JPH0251855B2 - - Google Patents

Info

Publication number
JPH0251855B2
JPH0251855B2 JP60048219A JP4821985A JPH0251855B2 JP H0251855 B2 JPH0251855 B2 JP H0251855B2 JP 60048219 A JP60048219 A JP 60048219A JP 4821985 A JP4821985 A JP 4821985A JP H0251855 B2 JPH0251855 B2 JP H0251855B2
Authority
JP
Japan
Prior art keywords
fiber
infrared
refractive index
glass
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60048219A
Other languages
Japanese (ja)
Other versions
JPS61209925A (en
Inventor
Shigeo Nishida
Mitsunobu Myagi
Juji Hiratani
Akishi Ppongo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP60048219A priority Critical patent/JPS61209925A/en
Publication of JPS61209925A publication Critical patent/JPS61209925A/en
Publication of JPH0251855B2 publication Critical patent/JPH0251855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/043Chalcogenide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は赤外波長帯で使用される赤外フアイ
バに係り、特にGeと、S、Se、Te等のカルコゲ
ンとを成分とし、これらの混合比をフアイバの中
心部分と周辺部分とで変化させて赤外光伝送路と
なした赤外フアイバに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an infrared fiber used in the infrared wavelength band, and in particular contains Ge and chalcogens such as S, Se, and Te. The present invention relates to an infrared fiber that is used as an infrared light transmission path by changing the mixing ratio between the center portion and the peripheral portion of the fiber.

[従来の技術] 石英系光フアイバが高損失となる赤外波長帯で
用いられる伝送路として、KRS−5、KCl等の
結晶性光フアイバや重金属酸化物、カルコゲン化
物等のガラス光フアイバなど種々の提案がなされ
ている。
[Prior Art] As transmission lines used in the infrared wavelength band where silica-based optical fibers have high loss, there are various types of transmission lines such as crystalline optical fibers such as KRS-5 and KCl, and glass optical fibers made of heavy metal oxides and chalcogenides. proposals have been made.

結晶性光フアイバは波長10μm近傍でも優れた
透過性を示すものであるが、散乱損失、潮解性、
塑性変形、量産性などの点で問題がある。一方、
ガラス光フアイバは従来の線引き技術を応用でき
量産性の点で有利であり、また特にカルコゲン化
物のガラス光フアイバでは比較的長波長帯まで低
損失特性が示されている(10th ECOC、Sept.
p.200(1984))。
Crystalline optical fibers exhibit excellent transparency even at wavelengths around 10 μm, but they suffer from scattering loss, deliquescence,
There are problems with plastic deformation, mass production, etc. on the other hand,
Glass optical fibers are advantageous in terms of mass production as conventional drawing techniques can be applied, and chalcogenide glass optical fibers in particular have shown low loss characteristics up to relatively long wavelength bands (10th ECOC, Sept.
p.200 (1984)).

現在、これらの赤外フアイバは、第3図に示す
ように、空気層2をクラツデイングとしたものが
ほとんどであり、テフロン等の保護チユーブ3内
に余裕のある状態で赤外フアイバ1が挿入され
た、いわゆるルースクラツデイング構造となつて
いる。
Currently, most of these infrared fibers have an air layer 2 cladding as shown in Fig. 3, and the infrared fiber 1 is inserted into a protective tube 3 made of Teflon or the like with plenty of room. In addition, it has a so-called loose structure structure.

[発明が解決しようとする問題点] ところが、上記のルースクラツデイング構造で
は、ランダムな曲げを受けると、赤外フアイバ1
と保護チユーブ3との接触面積が大きくなりその
増大につれて伝送損失が増加してしまう。また、
このように空気層2がクラツデイングで赤外フア
イバ1のコアとの屈折率差が極端に大きいので、
赤外フアイバ1の表面の凹凸の影響を受け易く、
これによる損失が大きい。
[Problems to be Solved by the Invention] However, in the loose cladding structure described above, when subjected to random bending, the infrared fiber 1
The contact area between the protective tube 3 and the protective tube 3 increases, and as the contact area increases, transmission loss increases. Also,
In this way, the difference in refractive index between the air layer 2 and the core of the infrared fiber 1 is extremely large due to crazing.
It is easily affected by the unevenness of the surface of the infrared fiber 1,
The loss caused by this is large.

なお、異種材料からなるステツプインデツクス
型のコア・クラツデイング構造をもつ赤外フアイ
バも知られているが、AgBrをコア、AgClをクラ
ツデイングとする結晶性光フアイバにおいて一部
検討がなされているにすぎず、異種材料を用いる
ため、コアとクラツデイングとの境界において散
乱が生じ易く、また熱的あるいは機械的な歪によ
る特性劣化のおそれがある。
Incidentally, infrared fibers with a step index type core/cladding structure made of different materials are also known, but only some studies have been conducted on crystalline optical fibers with AgBr as the core and AgCl as the cladding. First, since different materials are used, scattering is likely to occur at the boundary between the core and the cladding, and there is a risk of property deterioration due to thermal or mechanical strain.

[発明の目的] この発明の目的は以上の従来技術の問題点を解
消すべく創案されたものであり、この発明の目的
は、石英系光フアイバでは高損失となる赤外波長
帯でも低損失であり、しかもフアイバの曲りや表
面の汚れ等に対する伝送特性の劣化が少ない安定
な赤外フアイバを提供することにある。
[Objective of the Invention] The object of the present invention was devised to solve the above-mentioned problems of the prior art. The object of the present invention is to provide a stable infrared fiber whose transmission characteristics are less likely to deteriorate due to bending of the fiber, dirt on the surface, etc.

[発明の概要] 上記の目的を達成するために、この発明は、赤
外の透過率が高く且つガラス化範囲が広いカルコ
ゲナイドガラスの特長を有効に利用し、Geとカ
ルコゲンとを混合してガラス化したフアイバの中
心部分のGe含有量を周辺部分よりも多くして、
中心部分の屈折率を周辺部分よりも高くしたもの
である。
[Summary of the Invention] In order to achieve the above object, the present invention effectively utilizes the characteristics of chalcogenide glass, which has a high infrared transmittance and a wide vitrification range, and creates glass by mixing Ge and chalcogen. By increasing the Ge content in the central part of the carbonized fiber compared to the surrounding part,
The refractive index of the central portion is higher than that of the peripheral portion.

[実施例] 以下に、この発明の実施例を添付図面に従つて
詳述する。この実施例はGe−S系のステツプイ
ンデツクス型の赤外フアイバを示す。
[Examples] Examples of the present invention will be described in detail below with reference to the accompanying drawings. This example shows a Ge-S based step index type infrared fiber.

第1図に示す如く、赤外フアイバ4は円形の横
断面をなし、赤外フアイバ4はその中心部分の円
形断面のコア5とコア5の外周を被う円環状断面
のクラツデイング6とからなる。コア5は組成
(mol%)がGe40S60のガラスであり、クラツデイ
ング6はGe25S75のガラスである。Ge25S75のカル
コゲナイドガラスの屈折率は波長10μm近傍では
2.1〜2.2であり、またGeの屈折率は4.0である。
従つて、Geの含有比率を増大させれば屈折率は
高くなることが推測される。実際、Geの含有量
を多くしたGe40S60では屈折率が2.3であり、
Ge25S75の2.1〜2.2よりも大きな値となつている。
第2図は赤外フアイバ4の半径方向の屈折率分布
を示すもので、コア5の屈折率がクラツデイング
6の屈折率よりも高く凸状の屈折率分布となつて
いる。
As shown in FIG. 1, the infrared fiber 4 has a circular cross section, and the infrared fiber 4 consists of a core 5 with a circular cross section at its center and a cladding 6 with an annular cross section that covers the outer periphery of the core 5. . The core 5 is a glass with a composition (mol%) of Ge 40 S 60 , and the cladding 6 is a glass with a composition (mol%) of Ge 25 S 75 . The refractive index of Ge 25 S 75 chalcogenide glass is around 10 μm wavelength.
2.1 to 2.2, and the refractive index of Ge is 4.0.
Therefore, it is presumed that the refractive index increases as the Ge content ratio increases. In fact, Ge 40 S 60 with a high Ge content has a refractive index of 2.3,
This value is larger than 2.1 to 2.2 for Ge 25 S 75 .
FIG. 2 shows the refractive index distribution in the radial direction of the infrared fiber 4, in which the refractive index of the core 5 is higher than the refractive index of the cladding 6, forming a convex refractive index distribution.

次にステツプインデツクス型のGe−S系の赤
外フアイバの製造方法を説明する。
Next, a method for manufacturing a step index type Ge-S based infrared fiber will be explained.

まずGe−S系ガラスを合成する。高純度のGe
とSを所望のモル%となるように秤量し、秤量し
たGe、Sを減圧した石英アンプル中に入れて攪
拌しながら加熱した後、この石英アンプルを液体
窒素などで急冷する。これによりGe−S系ガラ
スのロツドが得られる。このようにして、Geの
含有量が異なる2種類のGe−S系ガラスのロツ
ドを作製する。
First, Ge-S glass is synthesized. High purity Ge
Ge and S are weighed to the desired mol%, and the weighed Ge and S are placed in a quartz ampoule under reduced pressure and heated while stirring, and then the quartz ampoule is rapidly cooled with liquid nitrogen or the like. As a result, a rod of Ge-S glass is obtained. In this way, two types of Ge-S glass rods having different Ge contents are produced.

次に、母材をロツドインチユーブ法を用いて製
造する。上記で得られたGe含有量が異なる2本
のGe−S系ガラスロツドのうち、Ge含有量が少
ないロツドの中心に円形の孔をあけ、この孔に
Ge含有量が多いもう一方のロツドを挿入し、高
温で延伸し円形中実な母材を製造する。
Next, a base material is manufactured using the rod inch tube method. Of the two Ge-S glass rods obtained above with different Ge contents, a circular hole was drilled in the center of the rod with the lower Ge content.
The other rod with a higher Ge content is inserted and stretched at high temperature to produce a circular solid base material.

最後に、この母材を通常の石英系フアイバと同
様に線引装置にて線引することによりステツプイ
ンデツクス型の赤外フアイバが得られる。
Finally, a step index type infrared fiber is obtained by drawing this base material using a drawing device in the same manner as a normal quartz fiber.

この発明では赤外の透過率が高く且つガラス化
範囲が広いカルコゲナイドガラスにGeを含ませ
ているので、広い赤外波長域で低損失の赤外フア
イバが得られる。ちなみに、透過波長域は
Ge25S75では0.5〜11μm、Ge40S60では3〜12μm
と共に広い。更に、Ge単体ではガラス化しない
が、Geとカルコゲンとを混合しているので、Ge
の含有率を大きく変えることができ適当な屈折率
の赤外フアイバが得られる。また、ルースクラツ
デイング構造の従来の赤外フアイバのような、赤
外フアイバの曲げやフアイバ表面の凸凹、汚れ等
による伝送特性の劣化が少ない。
In this invention, since Ge is contained in chalcogenide glass which has high infrared transmittance and a wide vitrification range, an infrared fiber with low loss in a wide infrared wavelength range can be obtained. By the way, the transmission wavelength range is
0.5-11μm for Ge 25 S 75 , 3-12μm for Ge 40 S 60
and wide. Furthermore, Ge alone does not vitrify, but since Ge and chalcogen are mixed, Ge
The content of the infrared fiber can be changed greatly, and an infrared fiber with an appropriate refractive index can be obtained. In addition, unlike conventional infrared fibers with a loose cladding structure, transmission characteristics are less likely to deteriorate due to bending of the infrared fiber, unevenness or dirt on the fiber surface, etc.

赤外フアイバ4は、主に計測用、エネルギー伝
送用として使用されるものであり、クラツデイン
グ6の径に対するコア5の径が通常の石英系光フ
アイバよりも可成り大きく、開口数の大きな多モ
ード光フアイバとなつている。なお、コアとクラ
ツデイングとの組成比が大きく異なる場合には、
両者の軟化点、熱膨張係数の違いから、クラツク
やひび割れが生じるおそれがあるが、コアとクラ
ツデイングの熱的性質が大きく異ならない範囲内
でフアイバに光を閉じ込めるに十分な屈折率差を
とることができる。
The infrared fiber 4 is mainly used for measurement and energy transmission, and the diameter of the core 5 relative to the diameter of the cladding 6 is considerably larger than that of a normal silica-based optical fiber, and it is a multimode fiber with a large numerical aperture. It has become an optical fiber. In addition, if the composition ratio of the core and the cladding is significantly different,
Although there is a risk of cracking or cracking due to the difference in softening point and coefficient of thermal expansion between the two, the difference in refractive index must be sufficient to confine light in the fiber within a range where the thermal properties of the core and cladding are not significantly different. Can be done.

なお、上記実施例においては、ロツドインチユ
ーブ法を用いたGe−S系のステップインデツク
ス型の赤外フアイバについて述べたが、Geの含
有量がフアイバの中心部から周辺部に向かつて漸
次減少したグレーデツトインデツクス型の赤外フ
アイバとしてもよい。また、S以外のカルコゲン
を使用したガラスやカルコゲンを2種以上含む系
のガラスを用いた赤外フアイバとしてもよい。
In the above example, a Ge-S step index type infrared fiber using the rod incubation method was described, but as the Ge content gradually increases from the center to the periphery of the fiber. It may also be a reduced grade index type infrared fiber. Further, an infrared fiber using a glass using a chalcogen other than S or a glass containing two or more types of chalcogen may be used.

[発明の効果] 以上要するに、この発明によれば次のような優
れた効果を発揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1) 赤外波長域の透過率が高いカルコゲナイドガ
ラスにGeを含ませているので、広い赤外波長
域に対し長尺の低損失の赤外フアイバが得られ
る。特に、石英系光フアイバでは使用できない
赤外領域の計測・エネルギー伝送用として好適
である。
(1) Since Ge is included in chalcogenide glass, which has high transmittance in the infrared wavelength range, a long infrared fiber with low loss can be obtained over a wide infrared wavelength range. In particular, it is suitable for measurement and energy transmission in the infrared region, which cannot be used with silica-based optical fibers.

(2) カルコゲナイドガラスはガラス化範囲が広い
ので、単体ではガラス化しない屈折率調整用の
Geの含有比率を大きく変化させてもガラス化
でき、適当な屈折率分布をもつた赤外ガラスを
作製することができる。
(2) Since chalcogenide glass has a wide range of vitrification, it can be used as a refractive index adjustment device that does not vitrify when used alone.
Vitrification is possible even when the Ge content ratio is greatly changed, and infrared glass with an appropriate refractive index distribution can be produced.

(3) コア・クラツデイング等の中実構造となつて
いるので、従来のルースクラツデイング構造の
ものに比し、フアイバの曲げやフアイバ表面の
凹凸・汚れ等による伝送特性の劣化が少なく、
安定な信頼性の高い赤外フアイバが得られる。
(3) Since it has a solid structure such as core cladding, there is less deterioration of transmission characteristics due to bending of the fiber or unevenness or dirt on the fiber surface compared to the conventional loose cladding structure.
A stable and highly reliable infrared fiber can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る赤外フアイバの一実施
例を示す横断面図、第2図は同フアイバの半径方
向の屈折率分布を示す図、第3図は従来の赤外フ
アイバを示す縦断面図である。 図中、1は赤外フアイバ、2は空気層、3は保
護チユーブ、4は赤外フアイバ、5はコア、6は
クラツデイングである。
FIG. 1 is a cross-sectional view showing an embodiment of an infrared fiber according to the present invention, FIG. 2 is a view showing the refractive index distribution in the radial direction of the same fiber, and FIG. 3 is a longitudinal cross-sectional view showing a conventional infrared fiber. It is a front view. In the figure, 1 is an infrared fiber, 2 is an air layer, 3 is a protective tube, 4 is an infrared fiber, 5 is a core, and 6 is a cladding.

Claims (1)

【特許請求の範囲】[Claims] 1 GeとS、Se、Te等のカルコゲンとを成分と
したガラス光フアイバにおいて、そのガラス光フ
アイバの中心部分が周辺部分よりもGeの含有比
率が多くなつていることを特徴とする赤外フアイ
バ。
1. An infrared fiber comprising a glass optical fiber containing Ge and a chalcogen such as S, Se, Te, etc., characterized in that the central part of the glass optical fiber has a higher content ratio of Ge than the peripheral part. .
JP60048219A 1985-03-13 1985-03-13 Infrared ray fiber Granted JPS61209925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048219A JPS61209925A (en) 1985-03-13 1985-03-13 Infrared ray fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048219A JPS61209925A (en) 1985-03-13 1985-03-13 Infrared ray fiber

Publications (2)

Publication Number Publication Date
JPS61209925A JPS61209925A (en) 1986-09-18
JPH0251855B2 true JPH0251855B2 (en) 1990-11-08

Family

ID=12797299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048219A Granted JPS61209925A (en) 1985-03-13 1985-03-13 Infrared ray fiber

Country Status (1)

Country Link
JP (1) JPS61209925A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392376A (en) * 1994-04-11 1995-02-21 Corning Incorporated Gallium sulfide glasses
CN104678490B (en) * 2015-03-19 2017-12-08 北京交通大学 A kind of high germanium-doped silica fiber with the flat normal dispersion characteristic in broadband

Also Published As

Publication number Publication date
JPS61209925A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US5155792A (en) Low index of refraction optical fiber with tubular core and/or cladding
US6243522B1 (en) Photonic crystal fiber
US3950073A (en) Eccentric core optical waveguide
US6075625A (en) Photoinduced grating in B2 O3 containing glass
CA1243521A (en) Optical fiber and process for producing the same
US4306767A (en) Single-mode optical fiber
US4838916A (en) Method for making single-polorization, single mode optical fibers
JP3802843B2 (en) Optical fiber manufacturing method
US5076825A (en) Method of producing optical multiple fiber
AU674728B2 (en) Partially detached core optical waveguide
JPH0251855B2 (en)
US6141155A (en) Refractive index distribution type optical element and refractive index distribution type rod lens array
US3241986A (en) Optical infrared-transmitting glass compositions
EP0026203A1 (en) Optical fibers containing aluminum metaphosphate
US6778747B1 (en) Radially varying and azimuthally asymmetric optical waveguide fiber
JPS6234701B2 (en)
JPS63246703A (en) Multiple light transmission body made of quartz glass
JPH038742A (en) Ge-as-s glass fiber having core-clad structure
JPH0715521B2 (en) Method for manufacturing gradient-index silica glass cylindrical lens
JPH01219707A (en) Optical fiber for transmitting ultraviolet-light energy
JPS6051084B2 (en) Optical fiber for infrared transmission
JPS60156011A (en) Optical fiber
JPH0129220Y2 (en)
JPS63281106A (en) Dispersion plat type optical fiber
MXPA01006357A (en) Photonic crystal fiber