JPH025242B2 - - Google Patents

Info

Publication number
JPH025242B2
JPH025242B2 JP57058071A JP5807182A JPH025242B2 JP H025242 B2 JPH025242 B2 JP H025242B2 JP 57058071 A JP57058071 A JP 57058071A JP 5807182 A JP5807182 A JP 5807182A JP H025242 B2 JPH025242 B2 JP H025242B2
Authority
JP
Japan
Prior art keywords
interference
light
measured
optical path
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57058071A
Other languages
Japanese (ja)
Other versions
JPS58176511A (en
Inventor
Yoshitada Oshida
Tetsuya Kamioka
Tsutomu Kuze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57058071A priority Critical patent/JPS58176511A/en
Publication of JPS58176511A publication Critical patent/JPS58176511A/en
Publication of JPH025242B2 publication Critical patent/JPH025242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To enable the measurement with high accuracy, by changing the state of polarization in at least one optical path of bisected beams of light so as to vary the state of polarization of both beams in an optical path for generation of an interference pattern and making the intensity of light of both beams after passage through an analyzer roughly constant. CONSTITUTION:The exit surface 31 of the 2nd collimator of an interference device is a plane, and is a beam splitter through which a part of beam passes and from which a part of the beam reflects. An object 51 to be measured of a transmission type is inserted after the passage through the beams splitter. The light transmitted through the same passes through a polarization plate 42 and is then reflected on a reference plane mirror 53. The reflected light is reflected together with the light reflected on the splitter 31 by a beam splitter 300 and the reflected light is transmitted through an analyzer 7 in an optical path for generation of an interference 13 so that both beams of the light interfere with each other. The intensities of both beams are thus made equal, the max. contrast is obtained, and the measurement of high accuracy is easily realized.

Description

【発明の詳細な説明】 本発明は物体の平面度、球面度或いはレンズの
性能等を測定する干渉方法およびその装置、特に
反射率や透過率が異なる種々の被測定物を高精度
に測定する干渉方法および干渉装置に関するもの
である。
[Detailed Description of the Invention] The present invention relates to an interference method and apparatus for measuring the flatness, sphericity, or lens performance of an object, particularly for measuring various objects with different reflectances and transmittances with high precision. The present invention relates to an interference method and an interference device.

従来干渉装置を用いて平面や球面を測定する干
渉装置があつたが、透過率や反射率が異なる被測
定物を測定する場合、可干渉光を2分するビーム
スプリツタの分離比が異なる数種類のビームスプ
リツタを用意し、被測定物の透過率や反射率が変
るたびに異なるビームスプリツタを用い、両光の
干渉パターン発生光路中での光強度比がほぼ等し
くなるようにしていた。又、2分した一方の光路
に、光量を減衰させるフイルタを挿入していた。
しかしこのような方法では高精度測定を行おうと
する場合以下に示すような不都合が生じる。
Conventional interference devices have been used to measure flat or spherical surfaces, but when measuring objects with different transmittances and reflectances, several types of beam splitters with different separation ratios are used to split the coherent light into two. A different beam splitter was prepared each time the transmittance or reflectance of the object to be measured changed, so that the light intensity ratio of both lights in the interference pattern generation optical path was approximately equal. In addition, a filter was inserted into one of the two divided optical paths to attenuate the amount of light.
However, when attempting to perform high-precision measurement with this method, the following disadvantages occur.

測定精度λ/10以上にしようとすると、測定光
学系に用いている光学部品、例えばビームスプリ
ツタや、参照光路中の鏡の面精度は、測定精度程
度であるため、干渉パターンから被測定物の面精
度測定結果は、その影響を受けλ/5程度以上の
測定精度は得られなくなる。そこで本発明者らが
出願している特許(特願昭55−28066号)に示さ
れているように、あらかじめ測定光学系が有して
いる歪を、測定しておき、この情報を記憶してお
き、任意の被測定物の測定結果をこの記憶してお
いた情報で補正することにより、高精度測定が初
めて可能になる。しかるに上記したように、反射
率や透過率の異なる試料に対し、ビームスプリツ
タやフイルタを交換するとそのたびに補正値を変
える必要があり、フイルタの設置位置や、裏表、
上下を逆にすると、補正値も当然変つてしまう。
又このようなビームスプリツタや、フイルタの頻
繁な交換は、操作、調整に多大な時間を要してし
まう。
When trying to achieve a measurement accuracy of λ/10 or higher, the surface accuracy of the optical components used in the measurement optical system, such as the beam splitter and the mirror in the reference optical path, is at the same level as the measurement accuracy. The surface accuracy measurement result is affected by this, and measurement accuracy of approximately λ/5 or higher cannot be obtained. Therefore, as shown in the patent filed by the present inventors (Japanese Patent Application No. 55-28066), the distortion of the measurement optical system is measured in advance and this information is stored. By correcting the measurement result of an arbitrary object to be measured using this stored information, high-precision measurement becomes possible for the first time. However, as mentioned above, when replacing beam splitters and filters for samples with different reflectances and transmittances, it is necessary to change the correction value each time.
If you turn it upside down, the correction value will naturally change.
Moreover, frequent replacement of such beam splitters and filters requires a great deal of time for operation and adjustment.

本発明は上記従来の問題点を解決し、反射率や
透過率の異なる被測定物に対し、容易に、簡単な
構成で干渉縞パターン発生光路中の両光の強度を
等しくし、かつ、強度を等しくする操作により、
測定光学系が有する歪、即ち補正値を変えずに、
いつも同一補正値を使用することを可能にするよ
うにした干渉方法及びその装置を提供することを
目的としている。
The present invention solves the above-mentioned conventional problems, and easily equalizes the intensity of both lights in the interference fringe pattern generation optical path with a simple configuration for objects to be measured with different reflectances and transmittances. By making equal, we get
without changing the distortion of the measurement optical system, that is, the correction value.
It is an object of the present invention to provide an interference method and apparatus that make it possible to always use the same correction value.

上記目的を達成するために、本発明においては
可干渉光を2分した光路の少くも一方に偏光状態
を変化せしめる手段を設ける。このようにするこ
とにより、干渉パターン発生光路中の両光の偏光
状態は異なる。今仮りに参照光と、物体からの反
射光(又は透過光)がともに直線偏光であると
し、その偏光方向が互に直交しているとすれば、
参照光の強度Ir、被測定物からの反射光の強度を
Ioとすると、これら2つの光は干渉しないが、干
渉パターン発生光路中に検光子、例えば偏光板を
挿入し、その偏光方向(直線偏光を100%透過す
る方向)を参照光に対しθ傾けて配置する。この
ようにすればこの偏光板を透過する参照光および
物体光の強度、Idr、Idpはそれぞれ次式で与えら
れる。
In order to achieve the above object, the present invention provides means for changing the polarization state on at least one of the optical paths that divide the coherent light into two. By doing this, the polarization states of both lights in the interference pattern generation optical path are different. Assuming that the reference light and the reflected light (or transmitted light) from the object are both linearly polarized light, and their polarization directions are orthogonal to each other, then
The intensity of the reference light Ir and the intensity of the reflected light from the object to be measured are
If Io, these two lights do not interfere, but by inserting an analyzer, such as a polarizing plate, into the interference pattern generation optical path, and tilting the polarization direction (direction that transmits 100% of linearly polarized light) by θ with respect to the reference light. Deploy. In this way, the intensities, I dr and I dp of the reference light and object light transmitted through this polarizing plate are given by the following equations.

Idr=Ircos2θ (1) Idp=Ipsin2θ (2) 又、それぞれの偏光方向は当然偏光板の偏光方向
と一致するので両光は干渉を起こす。この時Idr
とIdpが等しければ、干渉縞のコントラストは最
大になる。この条件を満たすθは次式で与えられ
る。
I dr = I r cos 2 θ (1) I dp = I p sin 2 θ (2) Also, since each polarization direction naturally matches the polarization direction of the polarizing plate, both lights cause interference. At this time I dr
When and I dp are equal, the contrast of the interference fringes is maximized. θ that satisfies this condition is given by the following equation.

θ=tan-1r p (3) 以上の説明から、被測定物の反射率が異なる試料
に対し、即ち異なるIpに対し、(3)式を満たすよう
に偏光板の偏光方向だけを調整してやれば常に最
大の干渉縞コントラストを得ることが容易にでき
ることになる。
θ=tan -1r p (3) From the above explanation, for samples with different reflectances of the measured object, that is, for different I p , only the polarization direction of the polarizing plate can be changed to satisfy equation (3). By making adjustments, it is easy to always obtain the maximum interference fringe contrast.

本発明によれば、前述したように被測定物の反
射率が異なるたびにビームスプリツタを交換した
基準参照面のミラーの反射率が異なるものに交換
したり、異なるフイルタを挿入したりする必要が
ないため、参照光および物体光の波面の変化を全
く与えない。従つて両光の干渉パターンの形状を
全く変化させることなく、最大の干渉縞コントラ
ストが常に得られるため、精度の高い干渉装置が
得られる。また上述の干渉パターン発生光路中に
検光子を挿入するとともに干渉光学系に存在する
光学部品の歪を、例えば非常に精度の高い平面鏡
や、球面鏡で測定しておき、その測定値を補正値
として用いることにより、常にこの一定の補正値
を用いて、被測定物の測定結果を補正し、非常に
精度の高い干渉測定を実現することが可能とな
る。
According to the present invention, as described above, it is not necessary to replace the beam splitter with a mirror of a standard reference surface that has a different reflectance each time the reflectance of the object to be measured differs, or to insert a different filter. Therefore, the wavefronts of the reference light and object light are not changed at all. Therefore, the maximum interference fringe contrast can always be obtained without changing the shape of the interference pattern of both lights at all, so that a highly accurate interference device can be obtained. In addition, an analyzer is inserted into the optical path where the interference pattern is generated, and the distortion of the optical components present in the interference optical system is measured using, for example, a highly accurate plane mirror or spherical mirror, and the measured value is used as a correction value. By using this constant correction value, it is possible to always correct the measurement results of the object to be measured and realize highly accurate interference measurement.

以下本発明を図に示す実施例より詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings.

第1図は本発明の一実施例である。レーザ光線
1からは直線偏光のレーザ光が出射し、その光は
コリメータレンズ2により所望のビーム径を有す
るレーザビーム10になる。この光はビームスプ
リツタ3により2分され、一方の光は物体光路1
1に導かれ、被測定物50で反射される。ビーム
スプリツタ3で二分された他方のビームは、参照
光路12に導かれるが、この光路中には1/4波長
板4が配置されており、入射直線偏光を円偏光に
変換する。円偏光となつた光は基準鏡6で反射さ
れ再び1/4波長板を透過すると、物体光路の直線
偏光とは、偏光方向が直交する直線偏光となる。
この光はビームスプリツタ3で反射し、干渉パタ
ーン発生光路13に導かれ、被測定物体50で反
射した光と干渉するが、このままの偏光状態で
は、両光の偏光方向は直交しているため、干渉パ
ターンは発生しない。干渉パターン発生光路13
中には偏光板から成る検光子7が配置されてお
り、回転機構71により、光軸の方向を回転軸方
向として、回転できる。干渉パターン発生光路1
3中での、被測定物からの反射光の強度Ipと、参
照光の強度Irの比は、被測定物が変ると変化する
ため、検光子7の偏光板の偏光方向を参照光の直
線偏向方向に対しθだけ傾ける。ただしθは前記
(3)式を満たす値である。このようにすると検光子
を透過した両光の光強度Idは等しくなり(Id=Ir
cos2θ=Ipsin2θ)、また同一直線偏光となり、干渉
縞のコントラストは最大となる。干渉縞はレンズ
8により撮像装置9の撮像面91に映し出され
る。
FIG. 1 shows an embodiment of the present invention. A linearly polarized laser beam is emitted from the laser beam 1, and the beam is converted into a laser beam 10 having a desired beam diameter by a collimator lens 2. This light is split into two by the beam splitter 3, and one light is sent to the object optical path 1.
1 and reflected by the object to be measured 50. The other beam split into two by the beam splitter 3 is guided to a reference optical path 12, in which a quarter-wave plate 4 is arranged to convert the incident linearly polarized light into circularly polarized light. When the circularly polarized light is reflected by the reference mirror 6 and transmitted through the quarter-wave plate again, it becomes linearly polarized light whose polarization direction is orthogonal to the linearly polarized light in the object optical path.
This light is reflected by the beam splitter 3, guided to the interference pattern generation optical path 13, and interferes with the light reflected by the object to be measured 50. However, in the current polarization state, the polarization directions of both lights are orthogonal. , no interference pattern occurs. Interference pattern generation optical path 13
An analyzer 7 made of a polarizing plate is arranged inside, and can be rotated by a rotation mechanism 71 with the direction of the optical axis as the rotation axis direction. Interference pattern generation optical path 1
3, the ratio of the intensity I p of the reflected light from the object to be measured and the intensity I r of the reference light changes when the object to be measured changes, so the polarization direction of the polarizing plate of the analyzer 7 is set to the reference light. tilted by θ with respect to the linear deflection direction. However, θ is
This is a value that satisfies equation (3). In this way, the light intensity I d of both lights transmitted through the analyzer becomes equal (I d = I r
cos 2 θ=I p sin 2 θ), and the light becomes the same linearly polarized light, and the contrast of the interference fringes is maximized. The interference fringes are projected onto the imaging surface 91 of the imaging device 9 by the lens 8 .

第2図は本発明の他の一実施例である。第1図
と同一番号は同一物を表わしている。本実施例は
透過型の被測定物51を測定する干渉装置であ
る。直線偏光のレーザ光は2分され参照光路12
中にある1/2波長板により入射直線偏光と直交す
る直線偏光に変換される。ビームスプリツタ31
により両光は干渉縞発生光路13に導かれ、光軸
を回転軸として回転する検光子7により、両光の
強度は等しくなり最大のコントラストとなり、撮
像装置9で撮像される。
FIG. 2 shows another embodiment of the present invention. The same numbers as in FIG. 1 represent the same items. This embodiment is an interference device that measures a transmission type object 51 to be measured. The linearly polarized laser beam is divided into two parts and a reference optical path 12
A half-wave plate inside converts the incident linearly polarized light into linearly polarized light orthogonal to it. Beam splitter 31
As a result, both lights are guided to an interference fringe generation optical path 13, and by the analyzer 7 rotating around the optical axis, the intensity of both lights becomes equal, resulting in maximum contrast, and an image is captured by the imaging device 9.

第3図は本発明の実施例である。レーザ光源
1′は無偏光レーザである。レーザ光源を出射し
た光は、コリメータレンズ21で拡大平行ビーム
となり、ビームスプリツタを透過し、第2のコリ
メータレンズ22でさらに拡大平行ビーム11と
なる。この第2のコリメータの出射面31は平面
であり、一部のビームは透過し、一部のビームは
反射するビームスプリツタとなつている。このビ
ームスプリツタ透過後に透過型の被測定物51が
挿入される。ここを透過した光は、偏光板42を
透過した後、基準平面鏡53で反射され、ビーム
スプリツタ31で反射した光とともにビームスプ
リツタ300で反射され、干渉パターン発生回路
13中の検光子(偏光子)7を透過し、両光は干
渉する。ここで透過率が最も小さい被測定物の透
過率をTminとすると、ビームスプリツタの反射
率r、透過率(1−r)(吸収はないと仮定する。
又基準平面鏡53は100%反射、偏光板も吸収は
ないと仮定する)に対し、rは次式が成りたつよ
うにしておく。
FIG. 3 shows an embodiment of the invention. The laser light source 1' is a non-polarized laser. The light emitted from the laser light source becomes an expanded parallel beam by a collimator lens 21, passes through a beam splitter, and becomes an expanded parallel beam 11 by a second collimator lens 22. The exit surface 31 of this second collimator is a flat surface, and serves as a beam splitter that transmits some of the beams and reflects some of the beams. After passing through the beam splitter, a transmission type object to be measured 51 is inserted. After passing through the polarizing plate 42, the light is reflected by the reference plane mirror 53, and is reflected by the beam splitter 300 together with the light reflected by the beam splitter 31. 7), and both lights interfere. Here, if the transmittance of the object to be measured with the smallest transmittance is Tmin, then the beam splitter has a reflectance r and a transmittance (1-r) (assuming that there is no absorption).
Further, it is assumed that the reference plane mirror 53 reflects 100% and the polarizing plate does not absorb any absorption), and r is set so that the following formula holds true.

r=Tmin2(1−r)2 このようにすれば、最小の透過率を有する場合
には、偏光子7の偏光方向を、被測定物体からの
光の偏光方向、即ち偏光板42の偏光方向と一致
させた時、両光の強度は等しくなり、最大のコン
トラストが得られる。又被測定物の透過率が一般
にTの場合には、上記の最小透過率の場合の偏光
方向から次式で示されるθだけ偏光子を回転させ
れば、両光の強度は等しくなる。
r=Tmin 2 (1-r) 2 In this way, when the transmittance is minimum, the polarization direction of the polarizer 7 can be changed to the polarization direction of the light from the object to be measured, that is, the polarization direction of the polarizing plate 42. When the directions match, the intensity of both lights will be equal and maximum contrast will be obtained. Further, when the transmittance of the object to be measured is generally T, the intensities of both lights become equal by rotating the polarizer by θ shown by the following equation from the polarization direction in the case of the above-mentioned minimum transmittance.

cos2θ=Tmin2/T2 第4図は本発明の実施例である。第4図で第1
図と同一番号は同一物を表わしている。本実施例
では被測定物として球面鏡52を測定する場合を
示している101は集光レンズであり、このレン
ズによる集光位置と、被測定物の球面鏡の曲率中
心は一致するように配置される。参照光路12中
にはλ/4板の外に楔ガラス120が配置されてい
る。この楔ガラス120は、駆動装置121によ
り矢印Aの方向に微動され、参照光の光路長が変
調される。例えばλ/8〜λ/250程度のピツチ
で光路長を変えては、撮像装置9で干渉パターン
を捉えそれを制御回路90に送り、光路長を変え
た時の干渉パターンの変化より被測定物の球面形
状からのずれを測定する。制御回路90にはメモ
リ91が内臓されており、真球に近い基準球面鏡
をまず被測定物として測定し、その時の値φp(xi、
yi)をメモリに保存しておく、次に第4図に示す
ごとく、一般の被測定物52を測定する。測定値
をφ′(xi、yi)とするとφp(xi、yi)は測定光学系
の歪を表わしているから、被測定物の真の値φ
(xi、yi)は次式で与えられる。
cos 2 θ=Tmin 2 /T 2 FIG. 4 shows an embodiment of the present invention. 1 in Figure 4
The same numbers as those in the figures represent the same items. In this embodiment, a case is shown in which a spherical mirror 52 is measured as the object to be measured. Reference numeral 101 is a condenser lens, and the lens is arranged so that the light condensing position by this lens coincides with the center of curvature of the spherical mirror of the object to be measured. . In the reference optical path 12, a wedge glass 120 is arranged outside the λ/4 plate. This wedge glass 120 is slightly moved in the direction of arrow A by a drive device 121, and the optical path length of the reference light is modulated. For example, by changing the optical path length at a pitch of about λ/8 to λ/250, the image pickup device 9 captures the interference pattern and sends it to the control circuit 90. Measure the deviation from the spherical shape. The control circuit 90 has a built-in memory 91, which first measures a nearly perfect spherical reference spherical mirror as an object to be measured, and stores the value φ p (xi,
yi) is stored in the memory. Next, as shown in FIG. 4, a general object to be measured 52 is measured. If the measured value is φ′ (xi, yi), φ p (xi, yi) represents the distortion of the measurement optical system, so the true value of the measured object φ
(xi, yi) is given by the following formula.

φ(xi、yi)=φ′(xi、yi)−φp(xi、yi) このような補正は第4図の実施例に限らず、第
1〜第3図の実施例の光学系に対しても同様に行
なうことができる。第1図の場合は被測定物50
の代りに、非常に精度の高い平面原理を用い測定
を行ない補正値を求めればよい。又第2図、第3
図の実施例の場合には透過型被測定物を取り去り
測定を行ない補正値を求めればよい。
φ (xi, yi) = φ′ (xi, yi) − φ p (xi, yi) Such correction is not limited to the embodiment shown in Fig. 4, but also applies to the optical systems of the embodiments shown in Figs. 1 to 3. The same can be done for In the case of Fig. 1, the object to be measured 50
Instead, the correction value may be obtained by performing measurements using a highly accurate planar principle. Also, Figures 2 and 3
In the case of the embodiment shown in the figure, it is sufficient to remove the transmission type object to be measured, perform the measurement, and obtain the correction value.

本発明によれば、種々の反射率や透過率を有す
る被測定物を測定する際に従来はビームスプリツ
タの反射率が異なるものを何種類か用意するか透
過率の異なるフイルタを何種類か用意し被測定物
が変るたびに交換していたが、そのような必要は
全くなくなり、簡単な操作で、両光の強度比を等
しくし、最大コントラストの干渉縞が得られる。
例えば加工中の平面鏡や球面鏡を測定する場合は
被測定物の反射率は数%であるが、反射コートを
施したものは90%近い反射率となり、従来、ビー
ムスプリツタを交換するかフイルタを挿入しなけ
れば、無コート及びコート試料に対し、共に高い
コントラストの反射率を得ることは不可能であつ
た。そこで従来はビームスプリツタを交換する
か、フイルタを挿入し、コントラストを高くして
いた。しかし、ビームスプリツタやフイルタの面
精度は数分の1波長程度であるため、測定精度は
この程度になつてしまう。又ビームスプリツタや
フイルタの面精度をあらかじめ測定して補正する
ことも不可能ではないが、多数のビームスプリツ
タやフイルタに対し、そのような補正値を測定す
ることは、操作を繁雑にし、メモリを多数用意す
る必要があるばかりでなく、ビームスプリツタや
フイルタの交換設置を十分精度よく行なう必要が
生じる。
According to the present invention, when measuring objects having various reflectances and transmittances, conventional methods require preparing several types of beam splitters with different reflectances or preparing several types of filters with different transmittances. Previously, the device had to be prepared and replaced every time the object to be measured changed, but this is no longer necessary, and with a simple operation, the intensity ratio of both lights can be equalized and interference fringes with maximum contrast can be obtained.
For example, when measuring a plane or spherical mirror that is being processed, the reflectance of the object being measured is a few percent, but the reflectance of a mirror coated with a reflective coating is close to 90%. Without intercalation, it was not possible to obtain high contrast reflectance for both uncoated and coated samples. Conventionally, this involved replacing the beam splitter or inserting a filter to increase the contrast. However, since the surface accuracy of beam splitters and filters is about a fraction of a wavelength, the measurement accuracy is only about this level. Also, it is not impossible to measure and correct the surface accuracy of beam splitters and filters in advance, but measuring such correction values for a large number of beam splitters and filters makes operations complicated and difficult. Not only is it necessary to prepare a large number of memories, but it is also necessary to replace and install beam splitters and filters with sufficient precision.

本発明によれば、参照光路や物体光路外にコン
トラストを最大に調整する検光子を挿入している
ため、これを回転し調整しても、干渉パターンそ
のものにはコントラストを変える以外何の影響も
与えないため、干渉結果には回転調整による影響
は与えない。従つて同一補正値をいつも使用する
ことにより高精度測定を容易に実現することがで
き、その効果は非常に大である。
According to the present invention, an analyzer that adjusts the contrast to the maximum is inserted outside the reference optical path and the object optical path, so even if the analyzer is rotated and adjusted, it has no effect on the interference pattern itself other than changing the contrast. Therefore, the rotation adjustment has no effect on the interference results. Therefore, by always using the same correction value, highly accurate measurement can be easily achieved, and the effect is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図で偏光状態変化手
段として1/4波長板を用いたものを示した図、第
2図は本発明の一実施例図で偏光状態変化手段と
して1/2波長板を用いたものを示した図、第3図
は本発明の一実施例図で、偏光状態変化手段とし
て偏光板を用いたものを示した図、第4図は本発
明の一実施例図で、測定光学系の歪量をメモリに
保存し、被測定物の測定値を補正する手段を具備
したものを示した図である。 1はレーザ光源、2はコリメータレンズ、3は
ビームスプリツタ、4,41,42は偏光状態を
変化せしめる手段、50,51,52は被測定
物、6は基準反射鏡、7は検光子、8はレンズ、
9は撮像装置、90は制御回路、91はメモリ、
120,121は光路長変化手段(位相変調手
段)である。
Fig. 1 is an embodiment of the present invention, which uses a 1/4 wavelength plate as the polarization state changing means, and Fig. 2 is an embodiment of the present invention, in which a 1/4 wavelength plate is used as the polarization state change means. FIG. 3 is a diagram showing an embodiment of the present invention using a two-wavelength plate, and FIG. 4 is a diagram showing an embodiment of the present invention using a polarizing plate as a polarization state changing means. FIG. 3 is an example diagram illustrating a device equipped with means for storing the amount of distortion of the measuring optical system in a memory and correcting the measured value of the object to be measured. 1 is a laser light source, 2 is a collimator lens, 3 is a beam splitter, 4, 41, 42 are means for changing the polarization state, 50, 51, 52 are objects to be measured, 6 is a reference reflector, 7 is an analyzer, 8 is the lens,
9 is an imaging device, 90 is a control circuit, 91 is a memory,
120 and 121 are optical path length changing means (phase modulation means).

Claims (1)

【特許請求の範囲】 1 可干渉性光源より出射した光を2分し、一方
を被測定物に照射し、該被測定物を透過もしくは
反射した光と、2分した他方の参照光を同一光路
即ち干渉パターン発生光路に導き、干渉を生ぜし
める干渉方法において、2分した光の少なくも一
方の光路に偏光状態を変化せしめて干渉パターン
発生光路に於る両光の偏光状態を異ならしめ、干
渉パターン発生光路中に設けた検光子を通過後の
両光の光強度をほぼ一定ならしめることを特徴と
する干渉方法。 2 被測定物として高精度の平面鏡もしくは球面
鏡を用いて干渉測定した結果を補正値として用い
任意の被測定物を干渉測定した値を、当該補正値
で補正し、高精度測定を行なうことを特徴とする
特許請求の範囲第1項記載の干渉方法。 3 可干渉光源と、当該可干渉光源を出射した光
を2分する手段と、2分した一方の光路に被測定
物を配置し、当該被測定物を反射もしくは透過し
た光と、2分した他方の参照光を同一の干渉パタ
ーン発生光路に導き、干渉縞を生ぜしめる干渉装
置において、2分した光の少くも一方の光路に偏
光状態を変化せしめる手段を設け、干渉パターン
発生光路に於る両光の偏光状態を異ならしめ、干
渉パターン発生光路中に可変検光子を設け、当該
検光子通過後の両光の光強度をほぼ一定ならしめ
ることを特徴とする干渉装置。 4 上記干渉パターン発生光路に於る両光の偏光
状態が互に直交する直線偏光ならしめる上記偏光
状態を変化せしめる手段を設けることを特徴とす
る特許請求の範囲第3項記載の干渉装置。 5 上記2分した一方の光路に、1/4波長板もし
くは1/2波長板から成る上記偏光状態を変化せし
める手段を設けることを特徴とする特許請求の範
囲第4項記載の干渉装置。 6 被測定物の干渉測定結果を保存するメモリを
具備し、被測定物として高精度の平面鏡もしくは
球面鏡を用いて測定した結果を補正値として該メ
モリに保存し、任意の被測定物を干渉測定した結
果を該メモリに保存されている補正値により補正
することを特徴とする特許請求の範囲第3項記載
の干渉装置。
[Scope of Claims] 1. Light emitted from a coherent light source is divided into two parts, one part is irradiated onto an object to be measured, and the light transmitted or reflected from the object to be measured is the same as the other divided reference light. In an interference method in which light is guided into an optical path, that is, an interference pattern generation optical path, and interference is caused, the polarization state of at least one of the two divided beams is changed to make the polarization states of both lights in the interference pattern generation optical path different; An interference method characterized by making the light intensity of both lights substantially constant after passing through an analyzer provided in an optical path for generating an interference pattern. 2. A high-precision measurement is performed by using the result of interference measurement using a high-precision plane mirror or spherical mirror as the object to be measured as a correction value, and correcting the value obtained by interferometrically measuring an arbitrary object to be measured with the correction value. An interference method according to claim 1. 3. A coherent light source, a means for dividing the light emitted from the coherent light source into two, and an object to be measured on one of the two divided optical paths, and the light reflected or transmitted through the object to be measured and the means for dividing the light into two. In an interference device that guides the other reference beam to the same interference pattern generation optical path to generate interference fringes, a means for changing the polarization state of at least one of the two divided beams is provided in the interference pattern generation optical path. An interference device characterized in that the polarization states of both lights are made to differ, a variable analyzer is provided in an interference pattern generating optical path, and the light intensity of both lights is made substantially constant after passing through the analyzer. 4. The interference device according to claim 3, further comprising a means for changing the polarization state of the two lights in the interference pattern generation optical path so that the polarization states of the two lights are mutually orthogonal linearly polarized light. 5. The interference device according to claim 4, characterized in that one of the two divided optical paths is provided with means for changing the polarization state consisting of a 1/4 wavelength plate or a 1/2 wavelength plate. 6 Equipped with a memory for storing the interference measurement results of the object to be measured, and storing the measurement results using a high-precision plane mirror or spherical mirror as the object to be measured in the memory as correction values, and interferometrically measuring any object to be measured. 4. The interference device according to claim 3, wherein the interference result is corrected using a correction value stored in the memory.
JP57058071A 1982-04-09 1982-04-09 Method and device for interference Granted JPS58176511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57058071A JPS58176511A (en) 1982-04-09 1982-04-09 Method and device for interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57058071A JPS58176511A (en) 1982-04-09 1982-04-09 Method and device for interference

Publications (2)

Publication Number Publication Date
JPS58176511A JPS58176511A (en) 1983-10-17
JPH025242B2 true JPH025242B2 (en) 1990-02-01

Family

ID=13073671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57058071A Granted JPS58176511A (en) 1982-04-09 1982-04-09 Method and device for interference

Country Status (1)

Country Link
JP (1) JPS58176511A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154309A (en) * 1983-02-24 1984-09-03 Olympus Optical Co Ltd Interferometer for measuring face shape
JPS6069578A (en) * 1983-09-26 1985-04-20 Tech Res & Dev Inst Of Japan Def Agency Monopulse receiver
JP3788894B2 (en) * 2000-06-21 2006-06-21 日本電信電話株式会社 Three-dimensional position detection sensor and positioning method
JP4673770B2 (en) * 2006-03-03 2011-04-20 株式会社日立ハイテクノロジーズ Optical heterodyne interference measurement method and measurement apparatus therefor

Also Published As

Publication number Publication date
JPS58176511A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
US9513105B2 (en) System and method for a self-referencing interferometer
JPH02259508A (en) Integrated interference measuring instrument
JPH0712535A (en) Interferometer
JPH0666537A (en) System error measuring method and shape measuring device using it
WO2017183017A1 (en) Optical system and method for measurements of samples
McKinney et al. Studies in optimal configuration of the LTP
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
US6704112B1 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JPH025242B2 (en)
US6963408B2 (en) Method and apparatus for point diffraction interferometry
JP2572111B2 (en) Laser interferometer
CN111562002B (en) High-flux high-resolution high-contrast polarization interference spectrum imaging device and method
JPH0572959A (en) Hologram plotting device
WO2021222464A1 (en) Compact snapshot dual-mode interferometric system
HU195882B (en) Arrangement for interference examination of the flatness of technical surfaces
CN114593670B (en) Implanted coaxial and off-axis digital holographic switching device based on Rochon prism
JP2001091227A (en) Measuring device for lens and measuring method for lens
JPS6365882B2 (en)
JPH11160013A (en) Shearing interferometer
JP2004198348A (en) Interferometer and manufacturing method for projection exposure device
JPH04269603A (en) Interference measuring apparatus
JPH11325848A (en) Aspherical surface shape measurement device
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JPH0829115A (en) Interference microscope
JP3212353B2 (en) Positioning method and positioning screen for test sample during cylindrical surface measurement