JPH0252099A - Dehydration control of organic sludge - Google Patents

Dehydration control of organic sludge

Info

Publication number
JPH0252099A
JPH0252099A JP63202770A JP20277088A JPH0252099A JP H0252099 A JPH0252099 A JP H0252099A JP 63202770 A JP63202770 A JP 63202770A JP 20277088 A JP20277088 A JP 20277088A JP H0252099 A JPH0252099 A JP H0252099A
Authority
JP
Japan
Prior art keywords
sludge
addition rate
crude protein
cationic polymer
polymer flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63202770A
Other languages
Japanese (ja)
Inventor
Makoto Hara
誠 原
Toshiharu Wake
敏治 和気
Kazuhiro Honbo
本坊 一浩
Tomio Iwai
富雄 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO MET GOV GESUIDOU SERVICE KK
Organo Corp
Tokyo Metropolitan Government
Original Assignee
TOKYO MET GOV GESUIDOU SERVICE KK
Organo Corp
Tokyo Metropolitan Government
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO MET GOV GESUIDOU SERVICE KK, Organo Corp, Tokyo Metropolitan Government, Japan Organo Co Ltd filed Critical TOKYO MET GOV GESUIDOU SERVICE KK
Priority to JP63202770A priority Critical patent/JPH0252099A/en
Publication of JPH0252099A publication Critical patent/JPH0252099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To determine an addition rate rapidly and simply and to always perform proper operation by measuring crude protein in sludge and determining the optimum addition rate of a cationic polymer flocculant from the measured value. CONSTITUTION:In the dehydration treatment of org. sludge from sewage or excretion, crude protein in said sludge is measured. The optimum addition rate of a cationic polymer flocculant such as N, N'-dimethylaminoalkyl acrylate is determined according to formula Y=aX1+b (wherein Y is the optimum addition rate (%), X1 is crude protein (mg/g) and a and b are a coefficient). By this method, the optimum addition rate of the flocculant can be rapidly and simply known only by measuring crude protein in sludge even when the properties of the org. sludge of the same generation source are changed and a dehydrator is always properly operated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は下水処理場、し尿処理場、一般工場等から発生
する有機性汚泥にカチオン系高分子凝集剤を添加し脱水
機により脱水処理を行う際の脱水側?lp方法に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention involves adding a cationic polymer flocculant to organic sludge generated from sewage treatment plants, human waste treatment plants, general factories, etc., and dewatering the organic sludge using a dehydrator. The dehydration side when doing it? This relates to the lp method.

〈従来の技術〉 下水処理場、し尿処理場、−C工場等から発生ずる有機
性汚泥にカチオン系高分子JyE集剤を添加して脱水機
で脱水処理を行う場合、従来は汚泥の性状とカチオン系
高分子凝集剤の最適添加率との相関性が明確でないため
、ジャーテストを行うかあるいは実際の脱水機の運転状
態を観察しながらカチオン系高分子凝集剤の最適添加率
を試行錯誤的に決定している。
<Conventional technology> When adding a cationic polymer JyE binder to organic sludge generated from sewage treatment plants, human waste treatment plants, -C factories, etc. and dewatering it in a dehydrator, conventional methods have been based on the properties of the sludge. Since the correlation with the optimum addition rate of the cationic polymer flocculant is not clear, the optimum addition rate of the cationic polymer flocculant must be determined by trial and error by conducting a jar test or observing the operating conditions of the actual dehydrator. It has been decided.

上記従来法ではカチオン系高分子凝集剤の最適添加率を
決定するまでに多大の時間と手間を要するばかりでなく
、テスト中にも汚泥の性状は刻々と変化しており、した
がって性状変化に対する最適添加率の迅速な対応が困難
である。
In the conventional method described above, not only does it take a lot of time and effort to determine the optimal addition rate of the cationic polymer flocculant, but also the properties of the sludge are constantly changing during the test, so the optimal It is difficult to quickly adjust the addition rate.

〈発明が解決しようとする問題点〉 本発明の目的は、脱水操作における上述した問題点を解
決し、迅速かつ簡易にカチオン系高分子凝集剤の最適添
加率を決定し、脱水機の運転制御を行い、常に適正な運
転状態を維持できる有機性汚泥の脱水制御方法を提供す
るところにある。
<Problems to be Solved by the Invention> The purpose of the present invention is to solve the above-mentioned problems in dehydration operations, to quickly and easily determine the optimum addition rate of a cationic polymer flocculant, and to control the operation of a dehydrator. An object of the present invention is to provide a method for controlling dewatering of organic sludge, which can perform this and maintain proper operating conditions at all times.

く問題点を解決するための手段〉 上記目的を実現するためになされた本発明よりなる有機
性汚泥の脱水制御方法は、有機性汚泥にカチオン系高分
子凝集剤を添加して、脱水機で脱水処理するにあたり、
当該汚泥中の粗蛋白質を測定し、当3f Ffl蛋白質
を因子としてカチオン系高分子凝集剤の最適添加率を下
記式により決定し、このようにして決定した最適添加率
のカチオン系高分子凝集剤を有機性汚泥に添加すること
を特徴とするものである。
A method for controlling dewatering of organic sludge according to the present invention, which has been made to achieve the above object, is to add a cationic polymer flocculant to organic sludge and to When dehydrating,
The crude protein in the sludge is measured, and the optimum addition rate of the cationic polymer flocculant is determined using the following formula using the 3f Ffl protein as a factor. It is characterized by adding to organic sludge.

Y=aX、+b Y :最適添加率(%) Xl;粗蛋白質(mg/g) a、b ;係数 く作用〉 以下に本発明をさらに詳細に説明する。Y=aX, +b Y: Optimal addition rate (%) Xl; Crude protein (mg/g) a, b; coefficient Effect〉 The present invention will be explained in more detail below.

−mに有機性汚泥の脱水処理にはベルトプレス式脱水機
、遠心式脱水機、スクリュープレス式脱水機等が使用さ
れ、各々特徴を有するが、いずれの脱水機を用いるにし
てもいかに効率的に含水率の低い脱水ケーキを得るかが
脱水操作における重要課題である。
- Belt press type dehydrators, centrifugal type dehydrators, screw press type dehydrators, etc. are used to dewater organic sludge, and each type has its own characteristics, but no matter which dehydrator is used, no matter how efficient it is. Obtaining a dehydrated cake with a low moisture content is an important issue in dehydration operations.

脱水機を用いて有機性汚泥を脱水処理する場合、脱水ケ
ーキの含水率と使用するカチオン系高分子凝集剤の添加
率との間には大きな関係があり、添加率が多過ぎても、
また少な過ぎても脱水機の良好な運転が維持できず、結
果的に低含水率の脱水ケーキが得られない。したがって
使用するカチオン系高分子凝集剤の最適添加率を決定す
ることは有機性汚泥を脱水処理するうえで非常に重要な
ことである。
When dehydrating organic sludge using a dehydrator, there is a large relationship between the water content of the dehydrated cake and the addition rate of the cationic polymer flocculant used, and even if the addition rate is too high,
Moreover, if it is too small, good operation of the dehydrator cannot be maintained, and as a result, a dehydrated cake with a low water content cannot be obtained. Therefore, determining the optimum addition rate of the cationic polymer flocculant to be used is very important in dewatering organic sludge.

本発明者等は種々の有機性汚泥を用い、当該汚泥のpH
,電気伝導率、酸化還元電位、蒸発残留物、強熱減量、
浮遊物質、浮遊物質強熱減量、粗繊維分、5VI−3,
000(汚泥を3.OOORPMで遠心分離した時の沈
降体積)、粒度分布、粒子径、C3T、アニオン度、ゼ
ータ電位、酸性多糖類、粗蛋白質、M−アルカリ度(汚
泥を遠心分離して得られる上澄液の値)、アルカリ抽出
物’j’f、汚泥帖度等の測定を行うと同時に当該汚泥
を使用してジャーテストあるいは実際の脱水機を使用し
てカチオン系高分子凝集剤の最適添加率を求める脱水テ
ストを長期間系統的に行った。なお最適添加率とは、ベ
ルト式脱水でシよ汚泥の濾布よりの70刈性が良く脱水
ケーキが低含水率である添加率、遠心式脱水機およびス
クリュー式脱水機ではlり泥の処理上が多く、浮遊物質
の回収率が良く脱水ナーキが低含水率である添加率を指
す。そして前述した各測定値と最適添加率との相関関係
を検討した結果、粒子径、ゼータ電位、粗蛋白質と最適
1嘔加率の間に相関関係があることを知見した。
The present inventors used various organic sludge and determined the pH of the sludge.
, electrical conductivity, redox potential, evaporation residue, loss on ignition,
Suspended solids, suspended solids loss on ignition, crude fiber content, 5VI-3,
000 (sedimentation volume when sludge is centrifuged with 3.OOORPM), particle size distribution, particle diameter, C3T, anionic degree, zeta potential, acidic polysaccharide, crude protein, M-alkalinity (obtained by centrifuging sludge) At the same time, the sludge is tested for cationic polymer flocculant using a jar test or an actual dehydrator. Dehydration tests were conducted systematically over a long period of time to find the optimal addition rate. The optimum addition rate is the addition rate at which the belt-type dewatering machine is able to easily cut the sludge from the filter cloth and the dewatered cake has a low moisture content, and the centrifugal dehydrator and screw-type dehydrator are the one at which the sludge is processed at a low water content. This refers to the addition rate at which there is a large amount of water, the recovery rate of suspended solids is good, and the water content of dehydrated nake is low. As a result of examining the correlation between each of the above-mentioned measured values and the optimum addition rate, it was found that there is a correlation between the particle size, zeta potential, crude protein, and the optimum addition rate.

またこれらの因子について多重相関解析を行った結果、
粗蛋白質に掛ける係数aと、当該係数aと粗蛋白質を掛
けた値に加算する係数すとを用いることにより、以下の
回帰式(1)式によって、Y=aX、+b・・・・・(
1) 有機性汚泥中の粗蛋白質の値のみからカチオン系高分子
凝集剤の最適添加率が求められることを見出した。
Furthermore, as a result of multiple correlation analysis of these factors,
By using the coefficient a to be multiplied by the crude protein and the coefficient to be added to the value multiplied by the coefficient a and the crude protein, Y=aX, +b... (
1) We found that the optimum addition rate of cationic polymer flocculant can be determined only from the value of crude protein in organic sludge.

本発明・は上記(1)式によって当該高分子凝集剤の最
適添加率を求めるが、係数aおよびbは汚泥の発生源の
相違によって異なるので、脱水処理しようとする発生源
が同一の有段性汚泥について、その性状の異なるものを
ある時間あるいはある期間をおいて数回採取し、当該数
種の汚泥について以下のような操作を行って係数aおよ
びbを決定する。
In the present invention, the optimum addition rate of the polymer flocculant is determined by the above equation (1), but since the coefficients a and b differ depending on the source of the sludge, the source to be dehydrated is the same staged sludge source. Regarding the sludge, samples with different properties are collected several times at a certain time or period, and the following operations are performed on the several types of sludge to determine the coefficients a and b.

まず当該数種の汚泥それぞれに、あらかじめ選定したカ
チオン系高分子cE集剤の添加量を変化させて添加し、
充分に反応させた後、ヌソチェのテスト法、上澄水のC
5T値の測定、上澄水の粘度の測定等の公知の方法や、
小型脱水機を用いる等のジャーテストによって、当該数
種の汚泥それぞれについてカチオン系高分子凝集剤の最
適添加率を測定する。
First, a pre-selected cationic polymer cE collector was added to each of the several types of sludge in varying amounts,
After sufficient reaction, Nusoche's test method, supernatant water C
Known methods such as measuring the 5T value and measuring the viscosity of supernatant water,
The optimum addition rate of the cationic polymer flocculant is determined for each of the several types of sludge by a jar test using a small dehydrator or the like.

この場合、当該最適添加率はたとえば当該汚泥の全固形
物(T−3)あたりの百分率(%)でもよいし、あるい
は当該汚泥の有機性固形物(V・S −S)あたりの百
分率(%)でもよい。
In this case, the optimum addition rate may be, for example, a percentage (%) of the total solids (T-3) of the sludge, or a percentage (%) of the organic solids (V S -S) of the sludge. ) is also fine.

一方前記最適添加率を測定したと同じ汚泥それぞれにつ
いて汚泥中の粗蛋白質を測定する。
On the other hand, the crude protein in the sludge is measured for each of the same sludges in which the optimum addition rate was measured.

粗蛋白質の測定方法の一例として、下水試験法によるケ
ルダール窒素およびアンモニア性窒素を測定し、以下の
(2)弐より求める方法を挙げることができる。
An example of a method for measuring crude protein is a method in which Kjeldahl nitrogen and ammonia nitrogen are measured by a sewage test method and determined from (2) 2 below.

粗蛋白質−(ケルプール窒素−アンモニア性窒素>XF
・・・・・(2) なお(2)式中OFの値は全窒素盪から粗蛋白質に関係
のないアンモニア性窒素を引いた値に掛ける換算係数で
あって、有機性汚泥中に含まれる粗蛋白質の種類によっ
て多少異なるが、本発明者等が長期間りこ系統的に行っ
た研究によれば、6〜7の間に全て入り、たとえば後述
する実施例における3ケ所の下水処理場の初沈汚泥と余
剰汚泥の混合汚泥においてはF=6.25という値を得
た。なおこのようにして得たt■蛋白質の値は全固形物
1gあたりあるいは有機性固形物1gあたりの■散とし
て表す。
Crude protein - (Kelpool nitrogen - Ammonia nitrogen > XF
...(2) In formula (2), the value of OF is a conversion factor that is multiplied by the value obtained by subtracting ammonia nitrogen, which is not related to crude protein, from total nitrogen, and is a conversion factor that is used to calculate the amount of nitrogen contained in organic sludge. Although it varies somewhat depending on the type of crude protein, according to the long-term systematic research conducted by the present inventors, all of them fall between 6 and 7. A value of F=6.25 was obtained for mixed sludge of silt sludge and excess sludge. The value of t protein thus obtained is expressed as t protein per gram of total solids or per gram of organic solids.

なお上述した粗蛋白質の測定方法は一例であって、本発
明はこれに限定されるものでなく、他の測定方法を用い
ても差し支えない。
Note that the method for measuring crude protein described above is one example, and the present invention is not limited thereto, and other measuring methods may be used.

上述したような操作によって、同一発生源の数種類のl
η泥についてカチオン系高分子凝集剤の最適添加率(%
)と粗蛋白質(mg/g)を測定した後、前述した(1
)弐に基づいて係数aおよびbを決定する。
By the operation described above, several types of l from the same source can be
Optimal addition rate of cationic polymer flocculant for η mud (%
) and crude protein (mg/g) were measured.
) Determine coefficients a and b based on 2.

本発明者等が種々の発生源における数種の有機性汚泥に
ついて係数aおよびbを求めたところ、aは2 X 1
0−’ 〜6 X 10−’およびbは2×10〜6X
10−’を得たが、前述したごとく当該係数a8よびb
はその汚泥の発生源によって異なるので、これに限定さ
れるものではない。
When the present inventors determined the coefficients a and b for several types of organic sludge from various sources, a was calculated as 2 × 1
0-' ~6X 10-' and b is 2x10~6X
10-' was obtained, but as mentioned above, the coefficients a8 and b
varies depending on the source of the sludge, and is not limited to this.

本発明に用いることのできるカチオン系高分子凝集剤は
N−N ’−ジメチルアミノアルキルアクリレートある
いはツタクリレートでアルキル基の炭素数が2あるいは
3のものの酸塩、ビニルヘンシルモノ、ジ、トリメデル
アンモニウムの酸塩、アクリルアミドのカチオン変性物
の酸塩、ビニルピリジンおよびその置換gBB体のよう
なカチオン性0′l量体の単一重合体および共重合体等
である。
The cationic polymer flocculants that can be used in the present invention are N-N'-dimethylaminoalkyl acrylate or ivy acrylate with an alkyl group having 2 or 3 carbon atoms, vinylhensyl mono-, di-, and trimedelammonium , acid salts of cationically modified acrylamide, homopolymers and copolymers of cationic O'l-mers such as vinylpyridine and its substituted gBB form, and the like.

また上記のようなカチオン性単量体とアクリルアミド、
アクリロニトリル、アクリル酸アルキルエステルのよう
な単量体との共重合物、さらにポリビニルイミダヅリン
の酸塩、キトサンの酸塩、澱粉のカチオン化物等も含ま
れる。また、本発明では必要に応しポリアクリル酸ナト
リウム、アクリル酸ナトリウムとアクリルアミドの共重
合物、アルギン酸ナトリウム等のようなアニオン性高分
子凝集剤を併用することも差し支えない。
In addition, the above-mentioned cationic monomer and acrylamide,
Also included are copolymers with monomers such as acrylonitrile and acrylic acid alkyl esters, as well as polyvinylimidazurin acid salts, chitosan acid salts, and cationized starch. Further, in the present invention, an anionic polymer flocculant such as sodium polyacrylate, a copolymer of sodium acrylate and acrylamide, sodium alginate, etc. may be used in combination, if necessary.

さらに汚泥の調質あるい1よ一次凝集剤として高分子凝
集剤を添加する前にP 、A C5硫酸ハンド、塩化第
2鉄、硫酸第1鉄、石灰等の無機凝集剤、過酸化水素、
亜塩素酸す) IJウム等の酸化脱臭剤を添加した汚泥
にも本方法は適用できる。
Furthermore, before conditioning the sludge or adding a polymer flocculant as a primary flocculant, P, A C5 sulfuric acid hand, ferric chloride, ferrous sulfate, inorganic flocculants such as lime, hydrogen peroxide,
This method can also be applied to sludge to which an oxidizing deodorizer such as IJum is added.

〈効果〉 以上説明したように本発明によhば、脱水処理しようと
する有機性lη泥について、前述したような操作によっ
て、係数aおよびbを求めれば、以後は当該汚泥中の粗
蛋白質のみを測定することにより、前記(1)弐によっ
てカチオン系高分子凝集剤の最適添加率を知ることがで
きる。したがって同一発生源の有機性汚泥について、そ
の性状が変化しても、その都度、ジャーテストや実際の
脱水機の運転を行って試行錯誤的に当該最適添加率を求
める必要がなく、迅速かつ節華にカチオン系高分子・凝
集剤の最適添加率を知ることができるので、常に脱水機
を過圧なi’11転状態に維持できる。
<Effects> As explained above, according to the present invention, if the coefficients a and b are determined by the operations described above for the organic lη sludge to be dehydrated, then only the crude protein in the sludge can be determined. By measuring , the optimum addition rate of the cationic polymer flocculant can be determined according to (1) 2 above. Therefore, even if the properties of organic sludge from the same source change, there is no need to perform jar tests or operate the actual dehydrator each time to find the optimal addition rate through trial and error, which is quick and economical. Since the optimum addition rate of the cationic polymer/flocculant can be known, the dehydrator can always be kept in an overpressure state.

以下Sこ本発明の詳細な説明するが、本発明;よ以下の
実施例に限定されるものではない。
The present invention will be described in detail below, but the present invention is not limited to the following examples.

実施例 AないしCの3ケ所の下水処理場における初沈汚泥と余
剰汚泥の混合汚泥を対象とし、それぞれについである期
間毎にその性状の異なる混合汚泥を8種類づつ採取し、
当該発生源の異なる有機性汚泥それぞれ8種類にその添
加量をそれぞれ変化させてカチオン系高分子凝集剤を添
加し、充分に反応させた後、ヌノチェのテスト法、上澄
水のC5T値の測定、上澄水の粘度の測定、小型ベルト
プレス式脱水機を用いる方法等のジャーテストを行い、
それぞれの汚泥についてカチオン系高分子凝集剤の最適
添加率を求めた。
Targeting the mixed sludge of initial settling sludge and surplus sludge at three sewage treatment plants in Examples A to C, eight types of mixed sludge with different properties were collected at each period, and
A cationic polymer flocculant was added to each of the eight types of organic sludge from different sources in varying amounts, and after a sufficient reaction, Nunoche's test method was used to measure the C5T value of the supernatant water. We conducted jar tests such as measuring the viscosity of supernatant water and using a small belt press type dehydrator.
The optimum addition rate of cationic polymer flocculant was determined for each sludge.

なお使用したカチオン系高分子凝集剤は、ジメチルアミ
ノメタクリレートとアクリルアミドとの共重合物である
The cationic polymer flocculant used was a copolymer of dimethylamino methacrylate and acrylamide.

一方各発生源の異なるそれぞれ8種類の有機性汚泥につ
いてケルダール窒素止アンモニア性窒素を測定し、前述
の(2)式(F=6.25)を用いて粗蛋白質を求めた
On the other hand, Kjeldahl nitrogen and ammonium nitrogen were measured for eight types of organic sludge from different sources, and crude protein was determined using the above-mentioned formula (2) (F=6.25).

得られた各発生源の異なる有機性汚泥におけるそれぞれ
8種類の最適添加率と粗蛋白質の値を用いて、前述のY
=a X、+bの基本式を求めたところ、以下のような
結果となった。
Using the eight optimal addition rates and crude protein values for the organic sludge from different sources,
=a When the basic formulas of X and +b were found, the following results were obtained.

へ下水処理場 Y〔最適添加率(%) ) =4.86 X 10−’
X祖蛋白貨(mg/g) + 3、55 X 10 ;、 a = 4.8 6 X  I  0b−3,5
5× I O″′ B下水処理場 Y(最適添加率(%) ) −2,16X 10−’X
粗蛋白質(mg/g) + 5.70xlO 、’、a =2.1 6 X 1 0−’b=5.70
xlO C下水処理場 Y[最適添加率(%) ) =5.26 X 10−’
X粗蛋白質(mg/g)+ 2、76 X 10 、’、 a = 5.2 6 X 1 0b=2.76
xlO それぞれの発生源について求めた上述の式を用いて、以
後は汚泥の性状が変わる度に汚泥中の粗蛋白質の値のみ
を用い、その値をそれぞれの式に代入してカチオン系高
分子凝集剤の最適添加率を求め、このようにして求めた
当該添加率を実際の汚泥に添加して実装置のベルトプレ
ス式脱水機を6ケ月運転したところ、当該脱水機は常に
適正に運転され、全く問題が生じなかった。
To sewage treatment plant Y [optimum addition rate (%)) = 4.86 x 10-'
Progenitor X protein (mg/g) + 3,55 X 10 ;, a = 4.8 6 X I 0b-3,5
5× I O″′ B sewage treatment plant Y (optimum addition rate (%)) −2,16X 10−’X
Crude protein (mg/g) + 5.70xlO,',a = 2.16X10-'b=5.70
xlO C sewage treatment plant Y [optimum addition rate (%)) = 5.26 X 10-'
X crude protein (mg/g) + 2,76 X 10 ,', a = 5.2 6 X 1 0b = 2.76
xlO Using the above equation determined for each source, from now on, whenever the properties of the sludge change, only the value of crude protein in the sludge is used, and that value is substituted into each equation to calculate cationic polymer aggregation. When the optimal addition rate of the agent was determined and the addition rate thus determined was added to actual sludge, an actual belt press type dehydrator was operated for 6 months, and the dehydrator was always operated properly. There were no problems at all.

また当該6ケ月の間に、汚泥の性状が変わる度にジャー
テスト己こよりカチオン系高分子凝集剤の最適添加量を
求めてみたが、粗蛋白質の値を用いる前述の式により求
めた最適添加量との誤差は、添加率の差で−0,03%
〜0.03%と非常に小さいものであった。
In addition, during the six months, whenever the properties of the sludge changed, we determined the optimum amount of cationic polymer flocculant to be added using Jartest. The error is -0.03% due to the difference in addition rate.
It was very small at ~0.03%.

Claims (1)

【特許請求の範囲】 有機性汚泥にカチオン系高分子凝集剤を添加して、脱水
機で脱水処理するにあたり、当該汚泥中の粗蛋白質を測
定し、当該粗蛋白質を因子としてカチオン系高分子凝集
剤の最通添加率を下記式により決定し、このようにして
決定した最通添加率のカチオン系高分子凝集剤を有機性
汚泥に添加することを特徴とする有機性汚泥の脱水制御
方法。 Y=aX_1+b Y;最適添加率(%) X_1;粗蛋白質(mg/g) a、b;係数
[Claims] When adding a cationic polymer flocculant to organic sludge and dehydrating it in a dehydrator, the crude protein in the sludge is measured, and the cationic polymer flocculates using the crude protein as a factor. 1. A method for controlling dewatering of organic sludge, characterized in that the through addition rate of the agent is determined by the following formula, and the cationic polymer flocculant at the through addition rate thus determined is added to the organic sludge. Y=aX_1+b Y: Optimal addition rate (%) X_1: Crude protein (mg/g) a, b: Coefficient
JP63202770A 1988-08-16 1988-08-16 Dehydration control of organic sludge Pending JPH0252099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202770A JPH0252099A (en) 1988-08-16 1988-08-16 Dehydration control of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202770A JPH0252099A (en) 1988-08-16 1988-08-16 Dehydration control of organic sludge

Publications (1)

Publication Number Publication Date
JPH0252099A true JPH0252099A (en) 1990-02-21

Family

ID=16462884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202770A Pending JPH0252099A (en) 1988-08-16 1988-08-16 Dehydration control of organic sludge

Country Status (1)

Country Link
JP (1) JPH0252099A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132599A (en) * 1985-12-04 1987-06-15 Nagaharu Okuno Method for controlling operation in dehydrating sludge
JPS62132600A (en) * 1985-12-04 1987-06-15 Nagaharu Okuno Method for controlling operation in dehydrating sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132599A (en) * 1985-12-04 1987-06-15 Nagaharu Okuno Method for controlling operation in dehydrating sludge
JPS62132600A (en) * 1985-12-04 1987-06-15 Nagaharu Okuno Method for controlling operation in dehydrating sludge

Similar Documents

Publication Publication Date Title
Bharti et al. Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: its application as flocculant for wastewater treatment
Mishra et al. Use of polyacrylamide-grafted Plantago psyllium mucilage as a flocculant for treatment of textile wastewater
CN104556331A (en) PAC (polyaluminium chloride)-modified sodium alginate inorganic-organic composite flocculant and preparation method thereof
JP4857170B2 (en) Cationic polymer flocculant and sludge treatment method using the same
JP2011139997A (en) Coagulation treatment method for waste water
Pal et al. High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension
Liu et al. Combined organic reagents for co-conditioning of sewage sludge: High performance in deep dewatering and significant contribution to the floc property
JP6131465B2 (en) Sludge dewatering method
JP5172372B2 (en) Sludge dewatering method
JP5042057B2 (en) Sludge dewatering method
Agarwal et al. Synthesis of Plantago psyllium mucilage grafted polyacrylamide and its flocculation efficiency in tannery and domestic wastewater
JP2933627B2 (en) Sludge dewatering method
JPH0252099A (en) Dehydration control of organic sludge
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP2976283B2 (en) Polymer flocculant
JP5038587B2 (en) Dewatering method for sewage digested sludge
JPH0252097A (en) Dehydration control of organic sludge
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JPH0252100A (en) Dehydration control of organic sludge
JP4846617B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP3709825B2 (en) Sludge dewatering method
JP4161559B2 (en) Composition, amphoteric polymer flocculant and method for dewatering sludge
JP3924011B2 (en) Dewatering method for sewage digested sludge
JP4804707B2 (en) Sludge dewatering method
JPH0483600A (en) Dehydration of sludge