JPH0252653B2 - - Google Patents

Info

Publication number
JPH0252653B2
JPH0252653B2 JP57008838A JP883882A JPH0252653B2 JP H0252653 B2 JPH0252653 B2 JP H0252653B2 JP 57008838 A JP57008838 A JP 57008838A JP 883882 A JP883882 A JP 883882A JP H0252653 B2 JPH0252653 B2 JP H0252653B2
Authority
JP
Japan
Prior art keywords
foam
density
cell
present
spring constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008838A
Other languages
Japanese (ja)
Other versions
JPS58126128A (en
Inventor
Takao Kadota
Masayuki Hashimoto
Itsuo Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Kakoh KK
Original Assignee
Dow Kakoh KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Kakoh KK filed Critical Dow Kakoh KK
Priority to JP57008838A priority Critical patent/JPS58126128A/en
Priority to US06/717,268 priority patent/US4552904A/en
Priority to PCT/JP1983/000232 priority patent/WO1985000553A1/en
Priority to EP83902287A priority patent/EP0151183B1/en
Publication of JPS58126128A publication Critical patent/JPS58126128A/en
Priority to US06/780,117 priority patent/US4585605A/en
Publication of JPH0252653B2 publication Critical patent/JPH0252653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、超低密度で、柔軟性に富み、遮音性
能が高く且つ、高い断熱性能を有する硬質熱可塑
性樹脂で出来た発泡体、並びにその製造方法に関
する。 従来、硬質熱可塑性樹脂の発泡体は、その低熱
伝導性、低吸水性、軽量性、加工性等の特性によ
り、一般住居を始めとする建築物の断熱材として
大いに利用されている。しかし、柔軟性に劣り、
且つ、圧縮永久歪が大きい為に、例えば建築物の
間柱間への充填を行なうには、予め間柱間隔に合
せて裁断し、特殊金具で固定する必要があり、実
際には間柱間隔のバラツキを吸収出来ず、作業性
が著しく劣るとともに、気密な断熱構造が得られ
ていない。また、気密に充填しようとすると、硬
質の為、多大な力を必要とし、その結果気泡が破
壊する。更に、発泡体の破断をも生じ、気密な断
熱構造が得られていない。 一方、昨今の住宅等建築物の高層化に伴ない、
特に集合住宅等の建築物に於いて、上下階の蔽音
性が要求される様になつて来ている。この問題を
解決する為に、最近、浮床工法と称し、無機質繊
維板を床基体上に配し、その上に防水層を介して
コンクリートモルタルを打設する方法がとられて
いる。これは、無機質繊維板の柔軟性を利用し、
上下階間の固体伝播音を少なくし、遮音性を高め
ることが出来るものである。この用途に於いても
従来の硬質熱可塑性樹脂の発泡体は、その硬質性
の為に充分な遮音性を得ることが出来ないもので
ある。 最近、上記したこれらの問題を解決する為に、
例えば、低密度化したポリスチレン発泡体を機械
的に柔軟化して得られる発泡体があるが、この場
合密度が20Kg/m3未満になると、機械的柔軟化の
為に気泡を構成する樹脂膜が破壊し、いわゆる連
通現象を起こしてしまう。また、たとえ発泡体の
表面層の比較的肉厚のある部分で気泡の破壊を押
え、一般的測定法による吸水率から見る、見掛上
の独立気泡率を保ち得たとしても、発泡体内部
の、表面層に比較して薄い膜で構成されている気
泡は破壊されており、断熱性能及び長期間の断熱
性能の維持という面ではるかに劣つた発泡体とな
つてしまうし、断熱性能の温度移存性が大きくな
る。更に機械的に柔軟化した場合は、発泡体全体
として柔軟化されているものであつて、ミクロ的
に見ると、発泡体の気泡に柔軟化された部分と、
されていない部分とがあり、その物性は発泡体の
厚み方向、或いは平面方向に不均一なものとなつ
てしまう。 一方、発泡剤を含有する発泡性粒子を、数回に
分けて発泡させ、更に型内で発泡させて板状体、
或いは成形体として断熱材、緩衝材、または遮音
材として使用されているものがある。しかし、こ
の物の様に粒子自体を発泡回数を増やして低密度
(高発泡)にした発泡体は、粒子自体が大きくな
り、成形体とする場合に気密充填が出来にくく、
粒子間の融着が弱い発泡体となつてしまう。ま
た、融着を強くしようとすると、成形体とする時
に、圧縮充填及び圧縮成形を行なう必要があり、
この様にして出来た発泡体は、その発泡体に本発
明でいうしわの存在が認められず、柔軟性、遮音
性に欠けるものとなつてしまうため、その低密度
化には限界があり、実用上耐え得る発泡体の密度
は17Kg/m3以上のものでしかない。 しかるに市場に於いては、低密度で柔軟化に富
み、断熱性能を有し、且つ断熱性能を長期間維持
し、断熱性能の温度移存性が少なく、遮音性のあ
る、圧縮永久歪の少ない硬質熱可塑性樹脂の発泡
体を得る事は長年に渡る強い要求である。 本発明は、この様な現状に鑑みて研究の結果成
されたもので、断熱材として、且つ遮音材とし
て、また、緩衝材として、いままでにない諸特性
を具備した新規で進歩性のある発明である。 即ち、硬質熱可塑性樹脂を発泡してつくられ
た、密度(D)が3Kg/m3≦D≦17Kg/m3で、気泡構
造に於いて、少なくとも3つの気泡が隣接して生
じる境界部分に一端を有し気泡膜の中央部分に向
つて延びる多数のしわを有し、平均気泡径(A)が、
A≦2.0mm、独立気泡率(B)がB≧50%、であり且
つ動的バネ定数(k)がk≦40×106N/m3、及び互
に直交する3軸方向に測定した60%圧縮永久歪の
値のうちの最小値(C)がC≦25%である発泡体を提
供するものである。 また、その製造方法についての本発明は、水蒸
気の樹脂に対する透過性の非常に大きい事を利用
し、且つ樹脂に対するガス透過性の温度移存性と
樹脂の軟化温度とを組み合わせて、超低密度で且
つ柔軟性に富み、高い断熱性能を長期間維持で
き、遮音性に優れ、圧縮永久歪の少ない硬質熱可
塑性樹脂の発泡体を得る方法を発明するに至つた
ものである。 即ち、硬質熱可塑性樹脂の発泡体を、85℃以上
の温水或いは、水蒸気雰囲気中にて1分間以上加
熱し、一旦膨張させた后最終発泡体体積の70%下
になるように収縮させ、更に雰囲気温度(T)
が、40℃≦(T)<樹脂の軟化温度の乾燥室内で24
時間以上熟成し、膨張させ、密度(D)が3Kg/m3
で、気泡構造に於いて少なくとも3つの気泡が隣
接して生じる境界部分に一端を有し、気泡膜の中
央部分に向つて延びる多数のしわを有し、平均気
泡径(A)が、A≦2.0mm、独立気泡率(B)がB≧50%、
であり且つ、動的バネ定数(k)がk≦40×106N/
m3、及び互に直交する3軸方向に測定した60%圧
縮永久歪の値のうち最小値(C)がC≦25%である発
泡体を得る事を特徴とする発泡体製造方法を提供
するものである。 更に図面を混えながら本発明の内容について詳
述する。 まず本発明の第1の構成要件である硬質熱可塑
性樹脂の発泡体密度(D)が3Kg/m3≦D≦17Kg/m3
で、気泡構造に於いて、少なくとも3つの気泡が
隣接して生じる境界部分に一端を有し、気泡膜の
中央部分に向つて延びる多数のしわを有すること
である。 従来の硬質熱可塑性樹脂の発泡体は、一般に密
度が高く、本発明で言うしわが存在せず、柔軟性
が劣るものであつた。例え密度が低くても、本発
明で言うしわが存在しない為に、荷重を一度吸収
すると、発泡体の気泡が破泡し、その結果大きな
永久歪を生じ、回復性の悪いものであつた。ま
た、従来のものは、建築物の間柱間への圧縮充填
を行なう際、大きな圧縮力を必要とし、手作業で
は圧縮充填が難かしく、作業性が著しく悪いと共
に、この圧縮力によつて発泡体自体が破壊されて
緩衝性能のみならず、断熱性能をも低下しやすい
ものであつた。 これに比し、本発明品は、上記密度及びしわの
存在の為、低圧縮力で圧縮充填が可能で、且つそ
の応力をしわによつて吸収する為に発泡体の気泡
構造を破壊する事なく充填作業が出来るものであ
る。また、荷重を受けても、しわによつてそれを
吸収し、永久歪が小さい為に優れた回復性を有
し、繰り返しの使用に耐え得るものであり、緩衝
性能及び断熱性能をも長期間高く維持出来るもの
である。 更にしわの存在及びしわのあり方をより明確に
する意味で第1図に本発明品の気泡構造の拡大写
真及び比較品として機械的にしわを施した発泡体
の気泡構造の拡大写真を示した。 第1図aは本発明品であり、気泡膜自体が薄
く、少なくとも3つの気泡が隣接して生じる境界
部分に一端を有し且つ気泡膜の中央部分に向つて
延びる多数のしわを有している事がわかる。これ
に比し第1図bの機械的にしわを施したものは、
発泡体にしわが帯状に存在し、しわの存在する部
分と存在しない部分とが生じている。このことが
柔軟性、圧縮永久歪に大きな影響を与えるもので
ある。以上の事から本発明の発泡体は、前記した
密度及びしわの構造が必要であることがわかる。 本発明の発泡体は、前記した密度やしわの存在
が本発明の範囲であつても、更にその平均気泡径
(A)が(A)≦2.0mmで且つ独立気泡率(B)が(B)≧50%で
あることが必要である。 この理由は、平均気泡径(A)が2.0mm<(A)となる
と気泡内の気体の対流が大きくなり、断熱性能を
著しく低下させてしまう為である。また、独立気
泡率(B)が(B)<50%の場合には、発泡体の吸水率が
大きくなり、断熱性能の吸水による劣化が大きく
なり、断熱性能の維持の点から実用上断熱材とし
て適応しないものとなつてしまう為である。独立
気泡率としては、より好ましくは(B)≧70%が良
い。 更に本発明の発泡体は、密度、しわの存在及び
発泡構造が本発明の範囲であつても、動的バネ定
数(k)がk≦40×106N/m3、及び互に直交する3
軸方向に測定した60%圧縮永久歪の値のうち最小
値(C)がC≦25%である事が必要である。 この理由は、例えば前記した様に、集合住宅等
の建築物の床に於いて、上下階間の床衝撃音によ
つて発生する騒音に対して緩衝材を介して床を構
成する浮床工法があり、その遮音性は高く評価さ
れている。第2図は浮床工法の一例を示す要部床
断面図であるが、この場合、浮床の遮音性は、主
に浮床系の固有振動数(系の動的バネ定数)及び
床躯体1の厚みによつて決定される。即ち、床上
での大きな衝撃力によつて発生する振動が直接躯
体へ伝播しない様に遮音材(緩衝材)2で減すい
させる為に浮床系の動的バネ定数を小さくする必
要がある。一般にこの浮床系の動的バネ定数は30
×106N/m3以下にあることが良いといわれてお
り、その値が小さい程効果がある。ここでこの系
の動的バネ定数は、遮音材2の動的バネ定数と、
押えコンクリート等の床板3の重量(面密度)と
によつて決まる。一般に実用的な浮床を考える
と、床板の面密度は、剛性及び経済性が考慮され
て50〜300Kg/m2の範囲にある。この場合、浮床
系の動的バネ定数を上記した30×106N/m3以下
の値にするには、後述する測定方法によつて求め
た遮音材の動的バネ定数が40×106N/m3(厚み
5cm、面密度250Kg/m2のとき)以下の値でなけ
ればならないものである。また、圧縮永久歪に関
しては、60%の圧縮永久歪が25%を越える発泡体
は、例えば間柱間へ圧縮充填時の応力により、気
泡の破壊や発泡体の欠けを生じてしまう。本発明
で互に直交する3軸方向の圧縮永久歪の最低値を
表示したのは、本発明の発泡体がその用途に応じ
て必要とする柔軟性の方向が異なる場合があるか
らであり、一般には、どの方向にもほぼ均等に柔
軟性を有するものが好ましい。 上述したように本発明の発泡体は、従来では見
られなかつた新規の発泡体であり、これを必要に
よつてはプラスチツク板、プラスチツクフイル
ム、木板、無機物、布などとの複合体として使用
しても強度、断熱性、遮音性などに優れたものを
得ることが出来、有効である。 次に本発明の製造方法であるが、まず、好まし
くは密度200Kg/m3以下、より好ましくは密度100
Kg/m3以下の硬質熱可塑性樹脂の発泡体を、まず
85℃以上の温水或いは水蒸気雰囲気中にて1分間
以上加熱する必要がある。 この理由は、85℃未満の温水或いは水蒸気雰囲
気では、長時間加熱しても発泡体密度はほとんど
変化(低下)しないためである。これを第3図及
び第4図で更に説明する。 第3図は、初期密度34Kg/m3、厚み15mmのポリ
スチレン押出発泡板を水蒸気室に入れて、雰囲気
温度を刻々測定しながら低密度化し、本発明方法
によつて回復させ、最終発泡体密度を測定した値
をプロツトしたグラフである。このグラフによる
と、83℃の水蒸気雰囲気中で発泡させた場合は、
長時間加熱しても発泡体の密度変化はほとんど起
こつていないが、85℃以上になると加熱時間と共
に、発泡体密度が低下していく。雰囲気温度が85
℃以上で1分以上加熱すれば良いが、加熱前の発
泡体の材質、厚み等により加熱時間は異なり、一
般的には工業的に見て60分以内になるように選定
するのが好ましい。第4図は、加熱源を90℃の空
気、90℃の温水、90℃の水蒸気として上記と同じ
発泡体を加熱した場合の最終発泡体密度のグラフ
である。このグラフによると、温水或いは水蒸気
中では発泡体の密度低下が起きているが、空気中
ではほとんど起きていないことがわかる。以上の
事からも本発明方法は、85℃以上の温水或いは水
蒸気雰囲気で1分以上、好ましくは60分以内加熱
する事が必要であることがわかる。 次に、上記加熱処理を行なつた後、最終発泡体
体積の70%以下に一旦収縮させる必要がある(こ
の場合、本来は加熱発泡直後の体積を比較に使用
すべきであるが、加熱直後は大気中に出すと収縮
を起こし、寸法測定が非常に困難であると同時
に、測定値自体が不正確なものとなる為、あえて
最終発泡体の体積を比較に使用したものであ
る。)。 この理由は、上記加熱発泡処理を行なつた後、
一旦収縮した体積が最終発泡体体積の70%を越え
ている場合、即ち収縮量を少なく保つ場合は、気
泡膜にしわが出来ないかまたは、出来ても発泡体
全体に及ぶ均一なしわとはならず、目的とする諸
物性を持つ発泡体を得る事は出来ないためであ
る。しかるに現状では、低密度化を行なう方法と
して、前述した如く、発泡剤を含有する発泡性粒
子を数回に分けて加熱発泡させ、発泡後の寸法変
化をほとんど行なわせない様に更に型内で発泡さ
せ、板状体、或いは成形体としている為、該発泡
体には本発明でいうしわはほとんど存在しないも
のである。上記内容を更に明確にさせる為、第5
図に本発明方法で得られた発泡体の気泡構造写真
aと、収縮を起さない様に粒子状態で数回(3
回)に分けて加熱発泡させて得た発泡体の気泡構
造写真bとを示した。aに示される本発明品は、
少なくとも3つの気泡が隣接して生じる境界部分
に一端を有し、気泡膜の中央部分に向つて延びる
多数のしわが存在するが、bに示される比較品に
は本発明でいうしわは存在しない事がわかる。 更に本発明方法は、上述の一旦収縮させた発泡
体を、雰囲気温度(T)が40℃≦T≦樹脂の軟化
温度の乾燥室好ましくは湿度30%以下、より好ま
しくは湿度10%以下の乾燥室で24時間以上熟成さ
せる必要がある。 この理由は、回復させる雰囲気温度(T)が40
℃未満では、第6図に示す如く、回復に長時間費
やし、工業的に不利になるためである。この事
は、一例として第7図に示したポリスチレンに対
する空気のガス透過曲線からも明らかである。即
ち、40℃を境として空気のポリスチレンに対する
透過量は増し、回復速度が速くなる事を意味して
いる。一方、樹脂の軟化温度以上の温度によつて
加熱すると、回復と同時に樹脂自体が溶融してし
まい、発泡体と成し得なくなる。また、湿度が高
い場合には、収縮した発泡体中の水分と、空気と
の置換が行なわれにくく、回復操作を終えた後、
加熱雰囲気から取り出すと、再度収縮を起こし、
寸法安定な発泡体を得ることが難しくなる。更
に、熟成時間は、その温度と、得ようとする発泡
体の密度とによつて決まるが、17Kg/m3の発泡体
を得る場合でも、本発明方法では、樹脂の軟化温
度近くであつても、24時間以上は必要である。 以上述べた回復雰囲気は、乾燥空気雰囲気の場
合を一例として上げたが、この他、炭酸ガス、ヘ
リユウム、水素等の無機ガス、或いは有機ガス、
と空気の混合中でもその用途に応じて使用可能で
ある。また、本発明方法に於いて、加熱発泡時、
収縮時、及び熟成時に発泡体の製品形状を良く保
ち得るようにする為に補助板を設けると更に好ま
しい。 尚、発泡体物性に方向性を持たせる場合は、
巾、長さ、厚み各方向の一方向或いは二方向への
発泡を型わく内に入れて抑え、残る二方向或いは
一方向へのみ自由に発泡させても良い。 本発明でいう硬質熱可塑性樹脂とは、スチレ
ン、メチルスチレン、エチルスチレン、クロルス
チレン、または、上記の様なアルケニル芳香族化
合物と他の容易に重合し得るオレフイン化合物、
例えば無水マレイン酸、アクリル酸、メタクリル
酸等との共重合体、ゴム補強重合体等いわゆるス
チレン系重合体或いは、アクリロニトリル、メチ
ルメタアクリレート、アクリロニトリル−ブタジ
エン−スチレン共重合体等のアクリル系共重合
体、ポリカーボネート、ポリフエニレンオキサイ
ド、硬質塩化ビニル重合体、或いは上記重合体の
混合物である。硬質熱可塑性樹脂の発泡体とは、
上記重合物或いはその混合物を化学発泡剤、物理
発泡剤、或いはこれらの混合物等によつて押出し
発泡、型内発泡、自由発泡させた発泡体をいう。
特に好ましくは、上記スチレン系重合体を押出機
中で物理発泡剤或いは化学発泡剤或いはその混合
物と溶融混練し、Tダイ或は環状ダイにより押出
されて得られる、いわゆる押出発泡体が良い。発
泡性粒子を型内で発泡融着させ、板状体或いはそ
の他の成形体に成した発泡体も含むが、この場
合、粒子間の融着が多少悪くなり、押し発泡或い
はシート状で発泡させて得られた発泡体を使用し
た場合に比べて断熱性が多少劣るものである。更
に本発明方法に使用する硬質熱可塑性樹脂の発泡
体形状は特に限定するものではないが、板状、角
柱状、シート状のものが有効であり、厚みは50mm
以下のものが最終発泡体の寸法精度を維持する意
味で特に有効である。また、発泡体には必要に応
じて一般の核剤や滑剤、着色剤、紫外線吸収剤、
帯電防止剤等が入つていてもよい。 本発明で用いる発泡体密度、平均気泡径、独立
気泡率、動的バネ定数、60%圧縮歪、樹脂の軟化
温度の測定方法は下記の方法に基づくものであ
る。 Γ発泡体密度:JIS−A−9511 Γ平均気泡径:JIS−K−6402に準じて、発泡
体の厚み方向及び厚み方向と直交
する同一平面上で発泡体のよこ方
向及びたて方向に測定し、各々の
方向を合計し、平均したもの。 Γ独立気泡率:ASTM−D−2856の測定法に
準じて測定する(試料表面層のオ
ープンセル層の値も含める)。試
料の各表面をその面に対する厚み
方向に厚みの1/20づつ切断し、
再度測定する。この操作をn回繰
り返し、そのn回の平均値で表わ
したもの。回数は多い程よいが、
元の試料の大きさによつて限界が
ある為、少なくともn≧3とす
る。 Γ動的バネ定数:下記の試験法より求める。 (i) 試験装置 この試験装置は第8図のごとく合成樹脂発泡
試験片9を定盤10上におき、その上に荷重板
11を重ねる。この荷重板11上には波形記録
装置14に連結した振動ピツクアツプ12を配
置する。また、波形記録装置14と振動ピツク
アツプ12間には増幅器13が取付けてある。 (イ) 合成樹脂発泡試験品9の寸法 500mm×500mm×50mm(厚さ) (ロ) 定盤10 平面度1mm以下、水平面に対する傾斜±1゜
以内で十分な有効質量を持つもの (ハ) 荷重板11 平面度0.2mm以下、大きさ300mm±3mm角の
正方形で質量22.5Kg(=250Kg/m2)誤差±
1%以内で、有害な曲げ振動を生じないもの (ニ) 振動ピツクアツプ12 減衰振動に影響を与えないようできるだけ
軽量なものを用いる。 (ホ) 振動波形記録装置 固有振動の波形観測が可能なもの (ii) 測定方法 軟式野球ボールを高さ約0.8mより、荷重板
11中心部へ鉛直方向に自由落下させて加振
し、その時の波形を観測する。 (iii) 単位面積当りの動的バネ定数の算出方法第9
図のごとき自由振動になつた減衰波形15の隣
り合うピーク間から周期Tを2以上(T1,T2
……)を読み取り、その平均値より次式によつ
て求めた値を単位面積当りの動的バネ定数kと
する。 k=(2π1/Tn)2×m (N/m3) m=単位面積当りの荷重質量(250Kg/m3) Tn=固有周期の平均値(秒) Γ60%圧縮永久歪:JIS−K−6767に準ず Γ樹脂の軟化温度:ASTM−D−1525 本発明で用いる各評価項目は次の評価方法、評
価尺度に基づくものである。 緩衝性 −1 緩衝性(圧縮永久歪) Γ評価方法:JIS−K−6767(圧縮クリープ試
験方法)に準じ、発泡体の厚み方
向及び厚み方向に直交する同一平
面上で互に直交する二方向、即ち
長さ方向及び巾方向の三方向に60
%圧縮永久歪量を測定し、その最
小値(C)によつて評価した。 Γ評価尺度:
The present invention relates to a foam made of a hard thermoplastic resin that has ultra-low density, high flexibility, high sound insulation performance, and high heat insulation performance, and a method for manufacturing the same. BACKGROUND ART Conventionally, rigid thermoplastic resin foams have been widely used as insulation materials for buildings such as general residences due to their characteristics such as low thermal conductivity, low water absorption, lightness, and workability. However, it is less flexible,
In addition, because the compression set is large, for example, in order to fill between the studs of a building, it is necessary to cut it in advance to match the stud spacing and fix it with special metal fittings. It cannot be absorbed, the workability is extremely poor, and an airtight insulation structure cannot be obtained. Furthermore, if an attempt is made to fill the material airtight, a great deal of force is required due to its hardness, resulting in the destruction of the bubbles. Furthermore, the foam also breaks, making it impossible to obtain an airtight heat-insulating structure. On the other hand, with the recent rise in the height of residential buildings and other buildings,
Especially in buildings such as apartment complexes, sound insulation between upper and lower floors is increasingly required. In order to solve this problem, a method called the floating floor construction method has recently been adopted, in which inorganic fiberboard is placed on a floor base and concrete mortar is poured on top of it through a waterproof layer. This utilizes the flexibility of inorganic fiberboard,
This can reduce solid-borne sound between the upper and lower floors and improve sound insulation. Even in this application, conventional rigid thermoplastic resin foams cannot provide sufficient sound insulation due to their rigidity. Recently, in order to solve these problems mentioned above,
For example, there are foams obtained by mechanically softening low-density polystyrene foam, but in this case, when the density becomes less than 20Kg/ m3 , the resin film that makes up the cells is removed due to the mechanical flexibility. This causes the so-called communication phenomenon. Furthermore, even if the relatively thick surface layer of the foam suppresses the destruction of the bubbles and maintains the apparent closed cell ratio as seen from the water absorption rate using a general measurement method, the inside of the foam The bubbles, which are made up of a thin film compared to the surface layer, are destroyed, resulting in a foam that is far inferior in terms of insulation performance and long-term insulation performance. Temperature mobility increases. Furthermore, when it is mechanically softened, the foam as a whole is softened, and when viewed microscopically, the softened portion of the foam's cells,
There are some parts that are not covered, and the physical properties thereof become non-uniform in the thickness direction or in the planar direction of the foam. On the other hand, foamable particles containing a foaming agent are foamed in several batches, and further foamed in a mold to form a plate-like object.
Alternatively, some molded bodies are used as heat insulating materials, cushioning materials, or sound insulating materials. However, in foams like this one, in which the particles themselves are made to have a low density (highly foamed) by increasing the number of times they are foamed, the particles themselves become large, making it difficult to airtightly fill them when molded.
The result is a foam with weak fusion between particles. In addition, in order to strengthen the fusion bond, it is necessary to perform compression filling and compression molding when making a molded product.
The foam made in this way has no wrinkles as defined in the present invention, and lacks flexibility and sound insulation, so there is a limit to how low the density can be made. The density of foam that can withstand practical use is only 17 kg/m 3 or more. However, in the market, there are products that have low density, are highly flexible, have heat insulation performance, maintain heat insulation performance for a long period of time, have low temperature transferability of insulation performance, have sound insulation properties, and have low compression set. Obtaining rigid thermoplastic foams has been a strong desire for many years. The present invention was achieved as a result of research in view of the current situation, and is a novel and inventive material with unprecedented properties that can be used as a heat insulating material, a sound insulating material, and a cushioning material. It is an invention. In other words, it is made by foaming a hard thermoplastic resin and has a density (D) of 3Kg/m 3 ≦D≦17Kg/m 3 . It has one end and a number of wrinkles extending toward the central part of the cell membrane, and the average cell diameter (A) is
A≦2.0mm, closed cell ratio (B) is B≧50%, and dynamic spring constant (k) is k≦40×10 6 N/m 3 , and measured in three mutually orthogonal axes directions. The present invention provides a foam in which the minimum value (C) of the 60% compression set values is C≦25%. In addition, the present invention regarding the manufacturing method takes advantage of the extremely high permeability of water vapor to the resin, and combines the temperature mobility of the gas permeability to the resin with the softening temperature of the resin to produce an ultra-low density product. The inventors have now invented a method for obtaining a hard thermoplastic resin foam that is highly flexible, can maintain high heat insulation performance for a long period of time, has excellent sound insulation properties, and has low compression set. That is, a rigid thermoplastic resin foam is heated in hot water of 85°C or higher or in a steam atmosphere for 1 minute or more, and once expanded, it is shrunk to 70% of the final foam volume, and then Ambient temperature (T)
However, in a drying room at 40℃≦(T)<resin softening temperature 24
Aged for more than an hour and expanded to a density (D) of 3Kg/m 3
The cell structure has one end at the boundary where at least three bubbles are formed adjacent to each other, has many wrinkles extending toward the center of the cell membrane, and has an average cell diameter (A) of A≦ 2.0mm, closed cell ratio (B) is B≧50%,
and the dynamic spring constant (k) is k≦40×10 6 N/
m 3 and 60% compression set measured in three axial directions perpendicular to each other, the minimum value (C) is C≦25%. It is something to do. Further, the contents of the present invention will be explained in detail with reference to the drawings. First, the foam density (D) of the hard thermoplastic resin, which is the first component of the present invention, is 3Kg/m 3 ≦D≦17Kg/m 3
The cell structure has one end at the boundary where at least three cells are adjacent to each other, and has a large number of wrinkles extending toward the center of the cell membrane. Conventional rigid thermoplastic resin foams generally have a high density, do not have the wrinkles referred to in the present invention, and have poor flexibility. Even if the density is low, since there are no wrinkles as defined in the present invention, once a load is absorbed, the cells in the foam burst, resulting in large permanent deformation and poor recovery properties. In addition, the conventional method requires a large compression force when compressing and filling between the studs of a building, making it difficult to perform compression and filling by hand, resulting in extremely poor workability. The body itself was likely to be destroyed, reducing not only the shock absorbing performance but also the heat insulating performance. In contrast, the product of the present invention can be compressed and filled with low compression force due to the above-mentioned density and the presence of wrinkles, and the cell structure of the foam can be destroyed because the stress is absorbed by the wrinkles. This allows filling work to be carried out without any problems. In addition, even if it is subjected to a load, it absorbs it through wrinkles and has low permanent deformation, so it has excellent recovery properties, can withstand repeated use, and has long-term cushioning and insulation performance. It can be maintained at a high level. In order to further clarify the presence and nature of wrinkles, Figure 1 shows an enlarged photograph of the cell structure of the product of the present invention and a comparative product of a mechanically wrinkled foam. . FIG. 1a shows a product of the present invention, in which the cell membrane itself is thin, has one end at the boundary where at least three bubbles are formed adjacent to each other, and has a large number of wrinkles extending toward the center of the cell membrane. I know there is. In contrast, the mechanically wrinkled one shown in Figure 1b is
Wrinkles are present in a band shape in the foam, with some parts having wrinkles and other parts not having wrinkles. This has a great influence on flexibility and compression set. From the above, it can be seen that the foam of the present invention requires the density and wrinkle structure described above. Even if the foam of the present invention has the above-mentioned density and the presence of wrinkles within the range of the present invention, the foam has an average cell diameter of
It is necessary that (A) satisfies (A)≦2.0 mm and that the closed cell ratio (B) satisfies (B)≧50%. The reason for this is that when the average bubble diameter (A) is 2.0 mm < (A), the convection of gas within the bubbles becomes large and the insulation performance is significantly reduced. In addition, when the closed cell ratio (B) is (B) < 50%, the water absorption rate of the foam increases, and the deterioration of the insulation performance due to water absorption increases, and from the viewpoint of maintaining insulation performance, it is difficult to use the insulation as a practical material. This is because it becomes something that is not suitable for use. The closed cell ratio is more preferably (B)≧70%. Furthermore, even if the density, the presence of wrinkles, and the foam structure are within the range of the present invention, the foam of the present invention has a dynamic spring constant (k) of k≦40×10 6 N/m 3 and mutually orthogonal 3
It is necessary that the minimum value (C) of the 60% compression set measured in the axial direction is C≦25%. The reason for this is, for example, as mentioned above, in the floors of buildings such as apartment complexes, the floating floor construction method, in which the floors are constructed with cushioning materials, is effective against noise generated by floor impact noise between upper and lower floors. It is highly praised for its sound insulation properties. Figure 2 is a cross-sectional view of the main part of the floor showing an example of the floating floor construction method. determined by. That is, it is necessary to reduce the dynamic spring constant of the floating floor system in order to reduce the vibration generated by a large impact force on the floor with the sound insulating material (buffer material) 2 so that it does not directly propagate to the frame. Generally, the dynamic spring constant of this floating bed system is 30
It is said that it is better to have a value of ×10 6 N/m 3 or less, and the smaller the value, the more effective it is. Here, the dynamic spring constant of this system is the dynamic spring constant of the sound insulation material 2,
It is determined by the weight (area density) of the floor plate 3 such as holding concrete. Generally speaking, when considering a practical floating floor, the areal density of the floor plate is in the range of 50 to 300 Kg/m 2 in consideration of rigidity and economic efficiency. In this case, in order to make the dynamic spring constant of the floating floor system less than 30×10 6 N/m 3 , the dynamic spring constant of the sound insulation material determined by the measurement method described later must be 40×10 6 The value must be less than N/m 3 (at a thickness of 5 cm and an areal density of 250 Kg/m 2 ). Regarding compression set, a foam with a compression set of 60% or more exceeding 25% will cause cell collapse or chipping of the foam due to stress when compressed and filled between studs, for example. The reason why the minimum value of the compression set in the three mutually orthogonal axes directions is indicated in the present invention is that the direction of flexibility required for the foam of the present invention may differ depending on its use. Generally, it is preferable to have flexibility almost equally in all directions. As mentioned above, the foam of the present invention is a novel foam that has not been seen before, and if necessary, it can be used as a composite with a plastic board, plastic film, wood board, inorganic material, cloth, etc. However, it is effective because it can provide excellent strength, heat insulation, and sound insulation properties. Next, regarding the manufacturing method of the present invention, firstly, the density is preferably 200Kg/m 3 or less, and more preferably the density is 100Kg/m 3 or less.
First, a rigid thermoplastic resin foam weighing less than Kg/ m3 is
It is necessary to heat for 1 minute or more in a hot water or steam atmosphere of 85°C or higher. The reason for this is that in a hot water or steam atmosphere of less than 85°C, the foam density hardly changes (decreases) even if heated for a long time. This will be further explained with reference to FIGS. 3 and 4. Figure 3 shows that an extruded polystyrene foam board with an initial density of 34 kg/m 3 and a thickness of 15 mm is placed in a steam chamber, the density is reduced while measuring the ambient temperature moment by moment, the density is reduced by the method of the present invention, and the final foam density is This is a graph plotting the measured values. According to this graph, when foaming is carried out in a steam atmosphere at 83℃,
There is almost no change in the density of the foam even when heated for a long time, but when the temperature exceeds 85°C, the density of the foam decreases as the heating time increases. Ambient temperature is 85
It is sufficient to heat the foam at a temperature of 1 minute or more at a temperature of 0.degree. C. or higher, but the heating time varies depending on the material, thickness, etc. of the foam before heating, and from an industrial perspective, it is generally preferable to select a heating time of 60 minutes or less. FIG. 4 is a graph of the final foam density when the same foam as above was heated using air at 90°C, hot water at 90°C, and steam at 90°C as heating sources. According to this graph, it can be seen that the density of the foam decreases in hot water or steam, but hardly occurs in air. From the above, it can be seen that the method of the present invention requires heating in a hot water or steam atmosphere of 85° C. or higher for at least 1 minute, preferably within 60 minutes. Next, after performing the above heat treatment, it is necessary to shrink the final foam to 70% or less of its volume (in this case, the volume immediately after heating and foaming should be used for comparison, but When exposed to the atmosphere, it shrinks, making it extremely difficult to measure its dimensions, and at the same time making the measured value itself inaccurate, so we purposely used the volume of the final foam for comparison.) The reason for this is that after the above heating and foaming treatment,
If the volume once shrunk exceeds 70% of the final foam volume, i.e. if the amount of shrinkage is kept low, wrinkles may not form in the cell membrane, or even if wrinkles do not form uniformly throughout the foam. First, it is impossible to obtain a foam having the desired physical properties. However, at present, as mentioned above, the method of achieving low density is to heat and foam expandable particles containing a foaming agent in several batches, and then further heat and foam them in a mold so that there is almost no dimensional change after foaming. Since the foam is foamed to form a plate-like body or a molded body, the foamed body has almost no wrinkles as defined in the present invention. In order to further clarify the above contents, the fifth
The figure shows a photo of the cell structure of the foam obtained by the method of the present invention, and a photo of the cell structure of the foam obtained by the method of the present invention.
A photograph (b) of the cell structure of the foam obtained by heating and foaming in two steps (b) and (b) is shown. The product of the present invention shown in a is:
There are a number of wrinkles that have one end at the boundary where at least three bubbles occur adjacent to each other and extend toward the center of the bubble membrane, but the comparative product shown in b does not have any wrinkles as defined in the present invention. I understand. Furthermore, in the method of the present invention, the once-shrinked foam is dried in a drying room where the ambient temperature (T) is 40°C≦T≦the softening temperature of the resin, preferably at a humidity of 30% or less, more preferably at a humidity of 10% or less. It needs to be aged indoors for at least 24 hours. The reason for this is that the atmospheric temperature (T) for recovery is 40
This is because if the temperature is less than 0.degree. C., as shown in FIG. 6, it takes a long time to recover, which is disadvantageous industrially. This is clear from the gas permeation curve of air against polystyrene shown as an example in FIG. In other words, this means that the amount of air permeated through polystyrene increases at 40°C, and the recovery speed becomes faster. On the other hand, if heated to a temperature higher than the softening temperature of the resin, the resin itself will melt at the same time as recovery, making it impossible to form a foam. In addition, if the humidity is high, it is difficult to replace the moisture in the shrunken foam with air, and after the recovery operation is completed,
When removed from the heated atmosphere, it contracts again and
It becomes difficult to obtain dimensionally stable foams. Furthermore, the aging time is determined by the temperature and the density of the foam to be obtained, but even when obtaining a foam of 17 kg/m 3 , the method of the present invention can be used at temperatures close to the softening temperature of the resin. However, at least 24 hours are required. The recovery atmosphere described above is a dry air atmosphere as an example, but inorganic gases such as carbon dioxide, helium, and hydrogen, or organic gases,
Depending on the application, it can be used even when mixed with air. In addition, in the method of the present invention, during heating and foaming,
It is more preferable to provide an auxiliary plate in order to maintain the product shape of the foam well during shrinkage and aging. In addition, when giving directionality to the physical properties of the foam,
It is also possible to suppress foaming in one or both of the width, length, and thickness directions by placing the foam in the mold frame, and to allow free foaming only in the remaining two or one direction. The hard thermoplastic resin as used in the present invention refers to styrene, methylstyrene, ethylstyrene, chlorostyrene, or alkenyl aromatic compounds such as those mentioned above and other easily polymerizable olefin compounds.
For example, copolymers with maleic anhydride, acrylic acid, methacrylic acid, etc., so-called styrenic polymers such as rubber reinforcing polymers, or acrylic copolymers such as acrylonitrile, methyl methacrylate, and acrylonitrile-butadiene-styrene copolymers. , polycarbonate, polyphenylene oxide, rigid vinyl chloride polymer, or a mixture of the above polymers. What is rigid thermoplastic foam?
It refers to a foam obtained by extrusion foaming, in-mold foaming, or free foaming of the above polymer or a mixture thereof using a chemical foaming agent, a physical foaming agent, or a mixture thereof.
Particularly preferred is a so-called extruded foam obtained by melt-kneading the above-mentioned styrenic polymer with a physical blowing agent, a chemical blowing agent, or a mixture thereof in an extruder, and extruding it through a T-die or an annular die. It also includes foamed materials formed by foaming and fusing expandable particles in a mold to form a plate-like object or other molded object, but in this case, the fusion between the particles becomes somewhat poor, and the foaming is forced into a foamed or sheet-like form. The heat insulation properties are somewhat inferior to those obtained using foamed materials. Further, the shape of the hard thermoplastic resin foam used in the method of the present invention is not particularly limited, but plate-like, prismatic, and sheet-like forms are effective, and the thickness is 50 mm.
The following are particularly effective in maintaining the dimensional accuracy of the final foam. In addition, the foam may contain general nucleating agents, lubricants, colorants, ultraviolet absorbers, etc. as necessary.
It may also contain an antistatic agent. The methods for measuring the foam density, average cell diameter, closed cell ratio, dynamic spring constant, 60% compressive strain, and resin softening temperature used in the present invention are based on the following methods. Γ Foam density: JIS-A-9511 Γ Average cell diameter: Measured in the horizontal and vertical directions of the foam in the thickness direction of the foam and on the same plane orthogonal to the thickness direction according to JIS-K-6402 Then, the values in each direction are summed and averaged. Γ Closed cell ratio: Measured according to the measurement method of ASTM-D-2856 (including the value of the open cell layer on the sample surface layer). Cut each surface of the sample into 1/20th of the thickness in the thickness direction of that surface,
Measure again. This operation is repeated n times and expressed as the average value of the n times. The more times the better,
Since there is a limit depending on the size of the original sample, at least n≧3. ΓDynamic spring constant: Obtained from the test method below. (i) Testing Apparatus In this testing apparatus, a synthetic resin foam test piece 9 is placed on a surface plate 10 as shown in FIG. 8, and a load plate 11 is placed on top of it. A vibration pickup 12 connected to a waveform recording device 14 is arranged on the load plate 11. Further, an amplifier 13 is installed between the waveform recording device 14 and the vibration pickup 12. (a) Dimensions of synthetic resin foam test product 9: 500mm x 500mm x 50mm (thickness) (b) Surface plate 10: Flatness of 1mm or less, inclination within ±1° with respect to the horizontal plane, and sufficient effective mass (c) Load Plate 11 Flatness 0.2mm or less, size 300mm ± 3mm square, mass 22.5Kg (= 250Kg/m 2 ) error ±
1% or less and does not cause harmful bending vibrations (d) Vibration Pickup 12 Use something as light as possible so as not to affect damped vibration. (e) Vibration waveform recording device A device capable of observing the waveform of natural vibration (ii) Measurement method A softball baseball ball is caused to fall freely vertically from a height of approximately 0.8 m to the center of the load plate 11, and is then vibrated. Observe the waveform. (iii) Calculation method of dynamic spring constant per unit area No. 9
If the period T is 2 or more (T 1 , T 2
...) is read, and the value obtained from the average value using the following formula is the dynamic spring constant k per unit area. k = (2π1/Tn) 2 × m (N/m 3 ) m = Load mass per unit area (250Kg/m 3 ) Tn = Average value of natural period (seconds) Γ60% compression set: JIS-K- According to 6767 Softening temperature of Γ resin: ASTM-D-1525 Each evaluation item used in the present invention is based on the following evaluation method and evaluation scale. Cushioning property -1 Cushioning property (compression set) Γ evaluation method: According to JIS-K-6767 (compression creep test method), two directions perpendicular to each other on the same plane perpendicular to the thickness direction and the thickness direction of the foam , that is, 60 in three directions, length direction and width direction.
The % compression set was measured and evaluated based on its minimum value (C). Γ rating scale:

【表】 −2 緩衝性(動的緩衝特性) Γ評価方法:JIS−Z−0235の測定方法に準
じ(静的応力0.02Kg/cm2以上で評
価)、厚み50mm(50mm未満のもの
は重ね合せて50mmにする)にて測
定し、2〜5回の落下時の最大減
速度(G)の平均値を求めて評価し
た。尚、静的応力が0.02Kg/cm2
下になる場合は(×)とした。 Γ評価尺度:
[Table] -2 Cushioning property (dynamic buffering property) Γ evaluation method: According to the measurement method of JIS-Z-0235 (evaluated with static stress of 0.02Kg/ cm2 or more), thickness 50mm (thickness less than 50mm is overlapping) The average value of the maximum deceleration (G) during 2 to 5 falls was determined and evaluated. In addition, when the static stress was 0.02 Kg/cm 2 or less, it was marked (×). Γ rating scale:

【表】 −3 緩衝性(充填施工性(低圧縮応力性)) Γ評価方法:JIS−K−6767(圧縮クリープ試
験方法)に準じ、発泡体の厚み方
向及び厚み方向に直交する同一平
面上で直交する二方向、即ち長さ
方向及び巾方向の三方向に10%圧
縮歪を与えた場合の応力を測定
し、その三方向の最小値(P)に
よつて評価した。 Γ評価尺度:
[Table] -3 Cushioning property (filling workability (low compressive stress property)) Γ evaluation method: According to JIS-K-6767 (compression creep test method), in the thickness direction of the foam and on the same plane perpendicular to the thickness direction The stress was measured when 10% compressive strain was applied in two orthogonal directions, that is, the length direction and the width direction, and the stress was evaluated based on the minimum value (P) in the three directions. Γ rating scale:

【表】 −4 曲げたわみ量 Γ評価方法:JIS−A−9511の方法に準じて
試験し、次式によつて求められた
最大たわみ量(y)の大きさによ
つて評価した。 y=P/E・l3/4bh3 P:最大荷重 (Kg) l:スパン距離 (cm) b:試験片の幅 (cm) h:試験片の厚さ (cm) E:曲げ弾性率 (Kg/cm2) y:最大たわみ量 (cm) Γ評価尺度:
[Table] -4 Amount of bending deflection Γ Evaluation method: Tested according to the method of JIS-A-9511, and evaluated based on the magnitude of the maximum deflection (y) determined by the following formula. y=P/E・l 3 /4bh 3 P: Maximum load (Kg) l: Span distance (cm) b: Width of test piece (cm) h: Thickness of test piece (cm) E: Flexural modulus ( Kg/ cm2 ) y: Maximum deflection (cm) Γ evaluation scale:

【表】 断熱性 −1 熱伝導率 Γ評価方法:ASTM−C−518に準じ、
Kcal/m・hr℃の単位でかつ0
℃の値(λ)で評価した。 Γ評価尺度:
[Table] Thermal insulation-1 Thermal conductivity Γ Evaluation method: According to ASTM-C-518,
Kcal/m・hr℃ and 0
Evaluation was made using the value of °C (λ). Γ rating scale:

【表】 −2 熱伝導率の温度勾配 Γ評価方法:−1と同様にASTM−C−
518に準じ、温度を変えて2点以
上(本方法は15℃、35℃及び55℃
にて測定)にて測定し、熱伝導率
の温度勾配(x)を求めて評価し
た。 Γ評価尺度:
[Table] -2 Temperature gradient of thermal conductivity Γ evaluation method: ASTM-C- as in -1
518, two or more points at different temperatures (this method is 15℃, 35℃, and 55℃)
The temperature gradient (x) of thermal conductivity was determined and evaluated. Γ rating scale:

【表】 遮音性 Γ評価方法:JIS−A−1418床衝撃音レベルの
測定方法に準じて測定し、JIS−A
−1419の床衝撃音レベルに関する遮
音等級の呼び方によつて評価した。
試験体はRC造りの建築物床躯体の
上に厚み50mmの平板状の発泡体をす
きまなく施し、その上に厚さ100μ
のポリエチレンフイルムを施したあ
と、その上にコンクリートモルタル
を50mmの厚さで施工し、1週間養生
したあと、その上に厚さ3mmのニー
ドルパンチカーペツトで床仕上げを
行つて床衝撃音レベルの測定を行つ
た。 Γ評価尺度:
[Table] Sound insulation Γ Evaluation method: Measured according to JIS-A-1418 floor impact sound level measurement method, JIS-A
-1419 was evaluated based on the nomenclature of the sound insulation grade regarding the floor impact sound level.
The test specimen was a 50mm thick flat plate of foam placed on top of an RC building floor frame, and a 100μ thick foam was placed on top of the 50mm thick flat foam.
After applying a polyethylene film, concrete mortar was applied to a thickness of 50 mm on top of the concrete mortar, and after curing for a week, the floor was finished with a 3 mm thick needle punch carpet to reduce the floor impact noise level. I took measurements. Γ rating scale:

【表】 実施例・比較例1 厚み25mm、巾400mm、長さ700mm、密度22〜28
Kg/m3のポリスチレン押出発泡体を加熱炉の中に
入れ、第1表に示す如く、加熱媒体、加熱温度、
加熱時間を変えて熟成条件を75℃空気中で120時
間と一定にし、得られた発泡体の構造及び評価結
果を第1表にまとめた。
[Table] Example/Comparative Example 1 Thickness 25mm, width 400mm, length 700mm, density 22-28
Kg/m 3 of extruded polystyrene foam was placed in a heating furnace, and the heating medium, heating temperature,
Table 1 summarizes the structure and evaluation results of the foams obtained by changing the heating time and keeping the aging conditions constant at 75°C in air for 120 hours.

【表】【table】

【表】 実施例・比較例2 厚み15mm、巾300mm、長さ500mm、密度25〜110
Kg/m3の押出発泡体を、実施例・比較例1同様に
加熱釜に入れ、加熱媒体を水蒸気、温水に限定
し、加熱温度90℃、100℃、加熱時間も15分、30
分に統一し、熟成条件も一定にして収縮時発泡体
体積の熟成終了時発泡体体積に対する割合の差を
見てみた結果、得られた発泡体の構造及び評価結
果を第2表にまとめた。尚、使用した樹脂は、第
2表に示す如くポリスチレン、ポリメチルメタク
リレート、スチレンメタクリル酸共重合体につい
て行なつた。
[Table] Example/Comparative Example 2 Thickness 15mm, width 300mm, length 500mm, density 25-110
Kg/m 3 of extruded foam was placed in a heating pot in the same manner as in Example and Comparative Example 1, the heating medium was limited to steam and hot water, the heating temperature was 90℃ and 100℃, and the heating time was also 15 minutes and 30 minutes.
As a result of looking at the difference in the ratio of the foam volume at the time of shrinkage to the foam volume at the end of aging with the aging conditions kept constant, the obtained foam structure and evaluation results are summarized in Table 2. . The resins used were polystyrene, polymethyl methacrylate, and styrene methacrylic acid copolymer as shown in Table 2.

【表】【table】

【表】 実施例・比較例3 実施例・比較例1と同様なサンプルサイズを有
する密度22〜28Kg/m3のポリスチレン押出発泡体
を、加熱発泡条件(加熱媒体、加熱温度、加熱時
間)を限定し、熟成条件(温度、時間)を変え
て、得られた発泡体の構造及び評価結果を第3表
にまとめた。尚、使用したポリスチレンの種類と
しては、軟化温度の異なつた2種類を使用した。
[Table] Example/Comparative Example 3 An extruded polystyrene foam with a density of 22 to 28 kg/m 3 having the same sample size as Example/Comparative Example 1 was heated under foaming conditions (heating medium, heating temperature, heating time). Table 3 summarizes the structures and evaluation results of the foams obtained by changing the aging conditions (temperature, time). Note that two types of polystyrene with different softening temperatures were used.

【表】【table】

【表】 実施例・比較例4 本発明の発泡体が、本発明の諸評価をすべて兼
備したものであり、このものは現行市販品に対し
どのような位置づけにあるかを明らかにする為
に、下記発泡板について本文記載の諸評価法で評
価した。評価結果は第4表にまとめた。 Γ本発明の発泡体(代表)No.1,15,22 Γ市販品
[Table] Example/Comparative Example 4 The foam of the present invention has all the evaluations of the present invention, and in order to clarify how this foam is positioned compared to current commercially available products. The following foamed boards were evaluated using the various evaluation methods described in the text. The evaluation results are summarized in Table 4. ΓFoam of the present invention (representative) No. 1, 15, 22 ΓCommercial product

【表】【table】

【表】【table】

【表】 本発明は上述の構成を持つことにより、柔軟性
に富み、断熱性に優れ、遮音性のある、圧縮永久
歪の少ない発泡体となり、建築物の床、壁、屋根
等の断熱及び遮音材、或いは、緩衝材として多く
の利点を有する産業界にとつて有益な発明であ
る。
[Table] By having the above-mentioned structure, the present invention becomes a foam that is highly flexible, has excellent heat insulation properties, has sound insulation properties, and has low compression set, and can be used as insulation for floors, walls, roofs, etc. of buildings. This invention is useful for industry as it has many advantages as a sound insulating material or a cushioning material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明品の気泡構造を示す拡大写
真、bは比較品の気泡構造を示す拡大写真、第2
図は浮床工法の一例図、第3図は加熱発泡による
発泡体の密度低下状態の例を示すグラフ、第4図
は加熱媒体の種類の違いによる密度低下状態の例
を示すグラフ、第5図aは本発明品の気泡構造を
示す拡大写真、bは比較品の気泡構造を示す拡大
写真、第6図は熟成温度別の発泡体の回復状態を
示すグラフ、第7図はポリスチレン膜に対する水
蒸気透過の温度移存性の一例を示すグラフ、第8
図及び第9図は動的バネ定数測定法に関する説明
図である。
Figure 1 a is an enlarged photograph showing the cell structure of the product of the present invention, b is an enlarged photograph showing the cell structure of the comparative product, and Fig. 2
The figure shows an example of the floating floor construction method, Figure 3 is a graph showing an example of the density reduction of foam due to heating and foaming, Figure 4 is a graph showing an example of the density reduction due to different types of heating medium, and Figure 5 a is an enlarged photograph showing the cell structure of the product of the present invention, b is an enlarged photo showing the cell structure of the comparative product, Fig. 6 is a graph showing the recovery state of the foam at different aging temperatures, and Fig. 7 is water vapor against the polystyrene membrane. Graph showing an example of temperature mobility of permeation, No. 8
9 and 9 are explanatory diagrams regarding the dynamic spring constant measurement method.

Claims (1)

【特許請求の範囲】 1 硬質熱可塑性樹脂を発泡してつくられた、密
度(D)が3Kg/m3≦D≦17Kg/m3で、気泡構造に於
いて、少なくとも3つの気泡が隣接して生じる境
界部分に一端を有し気泡膜の中央部分に向つて延
びる多数のしわを有し、平均気泡径(A)が、A≦
2.0mm、独立気泡率(B)が、B≧50%、であり、且
つ動的バネ定数(k)が、k≦40×106N/m3、及び
互に直交する3軸方向に測定した60%圧縮永久歪
の値のうちの最小値(C)がC≦25%である発泡体。 2 硬質熱可塑性樹脂の発泡体を、85℃以上の温
水或いは、水蒸気雰囲気中にて1分間以上加熱
し、一旦膨張させた后最終発泡体体積の70%以下
になるように収縮させ、更に雰囲気温度(T)
が、40℃≦(T)<樹脂の軟化温度の乾燥室内で24
時間以上熟成し、膨張させ、密度(D)が3Kg/m3
D≦17Kg/m3で、気泡構造に於いて少なくとも3
つの気泡が隣接して生じる境界部分に一端を有
し、気泡膜の中央部分に向つて延びる多数のしわ
を有し、平均気泡径(A)が、A≦2.0mm、独立気泡
率(B)がB≧50%、であり且つ、動的バネ定数(k)が
k≦40×106N/m3、及び互に直交する、3軸方
向に測定した60%圧縮永久歪の値のうち最小値(C)
がC≦25%である発泡体を得る事を特徴とする発
泡体の製造方法。
[Claims] 1. Made by foaming a hard thermoplastic resin, the density (D) is 3Kg/m 3 ≦D≦17Kg/m 3 , and in the cell structure, at least three cells are adjacent to each other. The cell membrane has many wrinkles that have one end at the boundary and extend toward the center of the cell membrane, and the average cell diameter (A) is A≦
2.0mm, the closed cell ratio (B) is B≧50%, and the dynamic spring constant (k) is k≦40×10 6 N/m 3 , and measured in three mutually orthogonal axes directions. A foam whose minimum value (C) of the 60% compression set values is C≦25%. 2. Heat the hard thermoplastic resin foam in hot water of 85°C or higher or in a steam atmosphere for 1 minute or more, expand it, and then shrink it to 70% or less of the final foam volume, and then heat it in the atmosphere. Temperature (T)
However, in a drying room at 40℃≦(T)<resin softening temperature 24
Aged for more than an hour and expanded until the density (D) is 3Kg/m 3
D≦17Kg/ m3 , and at least 3 in the cell structure
It has one end at the boundary where two bubbles are formed adjacent to each other, has many wrinkles extending toward the center of the bubble membrane, has an average cell diameter (A) of A≦2.0mm, and has a closed cell ratio (B). is B≧50%, and the dynamic spring constant (k) is k≦40×10 6 N/m 3 , and the value of 60% compression set measured in three mutually orthogonal directions. Minimum value (C)
A method for producing a foam, characterized in that a foam is obtained in which C≦25%.
JP57008838A 1982-01-25 1982-01-25 Rigid thermoplastic resin foamed body and its manufacture Granted JPS58126128A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57008838A JPS58126128A (en) 1982-01-25 1982-01-25 Rigid thermoplastic resin foamed body and its manufacture
US06/717,268 US4552904A (en) 1982-01-25 1983-07-20 Rigid thermoplastic resin foam and process for preparation thereof
PCT/JP1983/000232 WO1985000553A1 (en) 1982-01-25 1983-07-20 Rigid thermoplastic resin foam and process for its production
EP83902287A EP0151183B1 (en) 1982-01-25 1983-07-20 Rigid thermoplastic resin foam and process for its production
US06/780,117 US4585605A (en) 1982-01-25 1985-09-25 Rigid thermoplastic resin foam and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008838A JPS58126128A (en) 1982-01-25 1982-01-25 Rigid thermoplastic resin foamed body and its manufacture

Publications (2)

Publication Number Publication Date
JPS58126128A JPS58126128A (en) 1983-07-27
JPH0252653B2 true JPH0252653B2 (en) 1990-11-14

Family

ID=11703916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008838A Granted JPS58126128A (en) 1982-01-25 1982-01-25 Rigid thermoplastic resin foamed body and its manufacture

Country Status (1)

Country Link
JP (1) JPS58126128A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893731B2 (en) * 1989-07-10 1999-05-24 大日本インキ化学工業株式会社 Aging method for expandable styrene resin particles
JP5436024B2 (en) * 2009-04-27 2014-03-05 ダウ化工株式会社 Styrenic resin foam

Also Published As

Publication number Publication date
JPS58126128A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
US8092727B2 (en) Method of forming extruded polystyrene foams and the products made therefrom
US6090479A (en) Shape-recoverable resin foamed product
JP4276489B2 (en) Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles
JPH0313057B2 (en)
US4585605A (en) Rigid thermoplastic resin foam and process for preparation thereof
EP0151183B1 (en) Rigid thermoplastic resin foam and process for its production
Vilau et al. Investigation of mechanical behaviour of expanded polystyrene under compressive and bending loadings
Weber et al. 3D‐printed and foamed triply periodic minimal surface lattice structures for energy absorption applications
JPH0252653B2 (en)
EP0750973A2 (en) A resin foamed product, production method and laminated structure thereof
US3445406A (en) Process for elasticizing foamed polystyrenes and resultant product
JPS6056096B2 (en) Styrenic resin foam
JPS58173631A (en) Preparation of foamed product of hard thermoplastic resin
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JP3279665B2 (en) Crosslinked vinyl chloride resin foam and method for producing the same
JP5365902B2 (en) Roll receiver made of styrene resin foam plate
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP5510510B2 (en) Method for producing foamed molded article in thermoplastic resin mold
NO168834B (en) Rigid thermoplastic foam, as well as production methods thereof
WO2008069013A1 (en) Resin foam suitable as energy absorption material
JP4984482B2 (en) Thermoplastic resin foam molding
KR100538401B1 (en) production method of sound barrier material
JPS6026995A (en) Sound absorbing material
JPS629255B2 (en)
Park et al. Expandable foam from amorphous polyester resin