JPH025244B2 - - Google Patents

Info

Publication number
JPH025244B2
JPH025244B2 JP57042334A JP4233482A JPH025244B2 JP H025244 B2 JPH025244 B2 JP H025244B2 JP 57042334 A JP57042334 A JP 57042334A JP 4233482 A JP4233482 A JP 4233482A JP H025244 B2 JPH025244 B2 JP H025244B2
Authority
JP
Japan
Prior art keywords
flow path
dust
measured
ray
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57042334A
Other languages
Japanese (ja)
Other versions
JPS58160807A (en
Inventor
Someyoshi Arai
Masaki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP4233482A priority Critical patent/JPS58160807A/en
Publication of JPS58160807A publication Critical patent/JPS58160807A/en
Publication of JPH025244B2 publication Critical patent/JPH025244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type

Description

【発明の詳細な説明】 本発明はβ線透過式粉塵計に関し、更に詳述す
れば被測定気体流路を扁平に形成すると共に、
材を流路の厚さ方向一壁からこれと対向する他壁
にかけて傾斜させて張設することにより、β線源
とβ線検出器との間の距離を短縮させ、これによ
り測定精度を著しく改善した粉塵計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a β-ray transmission type dust meter, and more specifically, the gas flow path to be measured is formed flat, and
By installing the material at an angle from one wall in the thickness direction of the channel to the opposite wall, the distance between the β-ray source and the β-ray detector is shortened, which significantly improves measurement accuracy. Concerning an improved dust meter.

従来、β線を使用して大気中の粉塵濃度を測定
する方法として、テープ状の紙で大気を過し
て紙表面に大気中の粉塵を捕集し、この捕集粉
塵による透過β線の減衰の度合を測定し、これか
ら粉塵濃度を求める方法がある。即ち、この方法
は透過β線強度と捕集粉塵の厚さとの間に次式(1)
の関係が成立することを応用するものである。
Conventionally, the method of measuring the concentration of dust in the atmosphere using β-rays involves passing the air through a tape-shaped paper and collecting the dust in the atmosphere on the surface of the paper. There is a method of measuring the degree of attenuation and calculating the dust concentration from this. In other words, this method uses the following equation (1) between the transmitted β-ray intensity and the thickness of the collected dust.
This is an application of the fact that the relationship holds true.

I=I0exp(−μX) ………(1) ここで I:紙及び粉塵を透過したβ線強度 I0:紙のみを透過したβ線強度 μ:質量吸収係数(cm2/g) X:粉塵量(g/cm2) 更に、大気中の粉塵濃度は(2)式により現わされ
る。
I = I 0 exp (-μX) ...... (1) where I: β-ray intensity transmitted through paper and dust I 0 : β-ray intensity transmitted only through paper μ: Mass absorption coefficient (cm 2 /g) X: Dust amount (g/cm 2 ) Further, the dust concentration in the atmosphere is expressed by equation (2).

C=A/μQt1nI0/I ………(2) ここで A:捕集面積(cm2) Q:通過流量(cm3/min) t:捕集時間(min) C:粉塵濃度(g/cm3) よつて、粉塵捕集前後の透過β線強度I0、Iを
実測することにより、(2)式から大気中の粉塵濃度
が求められるものであるが、この原理を利用した
粉塵計においては連続測定が行なえること、即
ち粉塵の捕集とβ線透過による粉塵量の測定が並
行して同時に行なえること、被測定気体の流路
が直線的に形成されていること、即ち流路に曲折
が存在すると、その部分に粉塵が沈着して測定誤
差の原因になるので、流路の曲折を避けた構造の
ものであること、β線源と検出器との間の距離
が短いこと、即ちこれにより検出器に到達するβ
線量を増加させて測定における統計誤差を減少さ
せ、またはβ線量の小さい線源を使用し得るよう
にすること、可動部が少ないこと、即ち粉塵の
捕集、透過β線量の測定等において、これらの操
作を材、β線源、検出器を移動させることなく
行ない、これらの移動による測定誤差の発生を防
止すること等が測定精度の向上のために望まし
い。
C=A/μQt1nI 0 /I (2) where A: Collection area (cm 2 ) Q: Passing flow rate (cm 3 /min) t: Collection time (min) C: Dust concentration (g/ cm 3 ) Therefore, by actually measuring the transmitted β-ray intensities I 0 and I before and after dust collection, the dust concentration in the atmosphere can be determined from equation (2). It is possible to carry out continuous measurement, that is, the collection of dust and the measurement of the amount of dust by β-ray transmission can be carried out simultaneously in parallel, and the flow path of the gas to be measured is formed in a straight line, that is, the flow path of the gas to be measured is linear. If there are bends in the flow path, dust will settle there and cause measurement errors, so the structure should avoid bends in the flow path, and the distance between the β-ray source and the detector should be short. This means that β reaching the detector
Increasing the dose to reduce statistical errors in measurements or allowing the use of sources with small beta doses, having fewer moving parts, i.e. in collecting dust, measuring transmitted beta doses, etc. In order to improve measurement accuracy, it is desirable to perform these operations without moving the material, the β-ray source, and the detector, and to prevent measurement errors caused by these movements.

しかし、従来の粉塵計においてはこれら〜
の条件をすべて満足し得るものはなく、いずれも
一長一短があつた。即ち、第1図乃至第4図はそ
れぞれ従来の粉塵計を示すものであり、これら粉
塵計のうち第1図の粉塵計においては紙aはロ
ール状紙bから繰り出され、過部cを通つて
測定部dに至り、ここでβ線源eから放射される
β線により紙aが照射され、その透過β線強度
I0がβ線検出器fで測定されて記憶される。次い
で、紙aが巻きもどされて前記β線が照射され
て透過β線強度I0が測定された紙の部分が過
部cに装着される。その後、吸引ポンプが作動
し、大気が吸引管g内を下方向(図中矢印P方
向)に吸引され、これにより大気中の粉塵が紙
aによつて別される。次いで、紙は再び繰り
出され、過部分が前記測定部dに移動せしめら
れた後、紙及び過された沈着した粉塵層を透
過したβ線強度Iが測定され、このようにして求
めたI0及びIから(2)式を用いて粉塵濃度Cが算出
されるものである。なお、hはピンチローラ、i
はキヤプスタン、jは巻き取りロールである。
However, in conventional dust meters, these ~
There is no one that can satisfy all of the conditions, and each has its advantages and disadvantages. That is, FIGS. 1 to 4 respectively show conventional dust meters. Among these dust meters, in the dust meter shown in FIG. The paper a is then irradiated with the β rays emitted from the β ray source e, and the transmitted β ray intensity
I 0 is measured by the β-ray detector f and stored. Next, the paper a is rewound, and the portion of the paper that has been irradiated with the β-rays and whose transmitted β-ray intensity I 0 has been measured is attached to the cover c. Thereafter, the suction pump is activated, and atmospheric air is sucked downward (in the direction of arrow P in the figure) through the suction pipe g, whereby dust in the atmosphere is separated by the paper a. Next, the paper is fed out again, and after the excess portion is moved to the measurement section d, the β-ray intensity I that has passed through the paper and the deposited dust layer is measured, and the thus determined I 0 and I, the dust concentration C is calculated using equation (2). In addition, h is a pinch roller, i
is a capstan and j is a take-up roll.

第2図の粉塵計の場合には、ロール状紙bか
ら繰り出された紙aは、まず測定部dにおいて
紙aの透過β線強度I0が測定された後、過部
cに送られ、ここで大気が過される。次いで、
測定部dは吸引管gの軸線を中心として180度回
転され、図中2点鎖線で示す位置に測定部dが移
動せしめられると共に、紙aも移動し、鎖線で
示す位置において紙a及び粉塵層を透過したβ
線強度Iが測定され、このようにして求めたI0
びIから(2)式を用いて粉塵濃度Cが算出されるも
のである。
In the case of the dust meter shown in Fig. 2, paper a is unwound from roll paper b, and after the transmitted β-ray intensity I 0 of paper a is measured in measuring section d, it is sent to passing section c. This is where the atmosphere passes. Then,
The measuring part d is rotated 180 degrees around the axis of the suction tube g, and the measuring part d is moved to the position shown by the two-dot chain line in the figure, and the paper a is also moved, and the paper a and the dust are removed at the position shown by the chain line. β transmitted through the layer
Linear intensity I is measured, and dust concentration C is calculated from I 0 and I obtained in this way using equation (2).

上記両粉塵計においては、測定部d及び過部
cに紙aの同一部分(過部分)を再現性良く
移動させることが粉塵量を精度良く測定するため
の必要条件であるが、これは機構上なかなか困難
なことで、紙の移動の際に生じる上記各測定位
置及び吸引位置間のずれが直接測定誤差の原因に
なる問題がある。
In both of the above-mentioned dust meters, moving the same part (over part) of paper a to measuring part d and over part c with good reproducibility is a necessary condition for accurately measuring the amount of dust. On the other hand, it is quite difficult to do so, and there is a problem in that the deviation between the above-mentioned measurement positions and the suction position that occurs when the paper is moved directly causes measurement errors.

上記問題を解決するものとして、第3図又は第
4図に示す粉塵計が知られている。第3図の粉塵
計においては、大気はポンプkによつて吸引され
て吸引管gに流入し、紙aによつて粉塵が別
された後、β線照射路lを通り抜け、更に排出管
mを通つて系外に排出される。このようにして
別されて紙a上面に沈着した粉塵nは、照射路
の下部に装着されたβ線源から放射されるβ線が
照射され、その透過β線強度Iがβ線源eの上方
に配設された検出器fにより検出されるが、前記
ポンプkを作動させる前に予め紙aのみの場合
の透過β線強度I0を測定しておけば、粉塵濃度は
前記I0及びIから算出でき、しかもこの場合には
I0、Iの測定における紙の移動がないので、前
2者の粉塵計のように、紙の移動により生じる
紙の測定位置のずれに起因する測定誤差の発生
は考えられない。しかし、この粉塵計の場合に
は、大気は照射路lの側方からほぼ紙aに平行
に照射路l内に供給され、紙aで過されるた
め、粉塵層nが紙a上に不均一に沈着し易い。
その上、照射路lの側方から大気が供給される構
造のためβ線源eと検出器fとの間の距離が大き
くなる。このため、測定精度が低下する問題があ
る上、大気が照射路lを通つて外部に排出される
構造になつているため、照射路が微細な粉塵によ
り汚れ易い。このため、この汚れを定期的に清掃
する必要があるが、これは繁雑なもので、しかも
清掃はその構造上簡単に行ない難いものである。
A dust meter shown in FIG. 3 or 4 is known as a device that solves the above problem. In the dust meter shown in Fig. 3, atmospheric air is sucked by a pump k and flows into a suction pipe g, and after dust is separated by a paper a, it passes through a β-ray irradiation path l, and is further passed through a discharge pipe m. is discharged from the system through. The dust n separated in this way and deposited on the upper surface of the paper a is irradiated with β-rays emitted from the β-ray source installed at the bottom of the irradiation path, and the transmitted β-ray intensity I is the same as that of the β-ray source e. The dust concentration is detected by the detector f disposed above, but if the transmitted β-ray intensity I 0 for only paper a is measured in advance before operating the pump k, the dust concentration will be equal to the above I 0 and It can be calculated from I, and in this case
Since there is no movement of the paper during the measurement of I 0 and I, it is unlikely that a measurement error would occur due to a shift in the measurement position of the paper caused by movement of the paper, as in the former two dust meters. However, in the case of this dust meter, air is supplied into the irradiation path 1 from the side of the irradiation path 1 almost parallel to the paper a and passes through the paper a, so that a dust layer n is not formed on the paper a. Easy to deposit evenly.
Moreover, since the atmosphere is supplied from the side of the irradiation path l, the distance between the β-ray source e and the detector f becomes large. For this reason, there is a problem that measurement accuracy is reduced, and since the structure is such that the atmosphere is discharged to the outside through the irradiation path 1, the irradiation path is easily contaminated by fine dust. Therefore, it is necessary to periodically clean this dirt, but this is a complicated process, and furthermore, cleaning is difficult to perform simply due to its structure.

また、第4図の粉塵計は対照用のβ線源e′を有
する以外は第3図の粉塵計とほぼ同様の構造に形
成されており、従つて第3図の粉塵計と同様の問
題点を有するものである。なお、第4図中oはβ
線透過性金属薄膜、pは増幅器、qは記録計、r
は分粒器である。
Furthermore, the dust meter shown in Figure 4 has almost the same structure as the dust meter shown in Figure 3, except that it has a β-ray source e' for comparison, and therefore has the same problems as the dust meter shown in Figure 3. It has points. In addition, o in Fig. 4 is β
Ray-transparent metal thin film, p is amplifier, q is recorder, r
is a particle sizer.

本発明は上記事情に鑑みなされたもので、材
を移動することなく測定を行なうこと、及びβ線
源と検出器との間の距離を短縮することという構
造上互に相矛盾する要求を、被測定気体流路を扁
平に形成すると共に、流路内に流れ方向に傾斜さ
せて材を張設することによつて解決した、測定
精度の高い粉塵計を提供することを目的とする。
The present invention was developed in view of the above circumstances, and addresses the mutually contradictory structural requirements of performing measurements without moving the material and shortening the distance between the β-ray source and the detector. It is an object of the present invention to provide a dust meter with high measurement accuracy, which is solved by forming a gas flow path to be measured flat and installing a material in the flow path inclined in the flow direction.

以下、本発明の一実施例を第5図乃至第7図を
参照して説明する。
An embodiment of the present invention will be described below with reference to FIGS. 5 to 7.

第5図中1はロール状に巻き取られた材で、
このロール状材1から繰り出された材1aは
進行方向(第5図中矢印A方向)前方に配設され
た検出部2に供給される。この検出部2は直方体
状の金属性ブロツク主体3を用いて形成されたも
ので、このブロツク主体3は一側壁下部からこれ
と対向する他側壁上部に向つて傾斜して切断さ
れ、これによつて上部ブロツク3aと下部ブロツ
ク3bに分離し得る。
1 in Figure 5 is a material wound into a roll,
The material 1a unwound from the roll-shaped material 1 is supplied to a detection section 2 disposed forward in the direction of movement (direction of arrow A in FIG. 5). This detection part 2 is formed using a rectangular parallelepiped-shaped metal block main body 3, and this block main body 3 is cut obliquely from the lower part of one side wall to the upper part of the opposite side wall. It can be separated into an upper block 3a and a lower block 3b.

また、前記ブロツク主体3には第6,7図に示
すように一側壁中央部からこれと対向する他側壁
中央部にかけてブロツク主体3を貫通して断面長
方形状の被測定気体流路4がその幅方向を水平に
して形成されており、この流路4はブロツク主体
3内部において、前記両ブロツク3a,3bを形
成した切断面と交差している。前記流路4にはブ
ロツク主体3の一側壁においてサンプリングパイ
プ5の一端が連結されていると共に、パイプ5の
他端(図示せず)は被測定気体の採集場所に配設
されている。更に、前記流路4には、ブロツク主
体3の他側壁において、吸引管6の一端が連結さ
れており、また吸引管6の他端は吸引ポンプ7の
吸引部と連結されている。なお、8は前記吸引ポ
ンプ7の吐出部に連結された吐出管である。
Further, as shown in FIGS. 6 and 7, in the block main body 3, there is a measured gas flow path 4 having a rectangular cross section that passes through the block main body 3 from the center of one side wall to the center of the opposite side wall. The flow path 4 is formed with the width direction being horizontal, and inside the block main body 3, this flow path 4 intersects with the cut surface on which the blocks 3a and 3b were formed. One end of a sampling pipe 5 is connected to the flow path 4 at one side wall of the block main body 3, and the other end (not shown) of the pipe 5 is arranged at a sampling location of the gas to be measured. Furthermore, one end of a suction pipe 6 is connected to the flow path 4 on the other side wall of the block main body 3, and the other end of the suction pipe 6 is connected to a suction portion of a suction pump 7. Note that 8 is a discharge pipe connected to the discharge section of the suction pump 7.

前記ブロツク主体3にはその上面及び下面中央
部から垂直方向に沿つて、大径のβ線源ホルダー
挿入孔9及び検出器挿入孔10がそれぞれ穿設さ
れており、これら両挿入孔9,10の底壁9a及
び上壁10aは肉薄に形成されている。更に、前
記両挿入孔9,10の底壁9a及び上壁10aの
中央部には垂直方向に沿つて貫通孔がそれぞれ穿
設されて、これによりβ線照射路11が形成され
ており、このβ線照射路11は前記上下両ブロツ
ク3a,3bの接合面と流路4との交差部と更に
交差している。
The block main body 3 has a large diameter β-ray source holder insertion hole 9 and a detector insertion hole 10 perforated along the vertical direction from the center of its upper and lower surfaces, respectively. The bottom wall 9a and the top wall 10a are formed thin. Further, a through hole is formed in the center of the bottom wall 9a and the top wall 10a of both the insertion holes 9, 10 along the vertical direction, thereby forming a β-ray irradiation path 11. The β-ray irradiation path 11 further intersects the intersection of the flow path 4 and the joint surface of the upper and lower blocks 3a, 3b.

前記挿入孔9内には、下端面にβ線源12が装
着されたβ線源ホルダー13が挿入されており、
前記β線源12から放射されるβ線が照射路11
内に照射される。
A β-ray source holder 13 having a β-ray source 12 attached to its lower end surface is inserted into the insertion hole 9,
The β-rays emitted from the β-ray source 12 pass through the irradiation path 11.
irradiated inside.

また、前記検出器挿入孔10内にはβ線検出器
14がその検出面15を前記β線源12と対向さ
せて挿入されており、この検出器14により、β
線源12から放射されβ線照射路11を通つて検
出器14に到達するβ線強度が測定され、β線強
度に対応した電気信号に変換されて電気部16に
送出される。
Further, a β-ray detector 14 is inserted into the detector insertion hole 10 with its detection surface 15 facing the β-ray source 12.
The β-ray intensity emitted from the radiation source 12 and reaching the detector 14 through the β-ray irradiation path 11 is measured, converted into an electrical signal corresponding to the β-ray intensity, and sent to the electrical section 16.

上記構造の検出部2に供給された前記材1a
はブロツク主体3の一側壁下部から他側壁上部方
向に沿つて上部ブロツク3aと下部ブロツク3b
との間に介装され、これにより前記流路4が覆わ
れる。そして、この材1aを移動させる際に
は、ブロツク3a,3bを上下に開いた後、材
1aを移動させ、次いでブロツク3a,3b間を
閉じることにより行なわれるが、この場合流路4
の気密性を保持するためにゴムパツキングを用い
る等の公知の手段が採用される。
The material 1a supplied to the detection section 2 having the above structure
The block main body 3 has an upper block 3a and a lower block 3b along the direction from the lower part of one side wall to the upper part of the other side wall.
The flow path 4 is covered by this. When moving the material 1a, the blocks 3a and 3b are opened vertically, the material 1a is moved, and then the space between the blocks 3a and 3b is closed. In this case, the flow path 4
In order to maintain airtightness, known means such as using rubber packing are employed.

次いで、材1aはピンチローラ17とキヤプ
スタン18との間を通つて巻取りロール19に巻
取られるが、この材1aの移動は電気部16の
制御下に駆動されるピンチローラ17によつて行
なわれる。なお、20は電気部16に接続された
表示部で、これに測定結果等が表示される。
Next, the material 1a passes between the pinch roller 17 and the capstan 18 and is wound onto the take-up roll 19, and the movement of the material 1a is performed by the pinch roller 17 driven under the control of the electric section 16. It will be done. Note that 20 is a display unit connected to the electrical unit 16, on which measurement results and the like are displayed.

次に、上記粉塵計を用いて大気中の粉塵濃度を
連続的に測定する場合について説明すると、まず
被測定大気採集場所にサンプリングパイプ5の他
端が配設された状態で、β線源12から放射さ
れ、材1aを透過して検出器14に到達するβ
線強度が測定され、この測定値I0が電気部16に
一時記憶される。その後、吸引ポンプ7が作動し
て大気の採集が開始される。即ち、サンプリング
パイプ5の他端から吸引された大気はブロツク主
体3に形成された流路4内にブロツク主体3の一
側壁側から流入し、流路4内を他側壁側に移動す
るが、この際に流路4内の大気の流れ方向に沿つ
て上向傾斜をもつて流路4内に張設された材1
aにより、大気中の粉塵が別されて材1aの
上面に粉塵の沈着層21が形成されるがこの場
合、材1aは上向傾斜をもつて張設されている
ので、沈着層はほぼ正方形に形成される。次い
で、材1aによつて粉塵が別された大気は、
更に流路4を移動して吸引管6に流入し、ポンプ
7を通つて吐出管8から外部に排出される。ポン
プ7が所定時間作動して予め定められた量の大気
が吸引されると、ポンプ7が停止せしめられ、大
気の採集が停止されるが、大気の採集開始時から
停止時までの間は連続して材1a及び粉塵の沈
着層21を透過して検出器14に到達するβ線源
12からのβ線強度Iが測定されて電気部16に
記憶され続けており、得られた測定値Iは電気部
16に送られ、ここで予め記憶された前記測定値
I0を用いて前記(2)式により粉塵濃度が算出され、
表示部20に連続的に表示される。その後、ブロ
ツク3a,3bがそれぞれ上下に移動されて互に
隔れると共に、ピンチローラ17が駆動されて、
材1aが進行方向前方(第5図中矢印A方向)
に所定距離移動する。これにより、沈着層21が
流路4外に移動され、流路4内には粉塵が沈着し
ていない新たな材の部分が供給され、この状態
においてブロツク3a,3b間の間隙が閉じられ
て最初の状態に復帰する。以後、同様の動作が繰
返されて粉塵濃度が測定され続けるが、これらの
操作は全て電気部16の指示により自動的に行な
われる。
Next, to explain the case of continuously measuring the dust concentration in the atmosphere using the above-mentioned dust meter, first, with the other end of the sampling pipe 5 installed at the air sampling location to be measured, the β-ray source 12 β is emitted from the beam, passes through the material 1a, and reaches the detector 14.
The line intensity is measured and this measured value I 0 is temporarily stored in the electrical section 16 . Thereafter, the suction pump 7 is activated and atmospheric sampling is started. That is, the air sucked from the other end of the sampling pipe 5 flows into the flow path 4 formed in the block main body 3 from one side wall of the block main body 3, and moves inside the flow path 4 toward the other side wall. At this time, the material 1 is stretched in the flow path 4 with an upward slope along the flow direction of the atmosphere inside the flow path 4.
a, dust in the atmosphere is separated and a deposited dust layer 21 is formed on the upper surface of the material 1a, but in this case, since the material 1a is stretched with an upward slope, the deposited layer is approximately square. is formed. Next, the atmosphere from which the dust has been separated by the material 1a is
It further moves through the flow path 4, flows into the suction pipe 6, passes through the pump 7, and is discharged to the outside from the discharge pipe 8. When the pump 7 operates for a predetermined period of time and a predetermined amount of air is sucked in, the pump 7 is stopped and the air sampling is stopped, but the air sampling continues continuously from the time the air sampling starts to the time it stops. The β-ray intensity I from the β-ray source 12 that passes through the material 1a and the dust deposit layer 21 and reaches the detector 14 is measured and continues to be stored in the electrical section 16, and the obtained measurement value I is sent to the electrical section 16, where the measured value is stored in advance.
The dust concentration is calculated by the above formula (2) using I 0 ,
It is displayed continuously on the display unit 20. Thereafter, the blocks 3a and 3b are moved up and down to separate them from each other, and the pinch roller 17 is driven.
Material 1a is forward in the direction of travel (direction of arrow A in Figure 5)
move a predetermined distance. As a result, the deposited layer 21 is moved outside the channel 4, and a new part of the material on which no dust is deposited is supplied into the channel 4, and in this state, the gap between the blocks 3a and 3b is closed. Return to initial state. Thereafter, similar operations are repeated to continue measuring the dust concentration, but all these operations are automatically performed according to instructions from the electrical section 16.

本実施例の粉塵計は被測定気体流路4の断面形
状を扁平な長方形に形成したので、β線源12と
検出器14の検出面15との間の距離を短縮で
き、このため検出面15に到達するβ線強度(単
位時間当りのカウント数等に対応する)が大幅に
増加し、これにより測定の際の統計誤差が減少
し、測定精度の向上が著しい。更に、材1aは
流路4の下壁面から上壁面に向けて上向傾斜をも
つて張設したので、流路に対して垂直に材を張
設する場合と比較して、過面積が広くなり、粉
塵の沈着に伴なう吸引圧力の変動が生じ難い。こ
のため大気の吸引量が吸引開始時と終了時とで大
幅に変動することもなく、常時一定の吸引量で大
気を吸引できると共に、圧力変動に基づく検出器
14への到達β線量の変動も防止でき、測定精度
が向上する。更に、本粉塵計の検出部2におい
て、流路4は直線状に形成してあり、曲折してい
ないので流路内の曲折部等に粉塵が沈着する等の
事故もなく粉塵が流路内を均一に移動して材1
a表面に均一な沈着層21を形成する。従つて、
均一な沈着層21を透過して測定されるβ線強度
は沈着量に正確に対応しており、このため精度良
く粉塵量の測定が行なえる。
In the dust meter of this embodiment, the cross-sectional shape of the gas flow path 4 to be measured is formed into a flat rectangular shape, so that the distance between the β-ray source 12 and the detection surface 15 of the detector 14 can be shortened. The β-ray intensity (corresponding to the number of counts per unit time, etc.) reaching 15 is significantly increased, which reduces statistical errors during measurement and significantly improves measurement accuracy. Furthermore, since the material 1a is stretched upwardly from the lower wall surface to the upper wall surface of the flow channel 4, the excess area is wider than when the material is stretched perpendicularly to the flow channel. Therefore, fluctuations in suction pressure due to dust deposition are less likely to occur. For this reason, the amount of air suction does not vary significantly between the start and end of suction, and the amount of air suction can be always constant. This can be prevented and measurement accuracy can be improved. Furthermore, in the detection unit 2 of this dust meter, the flow path 4 is formed in a straight line and is not bent, so there is no accident such as dust depositing on the bends in the flow path, and dust is not deposited in the flow path. move material 1 uniformly.
A uniform deposited layer 21 is formed on the surface. Therefore,
The β-ray intensity measured by passing through the uniform deposited layer 21 accurately corresponds to the amount of deposited, and therefore the amount of dust can be measured with high accuracy.

なお、本実施例においては流路4を断面長方形
に形成したが断面楕円状、長円状等の各種の扁平
な断面形状に形成することもでき、また流路4と
照射路11との交差部において照射路11の開口
端をβ線透過性薄膜で閉塞して照射路11内に粉
塵等が侵入することを防止するようにしても良
い。
Although the channel 4 is formed to have a rectangular cross section in this embodiment, it can also be formed to have various flat cross-sectional shapes such as an elliptical or elliptical cross section. In the irradiation path 11, the opening end of the irradiation path 11 may be closed with a β-ray transparent thin film to prevent dust and the like from entering the irradiation path 11.

また、β線源12を上部ブロツク3aに、また
検出器14を下部ブロツク3bに装着してβ線を
下方向に照射するようにしたが、これに限られず
β線源12を下部ブロツク3bに、また検出器1
4を上部ブロツク3aに装着するようにしても良
く、更に流路4と照射路11とは直角に交差する
ようにしたが、これに限られるものではなく、ま
た更に本実施例においては大気を吸引しながら透
過β線強度の測定を行ない時々刻々の沈着量を連
続的に測定するようにしたが、粉塵の沈着完了
後、又は所定時間毎に測定するようにしても良
く、その他本発明の要旨を逸脱しない範囲で種々
変形して差支えない。
In addition, the β-ray source 12 is attached to the upper block 3a and the detector 14 is attached to the lower block 3b to irradiate downward with β-rays; however, the β-ray source 12 can be attached to the lower block 3b. , and detector 1
4 may be attached to the upper block 3a, and furthermore, although the channel 4 and the irradiation channel 11 are arranged to intersect at right angles, the present invention is not limited to this. Although the transmitted β-ray intensity is measured while suctioning and the amount of deposited from moment to moment is continuously measured, it is also possible to measure after the completion of dust deposition or at predetermined time intervals. Various modifications may be made without departing from the gist.

而して、本発明はβ線源と、前記β線源から放
射されるβ線の照射路と、前記照射路に供給され
る材と、前記材を透過するβ線量を検出する
検出器と、前記検出器の検出する信号を処理して
出力する電気部と、前記材と交差する被測定気
体流路とからなり、前記材で被測定気体流路内
を流れる被測定気体を過して被測定気体中の浮
遊粉塵を捕集すると共に、この捕集した粉塵によ
る材透過β線の減衰量を前記検出器で検出し、
この検出信号を電気部で処理して出力することに
より、被測定気体中の浮遊粉塵量を決定するβ線
透過式粉塵計において、前記被測定気体流路を扁
平に形成し、かつ流路の厚さ方向一壁からこれと
対向する他壁にかけて流路を遮るごとく材を傾
斜させて張設すると共に、前記材の張設部にお
いて前記照射路を流路と交差させて前記流路厚さ
方向両壁に連結したので、β線源と検出器との間
の距離を短縮し得、また材を流路方向に対して
傾斜させたため過面積が拡大されて沈着層によ
る圧力変動の影響を最小限にし得る。従つて、本
発明粉塵濃度計の測定精度は著しく向上するもの
である。
Therefore, the present invention includes a β-ray source, an irradiation path for β-rays emitted from the β-ray source, a material supplied to the irradiation path, and a detector for detecting the amount of β-rays transmitted through the material. , an electric part that processes and outputs the signal detected by the detector, and a gas flow path to be measured that intersects the material, and the gas to be measured flowing through the gas flow path through the material is passed through the gas flow path. Collecting suspended dust in the gas to be measured, and detecting the amount of attenuation of material-transmitting β rays due to the collected dust with the detector,
In a β-ray transmission dust meter that determines the amount of suspended dust in the gas to be measured by processing and outputting this detection signal in an electric section, the flow path for the gas to be measured is formed flat, and the flow path is A material is stretched in an inclined manner from one wall in the thickness direction to the other wall opposite to it so as to block the flow path, and the irradiation path is made to intersect with the flow path at the stretched portion of the material to increase the thickness of the flow path. Since it is connected to both walls in both directions, the distance between the β-ray source and the detector can be shortened, and since the material is inclined with respect to the direction of the flow path, the overarea is expanded and the influence of pressure fluctuations due to the deposited layer is reduced. Can be minimized. Therefore, the measurement accuracy of the dust concentration meter of the present invention is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図はそれぞれ従来の粉塵計を示す正面
説明図、第5図は本発明の一実施例を示す正面
図、第6図は同検出部の−線に沿う拡大断面
正面図、第7図は同検出部の拡大側面図である。 1a……材、4……被測定気体流路、7……
吸引ポンプ、11……β線照射路、12……β線
源、14……検出器、15……検出面、16……
電気部、21……沈着層。
1 to 4 are explanatory front views showing a conventional dust meter, respectively. FIG. 5 is a front view showing an embodiment of the present invention. FIG. FIG. 7 is an enlarged side view of the detection section. 1a... Material, 4... Gas flow path to be measured, 7...
Suction pump, 11...β-ray irradiation path, 12...β-ray source, 14...detector, 15...detection surface, 16...
Electrical part, 21...Deposition layer.

Claims (1)

【特許請求の範囲】 1 β線源と、前記β線源から放射されるβ線の
照射路と、前記照射路に供給される材と、前記
材を透過するβ線量を検出する検出器と、前記
検出器の検出する信号を処理して出力する電気部
と、前記材と交差する被測定気体流路とからな
り、前記材で被測定気体流路内を流れる被測定
気体を過して被測定気体中の浮遊粉塵を捕集す
ると共に、この捕集した粉塵による材透過β線
の減衰量を前記検出器で検出し、この検出信号を
電気部で処理して出力することにより被測定気体
中の浮遊粉塵量を決定するβ線透過式粉塵計にお
いて、前記被測定気体流路を扁平に形成し、かつ
流路の厚さ方向一壁からこれと対向する他壁にか
けて流路を遮るごとく材を傾斜させて張設する
と共に前記材の張設部において前記β線照射路
とβ線検出路とを流路と交差させて前記流路厚さ
方向両壁に連結したことを特徴とするβ線透過式
粉塵計。 2 被測定気体流路の断面の形状が長方形、長円
形又は楕円形である特許請求の範囲第1項記載の
粉塵計。
[Claims] 1. A β-ray source, an irradiation path for β-rays emitted from the β-ray source, a material supplied to the irradiation path, and a detector for detecting the amount of β-rays transmitted through the material. , an electric part that processes and outputs the signal detected by the detector, and a gas flow path to be measured that intersects the material, and the gas to be measured flowing through the gas flow path through the material is passed through the gas flow path. At the same time as collecting suspended dust in the gas to be measured, the detector detects the amount of attenuation of β-rays passing through the material due to the collected dust, and this detection signal is processed by the electric section and output. In a β-ray transmission type dust meter that determines the amount of suspended dust in a gas, the flow path of the gas to be measured is formed flat, and the flow path is blocked from one wall in the thickness direction of the flow path to the other wall opposite to this. The β-ray irradiation path and the β-ray detection path intersect with the flow path and are connected to both walls in the thickness direction of the flow path at the stretched portion of the material. β-ray transmission type dust meter. 2. The dust meter according to claim 1, wherein the cross-sectional shape of the gas flow path to be measured is rectangular, oval, or elliptical.
JP4233482A 1982-03-17 1982-03-17 Beta ray transmission type dust meter Granted JPS58160807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4233482A JPS58160807A (en) 1982-03-17 1982-03-17 Beta ray transmission type dust meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4233482A JPS58160807A (en) 1982-03-17 1982-03-17 Beta ray transmission type dust meter

Publications (2)

Publication Number Publication Date
JPS58160807A JPS58160807A (en) 1983-09-24
JPH025244B2 true JPH025244B2 (en) 1990-02-01

Family

ID=12633104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4233482A Granted JPS58160807A (en) 1982-03-17 1982-03-17 Beta ray transmission type dust meter

Country Status (1)

Country Link
JP (1) JPS58160807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531979A (en) * 2007-07-03 2010-09-30 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド β-ray dust concentration measuring apparatus and method for confirming validity of sample used therein

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241640A (en) * 1985-04-19 1986-10-27 Denki Kagaku Keiki Co Ltd Method and apparatus for filter collection type measurement of concentration of granular material
CN104359816A (en) * 2014-11-19 2015-02-18 武汉怡特环保科技有限公司 Beta-ray atmospheric particulate matter monitoring device
CN105043822B (en) * 2014-12-31 2018-03-27 江苏天瑞仪器股份有限公司 A kind of Atmospheric particulates gather measurement apparatus
CN109164118B (en) * 2018-08-08 2022-04-05 北京雪迪龙科技股份有限公司 Calibration system and method of beta absorption type dust meter
CN112098285B (en) * 2020-09-10 2021-04-06 天津同阳科技发展有限公司 Volatile particulate matter compensation measuring device and method based on beta-ray method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625647Y2 (en) * 1978-03-15 1987-02-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531979A (en) * 2007-07-03 2010-09-30 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド β-ray dust concentration measuring apparatus and method for confirming validity of sample used therein

Also Published As

Publication number Publication date
JPS58160807A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
JP2008261712A (en) System for measuring suspended particular substance
JP2001343319A (en) Continuous measuring device for suspended particulate matter
JPH025244B2 (en)
West et al. Adsorption of Traces of Silver on Container Surfaces.
US2076554A (en) Apparatus for measuring, recording, and controlling dilute dust concentrations
US3826577A (en) Gas analyzing apparatus
JP2003139725A (en) Instrument for measuring suspended particulate substance
US4742009A (en) Method for monitoring stack gases for uranium activity
JP2004028945A (en) Apparatus for measuring concentration of suspended particulate matter
CN105738262A (en) Beta-ray-method three-channel atmospheric particulate monitor
US4304994A (en) Method of and apparatus for monitoring radioactivity concentration of gas
US4182954A (en) Method and apparatus for measuring material properties related to radiation attenuation
JPS63209575A (en) Method and apparatus for forming continuous body from tobacco
JPH0233964B2 (en)
JP5542748B2 (en) Radioactive dust monitor
JP2002357532A (en) Floating particle-like substance measuring apparatus
JPH0621848B2 (en) Falling dust measurement device
JP2007255939A (en) Instrument of measuring suspended particulate matter
JPH0429022B2 (en)
JPS5934232B2 (en) Method of forming heterogeneous optical thin films by reactive deposition
JP2561345Y2 (en) Continuous scattering dust measurement device
JP3367720B2 (en) Radiation measurement method
JPH09127023A (en) Dust meter
JPS6255549A (en) Beta rays absorption type continuous floating dust measuring apparatus
JP2005134270A (en) Particulate matter analyzer