JP2001343319A - Continuous measuring device for suspended particulate matter - Google Patents

Continuous measuring device for suspended particulate matter

Info

Publication number
JP2001343319A
JP2001343319A JP2000162942A JP2000162942A JP2001343319A JP 2001343319 A JP2001343319 A JP 2001343319A JP 2000162942 A JP2000162942 A JP 2000162942A JP 2000162942 A JP2000162942 A JP 2000162942A JP 2001343319 A JP2001343319 A JP 2001343319A
Authority
JP
Japan
Prior art keywords
particulate matter
suspended particulate
air
filter
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000162942A
Other languages
Japanese (ja)
Other versions
JP3574045B2 (en
Inventor
Takashi Kimoto
岳志 紀本
Keiji Sodeyama
恵司 袖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Kimoto Electric Co Ltd
Original Assignee
Kimoto Electric Co Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimoto Electric Co Ltd, Japan Science and Technology Corp filed Critical Kimoto Electric Co Ltd
Priority to JP2000162942A priority Critical patent/JP3574045B2/en
Publication of JP2001343319A publication Critical patent/JP2001343319A/en
Application granted granted Critical
Publication of JP3574045B2 publication Critical patent/JP3574045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device of continuously, automatically, individually measur ing, every constant time, each of the total amount TPS of suspended particulate matters and micro suspended particulate matter PM2.5 having 2.5 μm grain size especially damaging human health. SOLUTION: A classifier 2 classifies air into an air containing all coarse suspended particulate matters CP having grain size exceeding 2.5 μm and an air containing only PM2.5. The classified air are sucked through first and second positions 3a and 3b of a tape-like filter 3, and thus the suspended particulate matters in the classified airs are collected in the first and second positions 3a and 3b of the filter 3, and quantitatively determined individually. The amounts of the PM2.5 and the TPS are calculated based on classifying efficiencies of the classifier 2, and contents of the PM2.5 and the TPS are calculated based on the amount and the integration value of the permeated air amount and recorded on a recorder 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気中の浮遊粒子
状物質の連続測定装置に関し、特に人の健康に影響の大
きい粒径2.5μm以下の微小浮遊粒子状物質の連続測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for continuously measuring suspended particulate matter in the atmosphere, and more particularly, to an apparatus for continuously measuring minute suspended particulate matter having a particle size of 2.5 μm or less, which has a great effect on human health.

【0002】[0002]

【従来の技術】大気中には、種々の粒径の浮遊粒子状物
質が存在する。粒径が10μmを超える浮遊粒子状物質
は、発生源の近くで沈降するものが多く、また呼吸に際
し、大部分が気道で濾過されるので、特に粉塵の多い環
境で作業する場合を除いて、人の健康に大きい被害はな
い。このような理由で、公害対策基本法に基づく大気汚
染に関する環境基準では、大気中の浮遊粒子状物質は、
粒径が10μm以下のものと規定されている。そして、
従来からこの規定に従って、粒径10μm以下の浮遊粒
子状物質の測定装置が市販されている。
2. Description of the Related Art Suspended particulate matter having various particle sizes exists in the atmosphere. Suspended particulate matter having a particle size of more than 10 μm is likely to settle near the source, and during respiration, most of it is filtered through the respiratory tract, except when working in a dusty environment. There is no major harm to human health. For these reasons, the environmental standards for air pollution based on the Basic Law on Pollution Control say that airborne particulate matter
The particle size is specified to be 10 μm or less. And
Conventionally, measuring devices for suspended particulate matter having a particle size of 10 μm or less have been commercially available in accordance with this regulation.

【0003】最近、都市部における浮遊粒子状物質の粒
径と含有量との関係が詳しく調べられた結果、図7に示
すように、粒径2.5μm程度を境として粗大浮遊粒子
状物質(coarse particle,以下CPと略すことがあ
る)と微小浮遊粒子状物質(fine particle,以下FP
と略すことがある)とが大気中に存在することが判明し
た。CPの大部分は、海塩粒子や土壌に由来する砂塵で
あり、自然に生じるものと考えられる。これに対し、F
Pは人為的に発生するものと考えられ、都市部に多い。
特にディーゼル車の排気には元素状炭素として、FPが
多く含まれている。さらに元素状炭素には、空気中の窒
素酸化物や硫黄酸化物のような健康に有害な物質が吸着
されることも考えられる。最近の医学的・疫学的研究に
よれば、FPが20μg/m3程度含有されていても心
筋梗塞の原因になることが報告されている。
Recently, the relationship between the particle size and the content of suspended particulate matter in an urban area was examined in detail, and as shown in FIG. 7, as shown in FIG. coarse particle (hereinafter abbreviated as CP) and fine suspended particulate matter (FP)
Has been found to exist in the atmosphere. The majority of CP is dust from sea salt particles and soil, and is considered to occur naturally. In contrast, F
P is considered to occur artificially and is common in urban areas.
In particular, exhaust from diesel vehicles contains a large amount of FP as elemental carbon. Further, it is considered that a substance harmful to health, such as nitrogen oxides and sulfur oxides in the air, is adsorbed to elemental carbon. According to recent medical and epidemiological studies, it has been reported that the presence of about 20 μg / m 3 of FP causes myocardial infarction.

【0004】都市部におけるFPを減少するため、東京
都はディーゼル車にフィルタを取付けることを義務化す
る方針であり、他の地方自治体もこれに倣うものと推測
され、これと同時に空気中のFPを連続自動的に測定す
る装置の開発が要望されている。
[0004] In order to reduce FP in urban areas, the Tokyo Metropolitan Government has a policy to obligate the installation of filters in diesel vehicles, and it is presumed that other local governments will follow this. There is a demand for the development of a device that automatically and continuously measures the temperature.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、環境
基準に適合した粒径10μm以下の浮遊粒子状物質の全
量と、人の健康に被害を及ぼすFPの量とを連続自動的
に測定する装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to continuously and automatically measure the total amount of suspended particulate matter having a particle size of 10 μm or less and the amount of FP that is harmful to human health. It is to provide a device that does.

【0006】[0006]

【課題を解決するための手段】本発明は、一定流量の試
料大気を吸引し、粒子径が2.5μmを超える粗大浮遊
粒子状物質の全てを含む空気と、粗大浮遊粒子状物質を
含まず粒子径が2.5μm以下の微小浮遊粒子状物質の
みを含む空気とに浮遊粒子状物質を分級する分級手段
と、テープ状フィルタの異なる位置を介して、分級手段
によって分級された粗大浮遊粒子状物質の全てを含む空
気と、微小浮遊粒子状物質のみを含む空気とを各別に吸
引して、分級された浮遊粒子状物質を各別に連続的に捕
集する捕集手段と、捕集手段によってテープ状フィルタ
の異なる位置に捕集された浮遊粒子状物質の量を、それ
ぞれ連続して検出する検出手段と、検出手段の出力と、
吸引大気流量の積算値とから大気中の全浮遊粒子状物質
の量と、微小浮遊粒子状物質の量とを演算して自動的に
記録する演算記録手段とを含むことを特徴とする浮遊粒
子状物質の連続測定装置である。
SUMMARY OF THE INVENTION According to the present invention, a sample air at a constant flow rate is sucked, and air containing all of the large suspended particulate matter having a particle diameter of more than 2.5 μm and air containing no large suspended particulate matter are included. Classification means for classifying suspended particulate matter into air containing only fine suspended particulate matter having a particle diameter of 2.5 μm or less, and coarse suspended particulate matter classified by the classification means via different positions of a tape-shaped filter Air containing all of the substance and air containing only the fine suspended particulate matter are separately suctioned, and the collecting means for continuously collecting the classified suspended particulate matter separately, and the collecting means Detecting means for continuously detecting the amount of suspended particulate matter collected at different positions of the tape-shaped filter, and an output of the detecting means,
Calculating the amount of all suspended particulate matter in the atmosphere and the amount of fine suspended particulate matter in the atmosphere from the integrated value of the suctioned atmospheric flow rate and calculating and automatically recording the suspended particulate matter. It is a continuous measurement device for particulate matter.

【0007】本発明に従えば、吸引された大気は、CP
を全量含む空気と、FPのみを含む空気とに分級され、
各空気に含まれる浮遊粒子状物質は各別にテープ状フィ
ルタの異なる位置に連続的に捕集され、捕集された浮遊
粒子状物質は各別に連続的に検出され、これと吸引され
た大気流量とから大気中の浮遊粒子状物質の全量および
FPの量が演算され自動的に記録される。
According to the present invention, the sucked atmosphere is CP
And air containing only FP,
Suspended particulate matter contained in each air is continuously collected separately at different positions of the tape-shaped filter, and the collected suspended particulate matter is continuously detected separately, and this is taken along with the suctioned air flow rate. From this, the total amount of suspended particulate matter in the atmosphere and the amount of FP are calculated and automatically recorded.

【0008】本発明で用いる分級手段は、特に限定され
るものではないが、後述するバーチャルインパクタ(vi
rtual impactor)と呼ばれる分級器が好適に用いられ
る。
[0008] The classification means used in the present invention is not particularly limited, but may be a virtual impactor (vi) described later.
A classifier called a rtual impactor is preferably used.

【0009】また本発明は、前記検出手段が、β線吸収
方式による検出器であり、空気中の全浮遊粒子状物質の
重量と、微小浮遊粒子状物質の重量とを、それぞれ一定
時間毎に連続して検出することを特徴とする。
Further, in the present invention, the detection means is a detector based on the β-ray absorption method, and the weight of the total suspended particulate matter and the weight of the fine suspended particulate matter in the air are respectively determined at regular intervals. It is characterized by continuous detection.

【0010】本発明に従えば、検出器がβ線吸収方式で
ある。β線吸収方式は、各別にフィルタ上に捕集された
浮遊粒子状物質によるβ線の吸収量の増加から浮遊粒子
状物質の質量を各別に検出できる。β線照射の線源とな
る物質は、特に限定されるものではないが、放射線取扱
資格および届出の必要がない3.7MBq(100μC
i)の147m密封線源を用いることが好ましい。
According to the present invention, the detector is of the β-ray absorption type. In the β-ray absorption method, the mass of the suspended particulate matter can be individually detected from the increase in the amount of absorption of β-rays by the suspended particulate matter collected on the filter. The substance serving as the radiation source of the β-ray irradiation is not particularly limited, but the radiation handling qualification and notification are not required, and 3.7 MBq (100 μC
It is preferred to use the 147 Pm sealed source of i).

【0011】本発明は、一定流量の試料大気をテープ状
フィルタを介して吸引し、大気中の浮遊粒子状物質をフ
ィルタ上に捕集し、捕集した浮遊粒子状物質をβ線吸収
方式の検出器で検出する連続測定装置であって、該テー
プ状フィルタがフッ素系メンブランフィルタであること
を特徴とする浮遊粒子状物質の連続測定装置である。
According to the present invention, a sample air at a constant flow rate is sucked through a tape filter, airborne particulate matter in the air is collected on the filter, and the collected floating particulate matter is collected by a β-ray absorption method. A continuous measurement device for detecting with a detector, wherein the tape-shaped filter is a fluorine-based membrane filter, and is a continuous measurement device for suspended particulate matter.

【0012】本発明に従えば、濾過材としてテープ状フ
ッ素系メンブランフィルタが用いられる。従来の浮遊粒
子状物質測定装置の濾過材としてガラスファイバー製フ
ィルタが用いられている。ガラスファイバー製フィルタ
は、孔径が比較的大きく、粒径が1μm以下の粒子が透
過されることがある。これに対し、フッ素系メンブラン
フィルタは孔径が小さく、粒径が0.2μm程度まで捕
集できる。その他、フッ素系メンブランフィルタがガラ
スファイバー製フィルタに比し、均質に製造しやすく、
テープ状としたとき各捕集位置におけるバラツキが少な
い。
According to the present invention, a tape-like fluorine-based membrane filter is used as a filtering material. 2. Description of the Related Art A glass fiber filter is used as a filtering material of a conventional suspended particulate matter measuring device. A glass fiber filter has a relatively large pore size, and particles having a particle size of 1 μm or less may be transmitted. On the other hand, the fluorine-based membrane filter has a small pore size and can collect particles having a particle size of about 0.2 μm. In addition, compared to glass fiber filters, fluorine membrane filters are easier to manufacture homogeneously,
When in a tape shape, there is little variation at each collection position.

【0013】また本発明は、一定流量の試料大気をテー
プ状フィルタを介して吸引して、大気中の浮遊粒子状物
質をテープ状フィルタ上に連続的に捕集し、捕集した浮
遊粒子状物質をβ線吸収方式の検出器で連続的に検出
し、かつ捕集した浮遊粒子状物質に白色光を照射し、そ
の散乱光の強さから浮遊粒子状物質の元素状炭素の量を
連続的に検出することを特徴とする浮遊粒子状物質の連
続測定装置である。
Further, according to the present invention, a sample air at a constant flow rate is sucked through a tape-shaped filter, and airborne particulate matter in the air is continuously collected on the tape-shaped filter. The substance is continuously detected by a β-ray absorption type detector, and the collected suspended particulate matter is irradiated with white light, and the amount of elemental carbon in the suspended particulate matter is continuously determined from the intensity of the scattered light. This is a continuous measurement apparatus for suspended particulate matter, which is characterized in that the particulate matter is continuously detected.

【0014】本発明に従えば、検出器にβ線吸収方式と
白色光を照射し散乱光の強さを検出する光散乱方式とが
用いられる。β線吸収方式は、上述のものが用いられ、
浮遊粒子状物質が検出される。浮遊粒子状物質を捕集し
たフィルタに白色光を照射し、散乱光の強さから浮遊粒
子状物質中の元素状炭素量を検出する。元素状炭素は黒
色であり、他に黒色の浮遊粒子状物質はほとんどないの
で、この方法が有効に用いられる。浮遊粒子状物質とし
ては、全量または前記分級手段で分級したCPもしくは
FP、特にFPが対象となる。
According to the present invention, a β-ray absorption method and a light scattering method of irradiating a detector with white light and detecting the intensity of scattered light are used. The β-ray absorption method described above is used,
Suspended particulate matter is detected. The filter capturing the suspended particulate matter is irradiated with white light, and the amount of elemental carbon in the suspended particulate matter is detected from the intensity of the scattered light. This method is effectively used because elemental carbon is black and there is almost no other black suspended particulate matter. The suspended particulate matter includes the whole amount or CP or FP, particularly FP, classified by the classification means.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施の形態によっ
て、より具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments.

【0016】図1は、本発明の実施の一形態の浮遊粒子
状物質の連続測定装置1の構成を示すブロック図であ
る。本装置1に吸引された試料大気は、バーチャルイン
パクタ分級器2によってCPの全てを含む空気と、FP
のみを含む空気とに分級され、FPのみを含む空気は、
テープ状のフッ素系メンブランフィルタ3の第1の位置
3aによって濾過され、第1流量センサ4、第1圧力セ
ンサ5、第1吸引ポンプ6、第1サイレンサ7を通って
外部へ排気される。第1流量センサ4の出力は、CPU
13に送られ、予め入力された第1流量になるように、
第1流量調整器8から外気が吸引される。一方、分級器
2で分級されたCPの全てを含む空気は、フィルタ3の
第2の位置3bによって濾過され、第2流量センサ1
4、第2圧力センサ15、第2吸引ポンプ16、第2サ
イレンサ17を通って外部へ排気される。第2流量セン
サ14の流量が予め定められた第2流量に流量調整器1
8によって、同様に調整される。これによって、フィル
タ3の第1の位置3aおよび第2の位置3bには、連続
的に分級されたFPとCPとが各別に捕取される。
FIG. 1 is a block diagram showing a configuration of an apparatus 1 for continuous measurement of suspended particulate matter according to one embodiment of the present invention. The sample air sucked into the apparatus 1 is air containing all of the CP by the virtual impactor classifier 2 and FP
Classified into air containing only FP, and air containing only FP,
It is filtered by the tape-shaped fluorine-based membrane filter 3 at the first position 3a, and is exhausted to the outside through the first flow rate sensor 4, the first pressure sensor 5, the first suction pump 6, and the first silencer 7. The output of the first flow sensor 4 is a CPU
13 so that the first input flow rate is
Outside air is sucked from the first flow regulator 8. On the other hand, the air containing all of the CP classified by the classifier 2 is filtered by the second position 3b of the filter 3 and the second flow sensor 1
4. The air is exhausted to the outside through the second pressure sensor 15, the second suction pump 16, and the second silencer 17. The flow rate of the second flow rate sensor 14 is set to a predetermined second flow rate.
8, the same adjustment is performed. As a result, the FP and the CP that are continuously classified are separately captured at the first position 3a and the second position 3b of the filter 3, respectively.

【0017】フィルタ3の第1の位置3aおよび第2の
位置3bには、第1β線源9および第2β線源19から
β線が照射され、透過したβ線量が、たとえば1分毎に
連続的に検出される。検出結果は、第1プリアンプ11
および第2プリアンプ21を通してCPU13に入力さ
れる。またフィルタ3の第1の位置3aには、光源23
から光ファイバ24を介して一定強さの白色光が照射さ
れ、その反射光が光ファイバ24を介して光検出器25
で1分毎に連続的に検出され、検出結果が第3プリアン
プ26を介してCPU13に入力される。
The first position 3a and the second position 3b of the filter 3 are irradiated with β-rays from the first β-ray source 9 and the second β-ray source 19, and the transmitted β dose is continuously changed, for example, every minute. Is detected. The detection result is the first preamplifier 11
And input to the CPU 13 through the second preamplifier 21. The light source 23 is located at the first position 3a of the filter 3.
Is irradiated with white light having a constant intensity through the optical fiber 24, and the reflected light is transmitted through the optical fiber 24 to the photodetector 25.
, And the detection result is input to the CPU 13 via the third preamplifier 26.

【0018】連続してフィルタ3の第1および第2の位
置3a,3bに空気を透過させていると、第1および第
2の位置3a,3b上に捕集された浮遊粒子状分級の量
が次第に増え、空気を透過できなくなるので、一定時間
毎、たとえば1時間毎に、テープ送り機構27によって
フィルタ3が一定の長さCだけ矢符28方向に送られ、
次の測定が開始される、図2は、フィルタ3の第1の位
置3aおよび第2の位置3b近傍の平面図である。フィ
ルタ3の浮遊粒子状物質を捕集する第1の位置3aおよ
び第2の位置3bは、たとえば直径11mmの円形であ
る。フィルタ3は、テープ状であり供給ロール29に巻
かれた状態で供給され、図示しない複数のガイドローラ
によって、第1の位置3aおよび第2の位置3bに供給
され、図示しない複数のガイドローラおよび上下2個の
ローラから成るテープ送り機構27を経て、巻取ローラ
30に巻取られる。テープ送り機構27は、一定時間経
過すれば、フィルタ3を一定の長さCだけ矢符28方向
に送る。これによって、新しいフィルタ3の3a’の位
置が3aに、3b’の位置が3bに移動する。
When air is continuously transmitted to the first and second positions 3a and 3b of the filter 3, the amount of the suspended particulates collected on the first and second positions 3a and 3b is reduced. The filter 3 is fed by the tape feed mechanism 27 in the direction of the arrow 28 by a certain length C at regular time intervals, for example, every hour, because
FIG. 2 is a plan view showing the vicinity of the first position 3a and the second position 3b of the filter 3, at which the next measurement is started. The first position 3a and the second position 3b of the filter 3 for collecting suspended particulate matter are, for example, circular with a diameter of 11 mm. The filter 3 is supplied in a tape shape and wound around a supply roll 29, and is supplied to a first position 3a and a second position 3b by a plurality of guide rollers (not shown). It is wound on a winding roller 30 via a tape feed mechanism 27 composed of two upper and lower rollers. The tape feed mechanism 27 feeds the filter 3 by a certain length C in the direction of the arrow 28 after a certain time has elapsed. As a result, the position of 3a 'of the new filter 3 moves to 3a, and the position of 3b' moves to 3b.

【0019】第1および第2β線検出器10,20なら
びに光検出器25の検出結果と、フィルタ上の浮遊粒子
状物質の量との関係は、式1で計算される。 Ij=Ij-1exp(−μx) …(1)
The relationship between the detection results of the first and second β-ray detectors 10 and 20 and the photodetector 25 and the amount of suspended particulate matter on the filter is calculated by Equation 1. I j = I j−1 exp (−μx) (1)

【0020】ここにIjは、ある瞬間に浮遊粒子状物質
を捕集したフィルタを透過したβ線量またはフィルタで
反射された光量であり、Ij-1はその1分前の同じ量で
ある。またI0は、浮遊粒子状物質を捕集する前の新し
いフィルタを透過したβ線量または同フィルタで反射さ
れた光量であり、μは比例定数であり、xはフィルタの
単位面積当たりの捕集浮遊粒子状物質の量(mg/cm
2)である。μはβ線源および光源に固有の値であり、
標準物質によって予めcm2/mgの単位で求められ
る。式Iを変形して、式2を得る。
Here, I j is the β dose transmitted through the filter that traps suspended particulate matter at a certain moment or the amount of light reflected by the filter, and I j−1 is the same amount one minute before. . I 0 is the β dose transmitted through a new filter before trapping suspended particulate matter or the amount of light reflected by the filter, μ is a proportionality constant, and x is the trapping per unit area of the filter. Amount of suspended particulate matter (mg / cm
2 ). μ is a value specific to the β-ray source and the light source,
It is determined in advance in the unit of cm 2 / mg by the standard substance. Modification of Equation I gives Equation 2.

【0021】[0021]

【数1】 (Equation 1)

【0022】式2からIjとIj-1との比を求めることに
よって、たとえば1分間に捕集されたフィルタの単位面
積当たりの浮遊粒子状物質の量が計算でき、これに第1
の位置の面積(これは第2の位置の面積に等しく、直径
が11mmの場合、約0.95cm2となる)を掛けれ
ば、1分間に捕集された浮遊粒子状物質の量(mg/m
in)が計算できる。
By calculating the ratio between I j and I j-1 from Equation 2, for example, the amount of suspended particulate matter per unit area of the filter collected in one minute can be calculated.
(Which is equal to the area of the second position, which is about 0.95 cm 2 for a diameter of 11 mm), the amount of suspended particulate matter collected in one minute (mg / m
in) can be calculated.

【0023】次に、本実施の形態で用いたバーチャルイ
ンパクタ分級器2の構成およびフィルタ3の第1の位置
3aおよび第2の位置3bを透過する空気量について説
明する。図3は、バーチャルインパクタ分級器2の構成
を説明するための断面図である。バーチャルインパクタ
分級器2は、ノズル部40と、集気部45と、外管部5
0とから構成される。ノズル部40は、空気を噴出し、
内径D0を有する円形の噴出口41と、噴出口41に連
なり、長さTの円筒部42と、円筒部42に連なる縮管
部43とから成り、空気がスムーズに噴出口41から噴
出される。集気部45は、ノズル部41の軸線と同一の
軸線と、前記D0よりも大きい内径D1とを有する円筒状
の隔壁46によって囲まれ、噴出口41と隔壁46の先
端とは長さSの間隔で対峙している。外管部50は、隔
壁46より充分大きい内径の外管51によって囲まれ、
図1に示す排出口52を有している。排出口52および
集気部45は、第1および第2吸引ポンプ6,16に接
続され、噴出口41から噴出された空気Q0をQ1と(Q
0−Q1)との割合に分配する。噴出口41から噴出され
る空気がレイノズル数約10,000に相当する線速
(20,000〜25,000m/min)で噴出され
ると、空気中の微粒子60は、流線に沿って流れ、前記
空気の流量割合に応じて外管部50(主流)と集気部4
5(二次流)とに配分される。これに対し粗粒子61
は、その慣性力のため、ほとんど全部二次流に入る。前
記D1/D0,S/D0,T/D0,Q1/Q0を適当に定め
れば、CPのほとんど全部が二次流に入る分級器2を得
ることができる。D0=3.912mm,D1/D0
1.28,S/D0=1.0,T/D0=2.0,Q0
27.7l/min,Q1/Q0=0.10の条件でバー
チャルインパクタ分級器2を運転して、粒子径1〜10
μmの浮遊粒子状物質を含む空気を分級した。結果を図
4に示す。図4に示すように、前記条件でバーチャルイ
ンパクタ分級器2を運転したとき、粒径2.5μmで完
全に分級されるものではないが、主流と二次流との分級
曲線が、大略粒径2.5μmの位置で交わり、大略粒径
2.5μmで分級されている。分級が正確に行われるた
めに、第1および第2流量センサ4,14で、分級器2
で主流および二次流の空気流量が監視され、これが予め
定めた量、すなわち(Q0−Q1)およびQ1になるよう
に、第1および第2流量調整器8,18で調整される。
Next, the configuration of the virtual impactor classifier 2 used in the present embodiment and the amount of air passing through the first position 3a and the second position 3b of the filter 3 will be described. FIG. 3 is a cross-sectional view for explaining the configuration of the virtual impactor classifier 2. The virtual impactor classifier 2 includes a nozzle unit 40, an air collecting unit 45, and an outer tube unit 5.
0. The nozzle part 40 gushes air,
A circular jet port 41 having an inner diameter D 0 , a cylindrical portion 42 connected to the jet port 41 and having a length T, and a constricted tube portion 43 connected to the cylindrical portion 42, and air is smoothly jetted from the jet port 41. You. Gas collector portion 45 is surrounded by a cylindrical partition wall 46 having the same axis and the axis of the nozzle portion 41, and a larger inner diameter D 1 than the D 0, length and the tip of the spout 41 and the partition wall 46 They face each other at intervals of S. The outer tube portion 50 is surrounded by an outer tube 51 having an inner diameter sufficiently larger than the partition wall 46,
It has a discharge port 52 shown in FIG. The discharge port 52 and the air collecting section 45 are connected to the first and second suction pumps 6 and 16, and the air Q 0 jetted from the jet port 41 is changed to Q 1 and (Q
0- Q 1 ). When the air ejected from the ejection port 41 is ejected at a linear velocity (20,000 to 25,000 m / min) corresponding to about 10,000 Reynold nozzles, the fine particles 60 in the air flow along the streamline. The outer tube 50 (main stream) and the air collecting unit 4 are arranged in accordance with the flow rate of the air.
5 (secondary flow). On the other hand, coarse particles 61
Almost all enter the secondary flow due to their inertia. Be determined the D 1 / D 0, S / D 0, T / D 0, Q 1 / Q 0 appropriately, it is possible to obtain the classifier 2 almost all the CP enters the secondary flow. D 0 = 3.912 mm, D 1 / D 0 =
1.28, S / D 0 = 1.0, T / D 0 = 2.0, Q 0 =
27.7l / min, driving a virtual impactor classifier 2 under the condition of Q 1 / Q 0 = 0.10, particle size 1-10
The air containing μm suspended particulate matter was classified. FIG. 4 shows the results. As shown in FIG. 4, when the virtual impactor classifier 2 is operated under the above conditions, the classification is not completely performed with the particle size of 2.5 μm. They meet at a position of 2.5 μm, and are roughly classified with a particle size of 2.5 μm. In order for the classification to be performed accurately, the first and second flow sensors 4 and 14 use the classifier 2
The main flow and the secondary flow are monitored by the first and second flow regulators 8 and 18 so that they become predetermined amounts, that is, (Q 0 -Q 1 ) and Q 1. .

【0024】実際に演算される浮遊粒子状物質の量は、
空気量Q0に対するFP全量(以下、PM2.5量とい
う)、FP中の元素状炭素量(以下、PM2.5C量と
いう)および全浮遊粒子状物質量(以下、TPS量とい
う)であり、これは先に計算されたFP量、FPC量
(FP中の元素状炭素量)およびCP量から、次の式3
で計算される。 PM2.5=Q0/(Q0−Q1)×FP PM2.5C=Q0/(Q0−Q1)×FPC …(3) TPS=FP+CF
The amount of suspended particulate matter actually calculated is:
FP total amount to air amount Q 0 (hereinafter, referred to as PM2.5 amount), elemental carbon content in the FP (hereinafter PM2.5C amount hereinafter) and total suspended particulate matter amount (hereinafter, referred to as TPS weight), and From the FP amount, FPC amount (elemental carbon amount in FP) and CP amount calculated previously, the following equation 3
Is calculated. PM2.5 = Q 0 / (Q 0 -Q 1) × FP PM2.5C = Q 0 / (Q 0 -Q 1) × FPC ... (3) TPS = FP + CF

【0025】空気中のPM2.5,PM2.5C,TP
Sの空気中の含有量を算出するために1分間に流れた空
気量Q0を基準状態、たとえば0℃1気圧に換算する必
要がある。このために第1および第2流量センサ4,1
4の後に設けた第1および第2圧力センサ5,15によ
って圧力を、また温度センサ31によって温度を測定
し、第1および第2流量センサ4,14の実測値を1分
毎に基準状態の流量に換算している。これらの計算はC
PU13の演算部で行われ、その結果は記録計32に記
録される。
PM2.5, PM2.5C, TP in air
In order to calculate the content of S in the air, it is necessary to convert the amount of air Q 0 flowing in one minute to a reference state, for example, 0 ° C. and 1 atm. For this purpose, the first and second flow sensors 4, 1
The pressure is measured by the first and second pressure sensors 5 and 15 provided after the pressure sensor 4, and the temperature is measured by the temperature sensor 31. The measured values of the first and second flow sensors 4 and 14 are set to the reference state every minute. It is converted to flow rate. These calculations are C
The calculation is performed by the operation unit of the PU 13, and the result is recorded in the recorder 32.

【0026】図5は、CPU13の動作を説明するため
のフローチャートである。テープ送り機構27の作動に
よって、フィルタ3の第1および第2の位置3a,3b
に新しいフィルタ面が来て、ステップS0でスタートす
る。ステップS1でj=0に設定され、ステップS2で
0が検出される。ステップS3で第1および第2吸引
ポンプ6,16が運転され、第1および第2流量センサ
4,14の出力が(Q 0−Q1)がQ1になるように第1
および第2流量調整器8,18で流量調整される。ステ
ップS4でj=j+1とされ、ステップS5でj+1=
60か否かが判断され、これが否定されると、ステップ
S6に進み、Ij+1が検出される。ステップS7でIj+1
/Ijの比が計算され、ステップS8で、上に述べた演
算手法でPM2.5、PM2.5CおよびTPSが演算
され、ステップS9で演算結果が記録計32に記録さ
れ、ステップS4に戻る。ステップS5でj+1=60
になれば、すなわち1時間経過すればステップS10で
第1および第2吸引ポンプ4,14が停止し、ステップ
S11で一連の測定が終了する。テープ送り機構27を
作動させて、次の測定がスタートする。
FIG. 5 illustrates the operation of the CPU 13.
It is a flowchart of FIG. For operation of the tape feed mechanism 27
Therefore, the first and second positions 3a, 3b of the filter 3
A new filter surface comes and starts at step S0
You. In step S1, j = 0 is set, and in step S2
I0Is detected. First and second suction in step S3
The pumps 6 and 16 are operated and the first and second flow sensors
The output of 4,14 is (Q 0−Q1) Is Q1First to be
And the flow rate is adjusted by the second flow rate adjusters 8 and 18. Stay
In step S4, j = j + 1 is set, and in step S5, j + 1 =
It is determined whether it is 60 or not, and if this is denied, the step
Go to S6, Ij + 1Is detected. In step S7, Ij + 1
/ IjIs calculated, and in step S8, the performance described above is performed.
Calculation of PM2.5, PM2.5C and TPS
In step S9, the calculation result is recorded in the recorder 32.
Then, the process returns to step S4. J + 1 = 60 in step S5
, That is, if one hour has elapsed, the process proceeds to step S10.
Steps 1 and 2 of the first and second suction pumps are stopped.
A series of measurements ends in S11. Tape feed mechanism 27
Activate to start the next measurement.

【0027】図6は、図1に示す浮流粒子状物質の連続
測定装置1を用いて、大気中の浮遊粒子状物質を2日間
連続測定した結果の一例を示すグラフである。実際の測
定結果では全浮遊粒子状物質TPSが記録されている
が、微小浮遊粒子状物質の量を表す曲線と重なる部分が
多く見難いため、図6ではTPS−PM2.5の量を粗
大浮遊粒子状物質量として記した。
FIG. 6 is a graph showing an example of the result of continuous measurement of airborne particulate matter in the air for two days using the apparatus for continuously measuring floating particulate matter 1 shown in FIG. In the actual measurement results, the total suspended particulate matter TPS is recorded. However, it is difficult to see many portions overlapping the curve representing the amount of fine suspended particulate matter. Expressed as the amount of particulate matter.

【0028】[0028]

【発明の効果】以上のように本発明によれば、分級器に
よってCPの全てを含む空気と、CPを含まずFPのみ
を含む空気とに分級され、各々の空気が連続してテープ
状フィルタの異なる位置を透過して吸引される。これに
よって、テープ状フィルタの異なる位置に捕集された浮
遊粒子状物質の量が各別に連続自動的に測定され、これ
とフィルタを透過した大気量の積算値とから大気中の浮
遊粒子状物質の含有量と、微小浮遊粒子状物質の含有量
とが各別に連続自動的に記録される。これによって、人
の健康に影響を及ぼす微小浮遊粒子状物質を別に連続自
動的に測定できる。
As described above, according to the present invention, the classifier classifies the air containing all of the CP and the air containing only the FP without containing the CP, and each air is continuously filtered into a tape filter. Is sucked through different positions. As a result, the amount of suspended particulate matter collected at different positions on the tape-shaped filter is continuously and automatically measured, and based on this and the integrated value of the amount of air transmitted through the filter, the amount of suspended particulate matter in the atmosphere is determined. , And the content of the fine suspended particulate matter are continuously and automatically recorded separately. Thereby, it is possible to continuously and automatically measure the minute suspended particulate matter which affects human health.

【0029】さらに微小浮遊粒子状物質の測定をβ線吸
収方式と光散乱方式とによって行い、これによって人の
健康に大きく影響し、ディーゼル車が主排出源と考えら
れる元素状炭素量を別に連続自動的に測定できる。
Further, the measurement of minute suspended particulate matter is performed by the β-ray absorption method and the light scattering method, which greatly affects human health, and the amount of elemental carbon which is considered to be the main emission source by diesel vehicles is continuously measured. Can be measured automatically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態である浮遊粒子状物質の
連続測定装置1のブロック図である。
FIG. 1 is a block diagram of an apparatus 1 for continuous measurement of suspended particulate matter according to an embodiment of the present invention.

【図2】テープ状のフッ素系メンブランフィルタ3の捕
集位置(第1の位置3aおよび第2の位置3b)近傍の
平面図である。
FIG. 2 is a plan view showing the vicinity of a collection position (a first position 3a and a second position 3b) of a tape-shaped fluorine-based membrane filter 3.

【図3】バーチャルインパクタ分級器2の断面図であ
る。
FIG. 3 is a cross-sectional view of the virtual impactor classifier 2.

【図4】バーチャルインパクタ分級器2による分級の一
例を示すグラフである。
FIG. 4 is a graph showing an example of classification by the virtual impactor classifier 2.

【図5】CPU15の動作を説明するためのフローチャ
ートである。
FIG. 5 is a flowchart for explaining the operation of the CPU 15;

【図6】本装置1を使用して空気中の浮遊粒子状物質を
測定したときの記録計の表示の一例である。
FIG. 6 is an example of a display of a recorder when the suspended particulate matter in the air is measured using the present apparatus 1.

【図7】都市部における空気中の浮遊粒子状物質の粒径
分布を示すグラフである。
FIG. 7 is a graph showing a particle size distribution of suspended particulate matter in air in an urban area.

【符号の説明】[Explanation of symbols]

1 浮遊粒子状物質測定装置 2 バーチャルインパクタ分級器 3 テープ状のフッ素メンブランフィルタ 3a 第1の位置 3b 第2の位置 4,14 流量センサ 5,15 圧力センサ 6,16 吸引ポンプ 8,18 流量調整器 9,19 β線源 10,20 β線検出器 13 CPU 23 白色光源 24 ガラスファイバ 25 光検出器 27 テープ送り機構 31 温度センサ 32 記録計 Reference Signs List 1 Suspended particulate matter measuring device 2 Virtual impactor classifier 3 Tape-like fluorine membrane filter 3a First position 3b Second position 4,14 Flow sensor 5,15 Pressure sensor 6,16 Suction pump 8,18 Flow controller 9, 19 β-ray source 10, 20 β-ray detector 13 CPU 23 White light source 24 Glass fiber 25 Photodetector 27 Tape feed mechanism 31 Temperature sensor 32 Recorder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 15/06 G01N 15/06 C (72)発明者 袖山 恵司 大阪府大阪市天王寺区舟橋町3番1号 紀 本電子工業株式会社内 Fターム(参考) 4D021 FA14 FA15 GA02 GA03 GA12 GA27 GA29 GB10 HA10 4D058 JA24 JB14 JB23 KD10 NA01 PA03 QA01 QA06 SA20 UA25──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) G01N 15/06 G01N 15/06 C (72) Inventor Keiji Soedama 3-1, Funabashi-cho, Tennoji-ku, Osaka-shi, Osaka No. Kimoto Electronics Co., Ltd. F-term (reference) 4D021 FA14 FA15 GA02 GA03 GA12 GA27 GA29 GB10 HA10 4D058 JA24 JB14 JB23 KD10 NA01 PA03 QA01 QA06 SA20 UA25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一定流量の試料大気を吸引し、粒子径が
2.5μmを超える粗大浮遊粒子状物質の全てを含む空
気と、粗大浮遊粒子状物質を含まず粒子径が2.5μm
以下の微小浮遊粒子状物質のみを含む空気とに浮遊粒子
状物質を分級する分級手段と、 テープ状フィルタの異なる位置を介して、分級手段によ
って分級された粗大浮遊粒子状物質の全てを含む空気
と、微小浮遊粒子状物質のみを含む空気とを各別に吸引
して、分級された浮遊粒子状物質を各別に連続的に捕集
する捕集手段と、 捕集手段によってテープ状フィルタの異なる位置に捕集
された浮遊粒子状物質の量を、それぞれ連続して検出す
る検出手段と、 検出手段の出力と、吸引大気流量の積算値とから大気中
の全浮遊粒子状物質の量と、微小浮遊粒子状物質の量と
を演算して自動的に記録する演算記録手段とを含むこと
を特徴とする浮遊粒子状物質の連続測定装置。
1. A sample air having a constant flow rate is suctioned, and air containing all of the large suspended particulate matter having a particle diameter of more than 2.5 μm, and air having a particle diameter of 2.5 μm containing no large suspended particulate matter are included.
Classification means for classifying suspended particulate matter into the following air containing only small suspended particulate matter, and air containing all of the large suspended particulate matter classified by the classification means through different positions of the tape filter Collecting means for sucking air containing only minute suspended particulate matter separately and continuously collecting the classified suspended particulate matter, and different positions of the tape-shaped filter by the collecting means. Detecting means for continuously detecting the amount of suspended particulate matter trapped in the air, the output of the detecting means, and the integrated value of the suctioned atmospheric flow rate, the amount of all suspended particulate matter in the atmosphere, And a calculation recording means for calculating and automatically recording the amount of the suspended particulate matter, and a continuous measurement apparatus for the suspended particulate matter.
【請求項2】 前記検出手段が、β線吸収方式による検
出器であり、大気中の全浮遊粒子状物質の重量と、微小
浮遊粒子状物質の重量とを、それぞれ検出することを特
徴とする請求項1記載の浮遊粒子状物質の連続測定装
置。
2. The method according to claim 1, wherein the detecting means is a detector based on a β-ray absorption method, and detects the weight of all suspended particulate matter and the weight of fine suspended particulate matter in the atmosphere. The continuous measurement apparatus for suspended particulate matter according to claim 1.
【請求項3】 一定流量の試料大気をテープ状フィルタ
を介して吸引し、大気中の浮遊粒子状物質をフィルタ上
に捕集し、捕集した浮遊粒子状物質をβ線吸収方式の検
出器で検出する連続測定装置であって、 該テープ状フィルタがフッ素系メンブランフィルタであ
ることを特徴とする浮遊粒子状物質の連続測定装置。
3. A sample air at a constant flow rate is sucked through a tape filter, airborne particulate matter in the air is collected on the filter, and the collected airborne particulate matter is detected by a β-ray absorption type detector. A continuous measurement device for suspended particulate matter, wherein the tape-shaped filter is a fluorine-based membrane filter.
【請求項4】 一定流量の試料大気をテープ状フィルタ
を介して吸引して、大気中の浮遊粒子状物質をテープ状
フィルタ上に連続的に捕集し、捕集した浮遊粒子状物質
をβ線吸収方式の検出器で連続的に検出し、かつ捕集し
た浮遊粒子状物質に白色光を照射し、その散乱光の強さ
から浮遊粒子状物質の元素状炭素の量を連続的に検出す
ることを特徴とする浮遊粒子状物質の連続測定装置。
4. A sample air at a constant flow rate is suctioned through a tape-shaped filter, and airborne particulate matter in the air is continuously collected on the tape-shaped filter. Continuous detection with a line-absorption detector, irradiates the collected suspended particulate matter with white light, and continuously detects the amount of elemental carbon in the suspended particulate matter from the intensity of the scattered light. A continuous measuring apparatus for suspended particulate matter.
JP2000162942A 2000-05-31 2000-05-31 Continuous measurement system for suspended particulate matter Expired - Lifetime JP3574045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162942A JP3574045B2 (en) 2000-05-31 2000-05-31 Continuous measurement system for suspended particulate matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162942A JP3574045B2 (en) 2000-05-31 2000-05-31 Continuous measurement system for suspended particulate matter

Publications (2)

Publication Number Publication Date
JP2001343319A true JP2001343319A (en) 2001-12-14
JP3574045B2 JP3574045B2 (en) 2004-10-06

Family

ID=18666777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162942A Expired - Lifetime JP3574045B2 (en) 2000-05-31 2000-05-31 Continuous measurement system for suspended particulate matter

Country Status (1)

Country Link
JP (1) JP3574045B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003900A (en) * 2002-06-03 2004-01-08 Horiba Ltd Apparatus for measuring concentration of suspended particulate matter
JP2004144664A (en) * 2002-10-25 2004-05-20 Horiba Ltd Suspended particulate matter concentration measuring instrument
JP2004177347A (en) * 2002-11-28 2004-06-24 Shimadzu Corp Capturing device and measuring device for suspended particulate matter in atmosphere
JP2004205491A (en) * 2002-08-16 2004-07-22 Horiba Ltd Apparatus for measuring concentration of suspended particulate matter, and filter tape for use in measuring concentration of the suspended particulate matter
JP2004333465A (en) * 2003-04-16 2004-11-25 Horiba Ltd Filter for collecting suspended particulate matter in atmospheric air
JP2005114664A (en) * 2003-10-10 2005-04-28 Rion Co Ltd Device for particle detection
JP2005144317A (en) * 2003-11-14 2005-06-09 Horiba Ltd Filter for trapping granular substance and granular substance sampler using the same
JP2005189240A (en) * 2003-12-05 2005-07-14 Dkk Toa Corp Measuring instrument for suspended particulate substance
JP2006003090A (en) * 2004-06-15 2006-01-05 Dkk Toa Corp Suspended particulate matter measurement device
JP2006511822A (en) * 2002-12-18 2006-04-06 ハンブルガー,ロベルト,エヌ. Airborne pathogen detection system and method
JP2006162343A (en) * 2004-12-03 2006-06-22 Kimoto Denshi Kogyo Kk Measuring device for suspended particulate matter
JP2008261712A (en) * 2007-04-11 2008-10-30 Kimoto Denshi Kogyo Kk System for measuring suspended particular substance
JP2009031227A (en) * 2007-07-30 2009-02-12 Kimoto Denshi Kogyo Kk Device for measuring suspended particular substances
JP2009180609A (en) * 2008-01-30 2009-08-13 Nippon Steel Corp Continuous collection apparatus for atmospheric fallout
JP2010501847A (en) * 2006-08-21 2010-01-21 ファイ インスツルメンツ エス.アール.エル Apparatus and method for environmental monitoring
US20100027013A1 (en) * 2008-08-04 2010-02-04 Hansen Anthony D A Method and apparatus for the analysis of materials
JP2010096746A (en) * 2008-09-16 2010-04-30 Kimoto Denshi Kogyo Kk Floating particle measurement device and floating particle measurement method using it
JP2010145310A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Particulate matter capturing device and particulate matter measuring device
CN102062706A (en) * 2010-12-22 2011-05-18 北京大学 Passive sampling device for atmospheric particulates
JP2011169903A (en) * 2010-02-22 2011-09-01 Hamilton Sundstrand Corp Air monitoring apparatus
US8012231B2 (en) 2003-04-16 2011-09-06 Horiba, Ltd. Particulate matter analyzer, collecting filter and system for analyzing and collecting samples from fluids
JP2014508294A (en) * 2011-02-14 2014-04-03 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド Apparatus and method for monitoring the presence, generation and growth of particulates in chemical or physical reaction systems
CN103712898A (en) * 2013-07-30 2014-04-09 戴艺 Atmosphere suspended particulate matter mass concentration detector
CN104034000A (en) * 2014-06-18 2014-09-10 南京清车电气科技有限公司 Public infrastructure based PM2.5 purification device having PM2.5 detection function
CN104359814A (en) * 2014-10-31 2015-02-18 成都远控科技有限公司 Visible PM2.5-capture environment monitoring device
CN104535468A (en) * 2015-01-21 2015-04-22 苏州大学 Device and method for measuring PM2.5 concentration based on nonwoven fabric resistance method
CN104658217A (en) * 2013-11-18 2015-05-27 爱国者电子科技有限公司 Air quality detecting terminal with mobile communication function and transmission method
US9157871B2 (en) 2012-07-11 2015-10-13 Met One Instruments, Inc. Method and apparatus to enhance collection of particles in particulate mass measurement device
CN105135638A (en) * 2015-09-18 2015-12-09 广州金田瑞麟净化设备制造有限公司 Indoor air monitoring processor with PM2.5 detection function
JP2016142722A (en) * 2015-02-05 2016-08-08 新日鐵住金株式会社 Fine particle sampling method, and fine particle analysis method
US9671324B2 (en) 2014-04-24 2017-06-06 Aerosol D.O.O. Method and apparatus to compensate analytical devices that collect constituents of interest on a filter for the effect of filter loading
JP2018077177A (en) * 2016-11-11 2018-05-17 アズビル株式会社 Particle detection system and particle detection method
KR20190020262A (en) * 2017-08-18 2019-02-28 순천향대학교 산학협력단 measuring apparatus for suspended particulates
US10527596B2 (en) 2015-11-26 2020-01-07 Fujitsu Limited Calculation device and calculation method
CN115326660A (en) * 2022-08-29 2022-11-11 中国矿业大学 Filter membrane belt type light absorption direct-reading dust determinator and determination method
JP7333979B1 (en) 2022-07-14 2023-08-28 紀本電子工業株式会社 Airborne particle collection method and airborne particle continuous measurement device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416141B1 (en) 2009-04-01 2019-01-16 Nippon Steel & Sumitomo Metal Corporation Horizontal component catcher of dustfall in atmosphere and measuring method of horizontal component
WO2010113520A1 (en) 2009-04-01 2010-10-07 新日本製鐵株式会社 Device and method for continuously measuring horizontal flux of falling particulate matter in atmosphere
CN107271458A (en) * 2017-06-29 2017-10-20 苏州浪声科学仪器有限公司 PM2.5 on-line analysis systems
CN107655800B (en) * 2017-10-09 2021-04-02 上海迪勤智能科技有限公司 PM2.5 online monitoring system and checking and calibrating method thereof
CN107917862B (en) * 2017-12-29 2020-08-14 安徽蓝盾光电子股份有限公司 Beta ray method particulate matter monitoring devices with automatic early warning function
CN108169088A (en) * 2017-12-29 2018-06-15 南京点耐特信息科技有限公司 A kind of fine particle monitoring alarm based on wireless charging

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003900A (en) * 2002-06-03 2004-01-08 Horiba Ltd Apparatus for measuring concentration of suspended particulate matter
JP2004205491A (en) * 2002-08-16 2004-07-22 Horiba Ltd Apparatus for measuring concentration of suspended particulate matter, and filter tape for use in measuring concentration of the suspended particulate matter
JP2004144664A (en) * 2002-10-25 2004-05-20 Horiba Ltd Suspended particulate matter concentration measuring instrument
JP2004177347A (en) * 2002-11-28 2004-06-24 Shimadzu Corp Capturing device and measuring device for suspended particulate matter in atmosphere
JP2006511822A (en) * 2002-12-18 2006-04-06 ハンブルガー,ロベルト,エヌ. Airborne pathogen detection system and method
JP2004333465A (en) * 2003-04-16 2004-11-25 Horiba Ltd Filter for collecting suspended particulate matter in atmospheric air
US8012231B2 (en) 2003-04-16 2011-09-06 Horiba, Ltd. Particulate matter analyzer, collecting filter and system for analyzing and collecting samples from fluids
JP2005114664A (en) * 2003-10-10 2005-04-28 Rion Co Ltd Device for particle detection
JP2005144317A (en) * 2003-11-14 2005-06-09 Horiba Ltd Filter for trapping granular substance and granular substance sampler using the same
JP4617149B2 (en) * 2003-12-05 2011-01-19 東亜ディーケーケー株式会社 Airborne particulate matter measurement device
JP2005189240A (en) * 2003-12-05 2005-07-14 Dkk Toa Corp Measuring instrument for suspended particulate substance
JP2006003090A (en) * 2004-06-15 2006-01-05 Dkk Toa Corp Suspended particulate matter measurement device
JP2006162343A (en) * 2004-12-03 2006-06-22 Kimoto Denshi Kogyo Kk Measuring device for suspended particulate matter
JP2010501847A (en) * 2006-08-21 2010-01-21 ファイ インスツルメンツ エス.アール.エル Apparatus and method for environmental monitoring
KR101309973B1 (en) 2006-08-21 2013-09-17 파이 인스트루먼츠 에스.알.엘. Apparatus and method for environmental monitoring
JP2008261712A (en) * 2007-04-11 2008-10-30 Kimoto Denshi Kogyo Kk System for measuring suspended particular substance
JP2009031227A (en) * 2007-07-30 2009-02-12 Kimoto Denshi Kogyo Kk Device for measuring suspended particular substances
JP2009180609A (en) * 2008-01-30 2009-08-13 Nippon Steel Corp Continuous collection apparatus for atmospheric fallout
US20100027013A1 (en) * 2008-08-04 2010-02-04 Hansen Anthony D A Method and apparatus for the analysis of materials
US8411272B2 (en) * 2008-08-04 2013-04-02 Magee Scientific Corporation Method and apparatus for the analysis of materials
JP2010096746A (en) * 2008-09-16 2010-04-30 Kimoto Denshi Kogyo Kk Floating particle measurement device and floating particle measurement method using it
JP2014122915A (en) * 2008-09-16 2014-07-03 Kimoto Denshi Kogyo Kk Suspended particulate matter measuring device and suspended particulate matter measuring method using the same
JP2010145310A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Particulate matter capturing device and particulate matter measuring device
JP2011169903A (en) * 2010-02-22 2011-09-01 Hamilton Sundstrand Corp Air monitoring apparatus
CN102062706A (en) * 2010-12-22 2011-05-18 北京大学 Passive sampling device for atmospheric particulates
JP2014508294A (en) * 2011-02-14 2014-04-03 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド Apparatus and method for monitoring the presence, generation and growth of particulates in chemical or physical reaction systems
US9157871B2 (en) 2012-07-11 2015-10-13 Met One Instruments, Inc. Method and apparatus to enhance collection of particles in particulate mass measurement device
CN103712898A (en) * 2013-07-30 2014-04-09 戴艺 Atmosphere suspended particulate matter mass concentration detector
CN104658217A (en) * 2013-11-18 2015-05-27 爱国者电子科技有限公司 Air quality detecting terminal with mobile communication function and transmission method
US9671324B2 (en) 2014-04-24 2017-06-06 Aerosol D.O.O. Method and apparatus to compensate analytical devices that collect constituents of interest on a filter for the effect of filter loading
CN104034000A (en) * 2014-06-18 2014-09-10 南京清车电气科技有限公司 Public infrastructure based PM2.5 purification device having PM2.5 detection function
CN104359814B (en) * 2014-10-31 2018-02-16 成都远控科技有限公司 A kind of visual candid photograph PM2.5 environment monitors
CN104359814A (en) * 2014-10-31 2015-02-18 成都远控科技有限公司 Visible PM2.5-capture environment monitoring device
CN104535468A (en) * 2015-01-21 2015-04-22 苏州大学 Device and method for measuring PM2.5 concentration based on nonwoven fabric resistance method
JP2016142722A (en) * 2015-02-05 2016-08-08 新日鐵住金株式会社 Fine particle sampling method, and fine particle analysis method
CN105135638A (en) * 2015-09-18 2015-12-09 广州金田瑞麟净化设备制造有限公司 Indoor air monitoring processor with PM2.5 detection function
US10527596B2 (en) 2015-11-26 2020-01-07 Fujitsu Limited Calculation device and calculation method
JP2018077177A (en) * 2016-11-11 2018-05-17 アズビル株式会社 Particle detection system and particle detection method
KR20190020262A (en) * 2017-08-18 2019-02-28 순천향대학교 산학협력단 measuring apparatus for suspended particulates
KR101978406B1 (en) 2017-08-18 2019-05-16 순천향대학교 산학협력단 measuring apparatus for suspended particulates
JP7333979B1 (en) 2022-07-14 2023-08-28 紀本電子工業株式会社 Airborne particle collection method and airborne particle continuous measurement device
CN115326660A (en) * 2022-08-29 2022-11-11 中国矿业大学 Filter membrane belt type light absorption direct-reading dust determinator and determination method

Also Published As

Publication number Publication date
JP3574045B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
JP2008261712A (en) System for measuring suspended particular substance
US5932795A (en) Methods and apparatus for continuous ambient particulate mass monitoring
US7298486B2 (en) Aerosol mobility size spectrometer
US3868222A (en) High resolution geochemical prospecting method and apparatus
JP4839069B2 (en) Airborne particulate matter measurement device
Cheng et al. Characterization of diesel exhaust in a chronic inhalation study
US7682426B2 (en) Method and device for the detection, characterization and/or elimination of suspended particles
JP2009031227A (en) Device for measuring suspended particular substances
JP2006003090A (en) Suspended particulate matter measurement device
JP2011013157A (en) Measuring device of suspended particulate matter, and preservation device of the suspended particulate matter
CN105092441A (en) Fine particle matter measuring device and measuring method
EP0231602A2 (en) Method and apparatus for monitoring the radioactivity concentration of airborne actinide particles
KR102332142B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
Furuuchi et al. Development of a personal sampler for evaluating exposure to ultrafine particles
Kiss et al. Bias caused by water adsorption in hourly PM measurements
JP2002357532A (en) Floating particle-like substance measuring apparatus
JP2013061254A (en) Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method
CN107271339A (en) Fine grained on-line analysis device
JP2005134270A (en) Particulate matter analyzer
JP2017102008A (en) Microparticulate substance analysis device
WO2021193753A1 (en) Diluter, analysis system, and analysis method
JP2007255939A (en) Instrument of measuring suspended particulate matter
JPH04331352A (en) Particulate analysis device
CN203929580U (en) A kind of laser light scattering device for detection of fine particle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Ref document number: 3574045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term