT, which results in the formation of gel and also reduces environmental stress cracking resistance. The polyethylene () used in the present invention has a density of
0.915 to 0.970g/cm 3 , preferably 0.915 to 0.970g/cm 3
It is within the range of 0.965g/ cm3 . Those with a density of less than 0.915 g/cm 3 have low rigidity, and those with a density of more than 0.970 g/cm 3 have poor environmental stress cracking resistance. The polyethylene used in the present invention has a melt flow rate ratio (ASTM D 1238: value in N: MFR 10 and value in ASTM D 1238, E:
Ratio to MFR 2 : MFR 10 /MFR 2 ; hereinafter abbreviated as FRR)
ranges from 8 to 50, preferably from 10 to 30. If the MRR is less than 8, the surface of the parison will be rough during extrusion molding, making it impossible to obtain a product with a good appearance, and if it exceeds 50, the strength of the product will be significantly reduced. The polyethylene () used in the present invention has an HSFR of
30 to 600sec -1 , preferably 40 to 500sec -1
is within the range of Those with HSFR less than 30sec -1 are
The surface of the parison becomes rough during extrusion molding, making it impossible to obtain a product with a good appearance, and those exceeding 600 sec -1 are undesirable because the elongation at break decreases. In addition, HSFR in the present invention is a constant shear stress (2.4 × 10 6 dyne/cm 2 ) and the shear rate (sec -1 ). If the polyethylene used in the present invention is a composition consisting of a high-density, low-molecular-weight ethylene polymer and a low-density, high-molecular-weight ethylene copolymer, a hollow molded article with even better environmental stress cracking resistance can be obtained. preferable. Polyethylene () having the above properties used in the present invention
Using a so-called Ziegler catalyst, which is composed of two components: a compound of a transition metal in group - of the periodic table and an alkyl metal consisting of a metal in group -, ethylene alone or ethylene and α-olefin are mixed within the above range at low pressure. It is obtained by polymerizing in such a way that it enters the High-pressure polyethylene obtained by radically polymerizing ethylene under high temperature and high pressure, and medium-pressure polyethylene obtained by polymerizing ethylene under medium pressure using a Phillips catalyst consisting of chromium oxide with silica-alumina as a carrier, are free from radical generation. When mixed with additives, the environmental stress cracking resistance further decreases,
The purpose of the present invention cannot be achieved. The polyethylene used in the present invention includes antioxidants, ultraviolet absorbers, lubricants, antistatic agents, flame retardants, pigments, dyes, inorganic or organic fillers, blowing agents, and low-crystalline or amorphous ethylene. - Various compounding agents commonly used for polyolefins, such as 1-butene copolymer and ethylene-propylene copolymer, may be added to the extent that the purpose of the present invention is not impaired. The radical generator used in the present invention preferably has a decomposition temperature of 150 to 270°C at which the half-life is 1 minute, and specific examples include cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethyl-2, Hydroperoxides such as 5-dihydroperoxyhexane, 2,5-dimethyl-2,5-dihydroperoxyhexine-3, di-t-butyl peroxide, di-t-
amyl-peroxide, t-butyl-cumyl-peroxide, dicumyl-peroxide, 2,5-
Dimethyl-2,5-di(t-butyl-peroxy)hexane, 2,5-dimethyl-2,5-di(t-butyl-peroxy)hexane-3,α,
α′-bis(t-butyl-peroxy)diisopropyl-benzene, 2,2-bis(4,4-di-t
Dialkyl peroxides such as -butyl-peroxy-cyclohexyl)propane, peroxy esters such as t-butyl-peroxy-acetate, t-butyl-peroxy-laurate, t-butyl-peroxy-benzoate, and di-t-butyl-diperoxy-phthalate. etc. The radical generator is polyethylene (): 100
It is necessary to add an amount in the range of 0.002 to 0.10 parts by weight, preferably 0.005 to 0.03 parts by weight, based on the parts by weight. If the amount added is less than 0.002 parts by weight, the effect of improving drawdown properties will not appear, and if it exceeds 0.10 parts by weight, the environmental stress cracking resistance of the composition will decrease, and furthermore, gel will be generated and the appearance of the product will deteriorate. . In addition to the radical generator, the polyethylene () of the present invention further contains 0 to 0 crosslinking aids.
You may add 0.05 parts by weight. By adding such a crosslinking aid, the amount of radical generator can be reduced and branching can be efficiently caused. Specific examples of the crosslinking aid include triaryl cyanurate, triaryl isocyanurate, 1,3,5-triacryloylhexahydrotriazine, tris(2-hydroxyethyl)isocyanuracrylate, tris(2-hydroxyethyl) ethyl) isocyanuric methacrylate,
1,2-polybutadiene, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol diacrylate, trimethylolpropane trimethacrylate, etc. can be mentioned. In order to obtain the polyethylene composition for blow molding of the present invention, the polyethylene (), a radical generator, and a crosslinking aid are mixed using various known methods within the above ranges, such as a Henschel mixer, a V-blender, a ribbon blender, and a tumbler blender. Furthermore, after mixing, the mixture is kneaded and granulated using a single-screw extruder or multi-screw extruder, or by melt-kneading using a Banbury mixer, kneader, single-screw extruder, or multi-screw extruder. can get. When kneading in the above method, the drawdown properties of the parison are improved in the blow molding method described below by kneading at a temperature higher than the decomposition temperature of the radical generator, that is, usually at a temperature of 150 to 280°C. The above-mentioned kneading is not necessarily necessary, and even if the composition is simply mixed with a Henschel mixer etc., the temperature of the extruder is set at a temperature higher than the decomposition temperature of the radical generator, that is, usually 150°C, in the blow molding described later. By keeping the temperature between 280℃ and 280℃,
The drawdown properties of the parison are improved. By heat-treating the polyethylene composition of the present invention, the modified composition has a large MT as shown in the following formulas (3) and (4). That is, by improving the drawdown property, blow molding becomes easier. At [η]≦3.23, 3.11log 10 [η]−0.267<log 10 (MT)……(3) At [η]>3.23, 0.150log 10 [η]+1.24<log 10 (MT)……(4 ) The method for blow molding using the polyethylene composition for blow molding of the present invention is not particularly limited, and is a general blow molding method. extrusion blow molding method,
Examples include a blow molding method with an inline screw plunger and a blow molding method with an accumulator chamber. When performing hollow molding using the above method, both
This can be done by extruding the parison from a die after melting at a temperature of 190 to 260°C, and cooling it by blowing air into the mold. The polyethylene composition for blow molding of the present invention has improved drawdown properties compared to conventional polyethylene and also has excellent environmental stress cracking resistance, so it can be used for gasoline tanks, industrial chemical cans, kerosene cans, lorry tanks, etc. It is particularly suitable for large containers such as solar heat collectors and mesh ends. Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded. Examples 1 to 3 (1) Catalyst synthesis 5 mol of anhydrous magnesium chloride was suspended in dehydrated and purified hexane 10 in a nitrogen stream, and 25 mol of ethanol was added dropwise over 1 hour with stirring, followed by reaction at room temperature for 1 hour. 12 mol of diethylaluminium chloride was added dropwise to this at room temperature, and the mixture was stirred for 2 hours. Next, titanium tetrachloride
After adding 10 mol, the temperature was raised to 60°C and the reaction was carried out with stirring for 3 hours. The produced solid portion was separated by decantation, washed repeatedly with purified hexane, and then made into a hexane suspension. The titanium concentration in the hexane suspension was determined by titration. Further, when a portion of the obtained solid was dried under reduced pressure and the catalyst composition was examined, it was found that 74 mg of titanium, 202 mg of magnesium, and 618 mg of chlorine were present per gram of solid. (2) Polymerization Add 50 ml of hexane to the first stage polymerization vessel with an internal volume of 200 ml.
/hr, triethylaluminum 140mmol/
2.8 mmol/hr supported catalyst in terms of titanium atoms
Ethylene was fed continuously at a rate of hr and the contents of the polymerization vessel were discharged at the required rate at 80°C.
Introducing hydrogen at a rate of 15Kg/hr and 250/hr,
The first stage polymerization is carried out continuously under the conditions of a total pressure of 7 Kg/cm 2 and an average residence time of 2 hours. Suspension solution of hexane containing polyethylene produced by polymerization (ethylene polymer content 300g/, MFR of polyethylene 2
= 50g/10min, intrinsic viscosity [η] = 0.92dl/g,
Density = 0.972 g/cm 3 ) was introduced into a flash drum at the same temperature, and after separating the hydrogen contained in the solution, the entire amount was introduced as it was into the second stage polymerization vessel with an internal volume of 200, without adding any catalyst. While supplying purified hexane 50/hr and discharging the contents of the polymerization vessel at the required rate, ethylene was produced at 70°C.
15Kg/hr, 1-butene 150g/hr, hydrogen 5
The second stage polymerization is carried out continuously under conditions of a total pressure of 3.5 Kg/cm 2 and a residence time of 2 hours. The effluent from the second stage polymerization reactor contains 300 g/hr of ethylene polymer composition;
PE-I) MFR 2 is 0.05g/10min,
[η] is 3.32dl/g, FRR is 19, HSFR is
60sec -1 , MT was 14g, and density was 0.956g/cm 3 . (3) Production of polyethylene composition for blow molding 2,5 dimethyl-2,5-di(t-butylperoxy)hexane was added as a radical generator to 100 parts by weight of PE obtained by the above polymerization. 1, 3, 5 triacryloylhexahydrotriazine as a crosslinking aid
A composition was obtained by adding and mixing the ingredients in the proportions shown in the table and melting and granulating them using a 20 mmφ extruder (resin temperature: 280°C). Next, the composition was evaluated by the following method. Environmental stress cracking resistance (ESCR): ASTM D 1693
Test piece thickness: 2 mm, temperature: 50°C, and surfactant: Antarox.
Measured under the conditions of a 10% CO-630 solution. Drawdown property: resin temperature using hollow molding
Evaluation was made by extruding a parison of a constant weight at 220°C and measuring the distance (cm) that the tip of the parison hangs down in 10 seconds. The results are shown in Table 1. Comparative Examples 1 and 2 The results of evaluating the PE obtained in Example 1 without adding any radical generator etc.
Table 1 shows the evaluation results for each of the following. Examples 4 and 5 In a similar manner to the polymerization method described in Example 1,
The physical properties of the first stage polyethylene are MFR 2 = 150g/
10min, [η] = 0.74dl/g and density = 0.974g/cm 3
, and the effluent from the second stage polymerization vessel is MFR 2 =
0.34g/10min, [η]=2.30dl/g, FRR=16,
HSFR=430sec -1 , MT=6g and density=0.959g/
cm 3 of a polymer (hereinafter referred to as PE-) was obtained. Next, a composition obtained by adding PE and the radical generator and crosslinking aid used in Example 1 in the proportions shown in Table 1 was evaluated in the same manner as in Example 1. The results are shown in Table 1. Comparative Examples 3 and 4 The results of evaluating the PE obtained in Example 4 without adding any radical generator etc.
Table 1 shows the evaluation results for each of the following.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記(A)〜(E)を充たすポリエチレン():100
重量部に対して、ラジカル発生剤を0.002ないし
0.10重量部及び架橋助剤を0ないし0.05重量部添
加してなる中空成形用ポリエチレン組成物。 (A) 溶融張力(MT)が式(1)及び式(2)で規定さ
れる範囲であること、 〔η〕≦3.23において 3.14log10〔η〕−0.529≦log10(MT)≦3.1
1log10〔η〕−0.267……(1) 〔η〕>3.23において 0.749log10〔η〕+0.690≦log10(MT)≦0.
150log10〔η〕+1.24……(2) 〔η〕:デカリン溶媒、135℃におけ極限粘度 (B) メルトフローレート(ASTM D 1238:
E)が0.01ないし5.0g/10min、 (C) 密度が0.915ないし0.970g/cm3、 (D) メルトフローレート比が8ないし50、及び (E) HSFRが30ないし600sec-1
[Claims] 1. Polyethylene () that satisfies the following (A) to (E): 100
0.002 to 0.002 to part by weight of radical generator
A polyethylene composition for blow molding, which contains 0.10 parts by weight and 0 to 0.05 parts by weight of a crosslinking aid. (A) Melt tension (MT) is within the range specified by formula (1) and formula (2), [η]≦3.23, 3.14log 10 [η]−0.529≦log 10 (MT)≦3.1
1log 10 [η]−0.267……(1) When [η]>3.23, 0.749log 10 [η]+0.690≦log 10 (MT)≦0.
150log 10 [η] + 1.24...(2) [η]: Decalin solvent, intrinsic viscosity at 135℃ (B) Melt flow rate (ASTM D 1238:
E) 0.01 to 5.0 g/10 min, (C) density 0.915 to 0.970 g/cm 3 , (D) melt flow rate ratio 8 to 50, and (E) HSFR 30 to 600 sec -1 .
JP19769982A 1982-11-12 1982-11-12 Polyethylene composition for blow molding Granted JPS5989341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19769982A JPS5989341A (en) 1982-11-12 1982-11-12 Polyethylene composition for blow molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19769982A JPS5989341A (en) 1982-11-12 1982-11-12 Polyethylene composition for blow molding

Publications (2)

Publication Number Publication Date
JPS5989341A JPS5989341A (en) 1984-05-23
JPH0252654B2 true JPH0252654B2 (en) 1990-11-14

Family

ID=16378883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19769982A Granted JPS5989341A (en) 1982-11-12 1982-11-12 Polyethylene composition for blow molding

Country Status (1)

Country Link
JP (1) JPS5989341A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465146A (en) * 1987-09-04 1989-03-10 Idemitsu Petrochemical Co Modified linear polyethylene composition of medium to low density
JP3472935B2 (en) * 1994-02-18 2003-12-02 三井化学株式会社 Ethylene polymer and method for producing the same, solid titanium catalyst component for ethylene polymerization, and catalyst for ethylene polymerization
CA2142748C (en) * 1994-02-18 1999-02-23 Shin-Ichi Kojoh Ethylene polymer and process for preparing the same
JP3365668B2 (en) * 1994-03-02 2003-01-14 三井化学株式会社 Ethylene polymer, solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst containing the catalyst component, and method for producing ethylene polymer using the catalyst
BR112019003169B1 (en) * 2016-08-31 2022-08-30 Dow Global Technologies Llc COMPOSITION AND METHOD FOR FORMING A MODIFIED POLYETHYLENE

Also Published As

Publication number Publication date
JPS5989341A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
KR101559638B1 (en) A process for preparing high melt strength propylene polymers
US4587303A (en) Polyethylene blend and film
US8507608B2 (en) Propylene polymer resin composition
US7767767B2 (en) Modification of polyethylene with ozone
JPS6242921B2 (en)
US20230174755A1 (en) Process to Produce a Composition of Polyethylene Comprising Recycled Post-Consumer Resin and Caps or Closures Made From This Composition
US4716197A (en) Polyethylene/EPDM-graft polystyrene blends
US12129369B2 (en) Process to produce an additived composition of polyethylene comprising post-consumer resin and caps or closures made from this composition
JPH0252654B2 (en)
JP2009275123A (en) Modified polyproylene based resin composition, and its manufacturing method
US7226974B2 (en) Olefinic rubber composition
JPH0328214A (en) Thermoplastic resin composition
JP2008208304A (en) Polypropylene-based resin composition and its molded article
JPS6026051A (en) Polyethylene composition
JPH0891341A (en) Multi-layered hollow container
JP3964048B2 (en) Propylene polymer composition for extrusion foaming and method for producing the same
JPS596241A (en) Extrusion-coating resin composition
JPH0112779B2 (en)
JP3581412B2 (en) Method for producing polyethylene resin composition for forming blown film
JP2859356B2 (en) Porous film
JP2018131570A (en) Polyethylene resin composition and molded article and container thereof
JP2006124567A (en) Polyethylene resin composition and film composed of the same
JPS6242922B2 (en)
JPS5971349A (en) Ethylenic resin composition
JPH09216973A (en) Resin composition for forming film