JPH0251467A - Production of bi-based superconducting oxide sintered body containing lead - Google Patents

Production of bi-based superconducting oxide sintered body containing lead

Info

Publication number
JPH0251467A
JPH0251467A JP63200409A JP20040988A JPH0251467A JP H0251467 A JPH0251467 A JP H0251467A JP 63200409 A JP63200409 A JP 63200409A JP 20040988 A JP20040988 A JP 20040988A JP H0251467 A JPH0251467 A JP H0251467A
Authority
JP
Japan
Prior art keywords
sintered body
oxide powder
powder
pbo
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63200409A
Other languages
Japanese (ja)
Other versions
JP2751230B2 (en
Inventor
Takuo Takeshita
武下 拓夫
Tadashi Sugihara
杉原 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63200409A priority Critical patent/JP2751230B2/en
Priority to US07/390,281 priority patent/US5026680A/en
Priority to EP89114662A priority patent/EP0354537B1/en
Priority to DE8989114662T priority patent/DE68904260T2/en
Publication of JPH0251467A publication Critical patent/JPH0251467A/en
Application granted granted Critical
Publication of JP2751230B2 publication Critical patent/JP2751230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a high density sintered body with a slight deficiency of oxygen even by sintering at a low temp. by mixing Bi-Sr-Ca-Cu-O type oxide powder with Bi-Pb-O type oxide powder, press-molding the mixture and sintering this molded body. CONSTITUTION:Bi-Sr-Ca-Cu-O type oxide powder having a compsn. similar to that of a superconductor is prepd. and mixed with powder of PbOBi2O3 compd. oxide (60-80mol% PbO, preferably 73mol% PbO and 27 mol% Bi2O3) as a sintering aid. The mixture is press-molded and this molded body is sintered under ordinary pressure or hot-pressed to obtain a Bi-based superconducting oxide sintered body contg. Pb. By this method, the high density sintered body is easily obtd. at a relatively low temp. and oxygen annealing is made unnecessary or can be finished in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高密度でかつ超電導特性の優れた鉛を含む
Bi系超電導酸化物焼結体の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a lead-containing Bi-based superconducting oxide sintered body having high density and excellent superconducting properties.

〔従来の技術〕[Conventional technology]

近年、Bi −Sr −Ca −Cu −0系酸化物が
液体窒素の沸点以上の温度で超電導現象を示すことが発
見された。しかし、このBi−8r−Ca−Cu−0系
酸化物には、超電導臨界温度(T  )が75玉の低温
相と105@にの高温相が共存し、上記高温相を単独相
とするBi−8r −Ca −Cu −0系酸化物を作
製することは困難であった。
In recent years, it has been discovered that Bi-Sr-Ca-Cu-0-based oxides exhibit superconductivity at temperatures above the boiling point of liquid nitrogen. However, in this Bi-8r-Ca-Cu-0-based oxide, a low temperature phase with a superconducting critical temperature (T) of 75 and a high temperature phase of 105@ coexist, and Bi It was difficult to produce -8r -Ca -Cu -0 based oxides.

ところが、最近、上記Bi −Sr −Ca −Cu−
0系酸化物の81をpbで一部置換することにより、T
  −105aKの高温相が安定に合成しうることが判
明した(粉体粉末冶金協会:昭和63年春季大会講演集
、P83参照)。この酸化物は、BIPb −8r −
Ca −Cu−0系酸化物で、その粉末は、Bi 、P
b、Sr、Ca、Cuの元素の硝酸塩あるいは蓚酸塩の
溶液から沈殿反応により共沈させる方法、あるいは、B
i酸化物、pb酸化物、Ca炭酸塩、Sr炭酸塩および
Cu酸化物の各粉末を所定の割合に配合し混合し、所定
の温度で焼成する方法により製造されたBi−Pb−S
r −Ca −Cu −0系酸化物をボールミル等で平
均粒径:5p以下に粉砕して製造していた。
However, recently, the above Bi -Sr -Ca -Cu-
By partially replacing 81 of the 0-based oxide with pb, T
It has been found that a high temperature phase of -105aK can be synthesized stably (see Powder and Powder Metallurgy Association: 1988 Spring Conference Lectures, p. 83). This oxide is BIPb −8r −
Ca-Cu-0 based oxide whose powder contains Bi, P
b, a method of co-precipitation by a precipitation reaction from a solution of nitrate or oxalate of elements Sr, Ca, Cu;
Bi-Pb-S manufactured by a method of blending and mixing powders of i oxide, pb oxide, Ca carbonate, Sr carbonate, and Cu oxide in a predetermined ratio and firing at a predetermined temperature.
It was manufactured by pulverizing r-Ca-Cu-0 type oxide using a ball mill or the like to an average particle size of 5p or less.

このようにして製造されたBi  −Pb −SrCa
−Cu−0系酸化物粉末は、プレス成形して成形体とし
、この圧粉体を温度=800〜900℃で常圧焼結する
か、あるいは上記Bi  −Pb −5rCa −Cu
 −0系酸化物粉末を温度:650〜850℃でホット
プレスすることにより焼結体を作製していた。
Bi-Pb-SrCa produced in this way
-Cu-0-based oxide powder is press-molded into a compact, and this compact is sintered under normal pressure at a temperature of 800 to 900°C, or the above-mentioned Bi -Pb -5rCa -Cu
A sintered body was produced by hot pressing -0 series oxide powder at a temperature of 650 to 850°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記常圧焼結を最も高い焼結温度(900℃
)で実施しても、得られた焼結体の相対密度は最大75
%であり、またこのような高温度での常圧焼結は、酸素
欠損を生じるために超電導特性が劣化し、その回復のた
めに低温で長時間の酸素アニールが必要であった。
However, the above pressureless sintering is performed at the highest sintering temperature (900°C).
), the relative density of the obtained sintered body is at most 75
%, and normal-pressure sintering at such high temperatures causes oxygen vacancies, which deteriorates the superconducting properties, and requires long-term oxygen annealing at low temperatures to recover.

さらに、上記ホットプレスによると相対密度が90%以
上の緻密な焼結体が容易に得られるが、この場合もホッ
トプレス中に酸素欠損が生じ超電導特性が劣化する。そ
の回復のためには約100時間程度の酸素アニールが必
要であった。
Furthermore, although a dense sintered body with a relative density of 90% or more can be easily obtained by the above-mentioned hot pressing, oxygen vacancies occur during the hot pressing and the superconducting properties deteriorate in this case as well. Oxygen annealing for about 100 hours was required for its recovery.

上記酸素欠損を防止するためには、上記常圧焼結または
ホットプレスを従来よりも低い温度で実施すればよいが
、上記低い温度で常圧焼結あるいはホットプレスして得
られた焼結体は、相対密度が低く、したがって臨界電流
密度が低下するという問題点があった。
In order to prevent the above-mentioned oxygen deficiency, the above-mentioned normal pressure sintering or hot pressing may be carried out at a lower temperature than conventionally. had a problem that the relative density was low, and therefore the critical current density was reduced.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、酸素欠損量の少ない低い温度で
常圧焼結またはホットプレスしても高密度の焼結体を作
製することのできるpb含有Bi系超電導酸化物焼結体
の製造法を開発すべく研究を行った結果、 Bi  −Sr −Ca −Cu −0系酸化物粉末に
Bi  −Pb−0系酸化物粉末を配合し、混合して得
られた混合粉末を常圧焼結またはホットプレスすると、
従来よりも低い温度(650℃未満)で高密度を有する
pb含有Bi系超電導酸化物焼結体を得ることができる
という知見を得たのである。
Therefore, the present inventors aimed to produce a pb-containing Bi-based superconducting oxide sintered body that can be produced by pressureless sintering or hot pressing at a low temperature with a small amount of oxygen vacancies. As a result of research to develop a method, we found that Bi-Pb-0 based oxide powder was blended with Bi-Sr-Ca-Cu-0 based oxide powder, and the mixed powder obtained by mixing was sintered under pressure. When tied or hot pressed,
It was discovered that a pb-containing Bi-based superconducting oxide sintered body having high density can be obtained at a lower temperature (less than 650° C.) than conventionally.

この発明は、かかる知見にもとづいてなされたものであ
って、 あらかじめ、はぼ超電導組成のBi’−Sr−Ca−C
u−0系酸化物粉末を作製し、これにPbO1O〜80
モル%のP b O−B t 20 a系複合酸化物粉
末を混合し、プレス成形して得られた成形体を常圧焼結
するか、または上記混合粉末をホットプレスする鉛を含
むBi系超電導酸化物焼結体の製造法に特徴を有するも
のである。
This invention was made based on this knowledge, and in advance, a superconducting composition of Bi'-Sr-Ca-C
A u-0 based oxide powder is prepared, and PbO1O~80 is added to it.
A Bi-based compound containing lead is prepared by mixing mol % of P b O-B t 20 a-based composite oxide powder and press-molding the resulting compact by pressureless sintering, or by hot-pressing the above-mentioned mixed powder. This method is characterized by a method for producing a superconducting oxide sintered body.

上記「はぼ超電導組成のBi −8r −CaCu−0
系酸化物粉末」とは、通常知られているBi −Sr 
−Ca −Cu −0系酸化物超電導粉末、あるいは上
記粉末において81含有量を少し減らしたBi −8r
 −Ca −Cu −0系酸化物超電導粉末である。
The above “Habo superconducting composition Bi-8r-CaCu-0
"Bi-Sr based oxide powder" is the commonly known Bi-Sr
-Ca -Cu -0 based oxide superconducting powder, or Bi -8r with slightly reduced 81 content in the above powder
-Ca-Cu-0 based oxide superconducting powder.

上記はぼ超電導組成のBi  −8r −Ca −Cu
−0系酸化物粉末に上記PbO:60〜80モル%のP
bO−Bi2O3系複合酸化物粉末を混合して焼結する
と、PbO−Bi2O3系複合酸化物はPbOとBi2
O3の共晶物であるから低温で液相となり焼結助剤とし
て働くために液相焼結が起りやすく、比較的低温で高密
度の焼結体が得られる。したがって、酸素の抜けが少な
い状態の焼結が可能であり、容易に高密度焼結体が得ら
れるうえに、酸素アニールが必要でなくなるか、あるい
は必要でも短時間でよい。
The above superconducting composition is Bi-8r-Ca-Cu
-0 series oxide powder with the above PbO: 60 to 80 mol% P
When bO-Bi2O3-based composite oxide powder is mixed and sintered, the PbO-Bi2O3-based composite oxide is composed of PbO and Bi2.
Since it is a eutectic of O3, it becomes a liquid phase at a low temperature and acts as a sintering aid, so liquid phase sintering tends to occur, and a high-density sintered body can be obtained at a relatively low temperature. Therefore, it is possible to perform sintering with little oxygen loss, and a high-density sintered body can be easily obtained, and oxygen annealing is not necessary, or even if it is necessary, it can be done in a short time.

上記PbO:60〜80モル%のPbO−Bi2O3系
複合酸化物のうちでも、PbOとBizOaの共晶点の
組成(PbO:73モル%−Bi203:23モル%)
を有するPbO−B 1203系複合酸化物は融点が6
35℃で最も低く、焼結助剤としては最も好ましい。
Among the PbO-Bi2O3-based composite oxides containing PbO: 60 to 80 mol%, the composition of the eutectic point of PbO and BizOa (PbO: 73 mol%-Bi203: 23 mol%)
The PbO-B 1203 complex oxide has a melting point of 6
It is lowest at 35°C and is most preferred as a sintering aid.

上記焼結助剤としてPbO−Bi2O3系複合酸化物と
してPbO:60〜80モル%に限定した理由は、Pb
Oが60モル%未満または80モル%を越えると上記P
bO−Bi2O3系酸化物の融点が700℃を越え、低
温焼結において十分な焼結助剤として働かず十分な密度
のBi  −Pb −8r −Ca−Cu−0系超電導
酸化物焼結体が得られない。したがって、上記PbO−
Bi2O3系複合酸化物の組成範囲はPbO:60〜8
0モル%と定めた。
The reason for limiting the PbO-Bi2O3-based composite oxide as the sintering aid to PbO: 60 to 80 mol% is that Pb
When O is less than 60 mol% or exceeds 80 mol%, the above P
The melting point of bO-Bi2O3-based oxide exceeds 700°C, and it does not work as a sufficient sintering aid during low-temperature sintering, resulting in a Bi-Pb-8r-Ca-Cu-0-based superconducting oxide sintered body with sufficient density. I can't get it. Therefore, the above PbO-
The composition range of Bi2O3-based composite oxide is PbO: 60-8
It was determined to be 0 mol%.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

原料粉末として、いずれも7uIMの平均粒径を有し、
かつ純度799.9%のCa COa粉末、S r C
Oa粉末、CuO粉末、BizOa粉末およびPbO粉
末を用意した。
As raw material powder, all have an average particle size of 7uIM,
and Ca COa powder with a purity of 799.9%, S r C
Oa powder, CuO powder, BizOa powder, and PbO powder were prepared.

実施例 1 上記原料粉末のうち、重量%でCa COa :IB、
7%、S r COs : 24.6%、CuO:19
.9%、B t203:3B、8%の割合で配合し、3
時間の湿式ボールミルによる混合を行なった後、乾燥し
、ついで大気中、温度=700℃に10時間保持後、粉
砕した。さらに、大気中、温度二800℃に10時間保
持後粉砕の工程を5回繰り返して十分に反応させたのち
、最終工程において微粉砕し、平均粒径:10sのB 
l bo S rl、o Caha Cul、505の
組成を有するBi  −8r −Ca −Cu −0系
酸化物粉末を作製した。
Example 1 Among the above raw material powders, Ca COa: IB,
7%, S r COs: 24.6%, CuO: 19
.. 9%, B t203:3B, blended at a ratio of 8%, 3
After mixing in a wet ball mill for an hour, the mixture was dried, maintained at a temperature of 700° C. in the atmosphere for 10 hours, and then pulverized. Furthermore, after holding the temperature at 2,800°C for 10 hours in the atmosphere and pulverizing it 5 times to fully react, it was finely pulverized in the final step.
A Bi-8r-Ca-Cu-0-based oxide powder having a composition of lboSrl, oCahaCul, 505 was produced.

つぎに、上記原料粉末のうち、重量%でB l 20 
a : 41゜1%、P b O: 511.9%の割
合で配合し、湿式ボールミルで3時間混合し、乾燥した
のち、白金ルツボに装入し、大気中、温度=600℃、
3時間保持の熱処理を施しで微粉砕した。この微粉砕し
た粉末を再度、大気中、温度二600℃、3時間保持の
熱処理を施して十分に反応させたのち、この反応物を湿
式ボールミルにより、平均粒径二10虜まで微粉砕して
、Bi2O3・3PbOの組成を有するBi  −Pb
 −0系酸化物粉末を作製した。
Next, of the raw material powder, B l 20 in weight%
A: 41° 1%, PbO: 511.9%, mixed in a wet ball mill for 3 hours, dried, charged into a platinum crucible, heated in the atmosphere at a temperature of 600°C.
It was heat treated for 3 hours and pulverized. This finely pulverized powder was again subjected to heat treatment in the air at a temperature of 2,600°C for 3 hours to fully react, and then the reactant was pulverized to an average particle size of 210°C using a wet ball mill. , Bi-Pb having the composition Bi2O3.3PbO
-0 series oxide powder was produced.

上記作製したB 11. o S r t 、 o C
a t 、 o Cu t 、 505の組成を有する
Bi −5r −Ca −Cu −0系酸化物粉末に、
上記Bi2O3・3PbOの組成を有するBi −Pb
 −0系酸化物粉末を外景で10重量%添加し、湿式ボ
ールミルでよく混合したのち乾燥し、−軸ブレスにより
プレス圧二3トン/C−でプレス成形し、たて=lO關
×横=5II11×長さ:30市の成形体を作製した。
B produced above 11. o S r t , o C
A Bi-5r-Ca-Cu-0-based oxide powder having a composition of a t , o Cut , 505,
Bi-Pb having the above composition Bi2O3.3PbO
- Add 10% by weight of 0-based oxide powder externally, mix well in a wet ball mill, dry, and press-form with a -axial press at a press pressure of 23 tons/C-, vertical = lO x horizontal = 5II11×length: 30 molded bodies were produced.

上記成形体の密度は2.9g/−であった。この成形体
を大気中、温度:640℃、24時間保持の条件で常圧
焼結すると、密度:5.2g/−のpb含有Bi系超電
導酸化物焼結体が得られた。上記pb含有Bi系超電導
酸化物焼結体を四端子法で臨界電流密度J および臨界
温度T を測定し、その結果を第1表に示した。
The density of the molded article was 2.9 g/-. When this molded body was sintered in the atmosphere at a temperature of 640° C. under atmospheric pressure for 24 hours, a pb-containing Bi-based superconducting oxide sintered body having a density of 5.2 g/− was obtained. The critical current density J and critical temperature T of the above-mentioned pb-containing Bi-based superconducting oxide sintered body were measured by a four-terminal method, and the results are shown in Table 1.

比較例 1 上記原料粉末を、@量%でCaCO3:I5.2%、S
 r CO3: 22−4%、Cu O: 18.1%
、Bi2O3:39.0%、およびP b O:5.4
%の割合で配合し、5時間湿式ボールミルにより混合し
、乾燥したのち、大気中、温度=700℃、10時間保
持し、ついで粉砕した。さらに、大気中、温度二800
℃に10時間保持したのち粉砕する工程を5回繰り返し
て十分に反応させたのち、最終工程において微粉砕し、
平均粒径: LOtaaのBi   Pb   Sr 
 Ca  Cu  Oの組1.10 0.1B  1.
0 1.0 1.5 5+x成を有するBi  −Pb
 −Sr −Ca −Cu −0系酸化物粉末を作製し
た。
Comparative Example 1 The above raw material powder was mixed with CaCO3:I5.2%, S
r CO3: 22-4%, CuO: 18.1%
, Bi2O3: 39.0%, and P b O: 5.4
%, mixed in a wet ball mill for 5 hours, dried, held in the air at a temperature of 700° C. for 10 hours, and then pulverized. Furthermore, in the atmosphere, the temperature is 2800
The process of holding at ℃ for 10 hours and then pulverizing was repeated 5 times to fully react, and then finely pulverized in the final step.
Average particle size: LOtaa's Bi Pb Sr
Ca Cu O set 1.10 0.1B 1.
0 1.0 1.5 Bi-Pb with 5+x composition
-Sr-Ca-Cu-0 based oxide powder was produced.

このBi −Pb −Sr −Ca −Cu −0系酸
化物粉末を実施例1と同一条件でプレス成形して成形体
(密度:3.Or/c4)を作製し、この成形体を同一
条件で常圧焼結して得られたpb含有Bi系超電導酸化
物焼結体を酸素アニールした後、この焼結体の密度、臨
界電流密度および臨界温度を測定し、その結果を第1表
に示した。
This Bi-Pb-Sr-Ca-Cu-0 based oxide powder was press-molded under the same conditions as in Example 1 to produce a molded body (density: 3.Or/c4), and this molded body was molded under the same conditions. After oxygen annealing the pb-containing Bi-based superconducting oxide sintered body obtained by pressureless sintering, the density, critical current density, and critical temperature of this sintered body were measured, and the results are shown in Table 1. Ta.

実施例 2 上記実施例1で作製したBii、 o!1ir1. o
cat 、 ocut 、 sosの組成を有するB 
i−Sr−Ca−Cu−0系酸化物粉末に、同じ〈実施
例1で作製したBizOa3PbOの組成を有するB 
i−P b−0系酸化物粉末を外景で20重量%添加し
、湿式ボールミルでよく混合したのち乾燥し、ブレス圧
:3.0 トン/ cj 、大気中、温度=640℃、
5時間保持の条件にてホットプレスを行ない、得られた
pb含含有基系超電導酸化物焼結体密度、臨界電流密度
および臨界温度を測定し、その結果を第1表に示した。
Example 2 Bii produced in Example 1 above, o! 1ir1. o
B with the composition cat, ocut, sos
B having the same composition of BizOa3PbO prepared in Example 1 was added to the i-Sr-Ca-Cu-0 based oxide powder.
Add 20% by weight of i-P b-0 type oxide powder externally, mix well with a wet ball mill, and then dry, press pressure: 3.0 tons/cj, in the atmosphere, temperature = 640 ° C.
Hot pressing was carried out under conditions of holding for 5 hours, and the density, critical current density, and critical temperature of the obtained pb-containing base superconducting oxide sintered body were measured, and the results are shown in Table 1.

比較例 2 上記比較例1と同じ方法で作製した ” ’1.33PbO,29Sr1.0°a1.0°’
1.505+x’組成を有するBi  −Pb −8r
 −Ca −Cu −0系酸化物粉末を実施例2と同一
条件でホットプレスし、得られたpb含有Bi系超電導
酸化物焼結体を酸素アニールした後、この焼結体の密度
、臨界電流密度および臨界温度を測定しその結果を第1
表に示した。
Comparative Example 2 "1.33PbO, 29Sr1.0°a1.0°" produced by the same method as Comparative Example 1 above
Bi-Pb-8r with composition 1.505+x'
-Ca-Cu-0 type oxide powder was hot pressed under the same conditions as in Example 2, and the resulting pb-containing Bi-based superconducting oxide sintered body was annealed with oxygen. Measure the density and critical temperature and send the results to the first
Shown in the table.

実施例 3 重量%で、B t 0,5: 3B、4%、S r C
Oa :23.1%、Ca COa : 15 、8%
、Cu O: 24.9%の割合で配合し、混合し、実
施例1と同様にして平均粒径:81B@の旧1.O8「
1.0Ca1.0”2.Oo5.5の組成を有するBi
 −8r −Ca −Cu −0系酸化物粉末を作製し
た。
Example 3 In wt %, B t 0,5: 3B, 4%, S r C
Oa: 23.1%, CaCOa: 15, 8%
, CuO: at a ratio of 24.9%, and mixed in the same manner as in Example 1. O8
Bi having a composition of 1.0Ca1.0"2.Oo5.5
-8r -Ca -Cu -0 based oxide powder was produced.

一方、実施例1で作製した重量%でBi2O3:41.
1%、P b O: 58.9%を配合し、混合し、十
分に反応して得られたBi2O3・3PbOの組成を有
するBi−Pb−0系酸化物粉末を、上記Bi  −S
r −Ca −Cu −0系酸化物粉末に外景で10重
量%添加し、実施例1と同一条件にて成形体を作製し、
この成形体を常圧焼結し、その常圧焼結体の密度を測定
するとともに臨界電流密度J および臨界温度T を測
定し、その結果を第C 2表に示した。
On the other hand, the weight percentage of Bi2O3 produced in Example 1 was 41.
1%, PbO: 58.9%, mixed, and sufficiently reacted to obtain a Bi-Pb-0 based oxide powder having a composition of Bi2O3.3PbO.
10% by weight was added to the r -Ca -Cu -0 based oxide powder in appearance, and a molded body was produced under the same conditions as Example 1,
This molded body was pressureless sintered, and the density of the pressureless sintered body was measured, as well as the critical current density J and critical temperature T. The results are shown in Table C2.

比較例 3 比較例1と同様に、平均粒径: l0IJのB’1.0
9PbO,13S’1.0Ca1.0Cu2.005+
x の組成を有するBi  −Pb −Sr −Ca 
−Cu −0系酸化物粉末を作製し、このBi  −P
b −5r −Ca−Cu−0系酸化物粉末を実施例1
と同一条件でプレス成形し、常圧焼結したのち、この常
圧焼結体を酸素アニールし、ついでこの焼結体の密度、
臨界電流密度および臨界温度を測定し、その結果を第2
表に示した。
Comparative Example 3 Same as Comparative Example 1, average particle size: B'1.0 of l0IJ
9PbO,13S'1.0Ca1.0Cu2.005+
Bi-Pb-Sr-Ca with the composition x
-Cu -0 based oxide powder was prepared, and this Bi -P
b -5r -Ca-Cu-0 based oxide powder in Example 1
After press forming and pressureless sintering under the same conditions as above, this pressureless sintered body is annealed with oxygen, and then the density of this sintered body is
Measure the critical current density and critical temperature and send the results to the second
Shown in the table.

実施例 4 実施例3で得られた”1.0”1.0Ca1.0”2.
005.5の組成を有するBi −Sr −Ca −C
u −0系酸化物粉末に、実施例1で作製したBi20
33PbOの組成を有するBi −Pb −0系酸化物
粉末を外景で20重量%を添加し、その後実施例2と同
様にホットプレスしてpb含有Bi系超電導酸化物焼結
体を作製し、この焼結体の密度、臨界電流密度J およ
び臨界温度T を測定し、そのCC 結果を第2表に示した。
Example 4 “1.0”1.0Ca1.0”2. obtained in Example 3.
Bi-Sr-Ca-C with a composition of 005.5
Bi20 produced in Example 1 was added to the u-0-based oxide powder.
A Bi-Pb-0 based oxide powder having a composition of 33PbO was added in an amount of 20% by weight, and then hot pressed in the same manner as in Example 2 to produce a pb-containing Bi-based superconducting oxide sintered body. The density, critical current density J and critical temperature T of the sintered body were measured, and the CC results are shown in Table 2.

比較例 4 比較例1と同様に、平均粒径:10μsのB’!、19
PbO,29S’1.0Ca1.0Cu2.005 +
xの組成を有するBi  −Pb −5r −Ca −
Cu −0系酸化物粉末を作製し、この酸化物粉末を実
施例2と同一条件でホットプレスし、得られたpb含有
Bi系超電導酸化物焼結体を酸素アニールした後、この
焼結体の密度、臨界電流密度J および臨界温度T を
測定し、その結果を第2表に示した。
Comparative Example 4 Same as Comparative Example 1, average particle size: 10 μs B'! , 19
PbO,29S'1.0Ca1.0Cu2.005 +
Bi-Pb-5r-Ca- with the composition x
A Cu-0 based oxide powder was prepared, this oxide powder was hot-pressed under the same conditions as in Example 2, and the resulting pb-containing Bi-based superconducting oxide sintered body was annealed with oxygen. The density, critical current density J, and critical temperature T were measured, and the results are shown in Table 2.

第1表および第2表の結果から、Bi−5r−Ca−C
u−0系酸化物粉末とBi −Pb −0系酸化物粉末
の混合粉末を常圧焼結またはホットプレスして得られた
実施例1〜4のpb含有Bi系超電導酸化物焼結体は、
Bi  −Pb −5r −Ca−Cu−0系酸化物粉
末を常圧焼結またはホットプレスして得られた比較例1
〜4のpb含有Bi系超電導酸化物焼結体よりも密度が
高く臨界電流密度が優れていることがわがる。これは、
上記Bi−pb−o系酸化物粉末が常圧焼結またはホッ
トプレス時に焼結助剤として働くために、低温度での常
圧焼結またはホットプレスであっても、pb含有Bi系
超電導酸化物焼結体の密度を向上せしめ、したがって臨
界電流密度が優れたものとなると考えられる。
From the results in Tables 1 and 2, Bi-5r-Ca-C
The pb-containing Bi-based superconducting oxide sintered bodies of Examples 1 to 4 obtained by pressureless sintering or hot pressing of mixed powders of u-0-based oxide powder and Bi-Pb-0-based oxide powder were ,
Comparative Example 1 obtained by pressureless sintering or hot pressing of Bi-Pb-5r-Ca-Cu-0 based oxide powder
It can be seen that the density is higher and the critical current density is better than the pb-containing Bi-based superconducting oxide sintered bodies of No. 4 to 4. this is,
Since the Bi-pb-o based oxide powder acts as a sintering aid during pressureless sintering or hot pressing, even if pressureless sintering or hot pressing is performed at a low temperature, the pb-containing Bi-based superconducting oxide It is believed that this improves the density of the sintered body, resulting in an excellent critical current density.

〔発明の効果〕〔Effect of the invention〕

Bi  −Sr −Ca −Cu −0系酸化物粉末に
、焼結助剤としてのPbO−Bi2o3系共品組成物を
混合して焼結すると、低い温度で焼結しても高密度を有
し、したがって、臨界電流密度のすぐれたBi −Pb
 −8r −Ca −Cu −0系超電導酸化物焼結体
を得ることができ、低い温度で焼結するために焼結中の
酸素の抜けが少ない。
When Bi-Sr-Ca-Cu-0-based oxide powder is mixed with a PbO-Bi2o3-based composition as a sintering aid and sintered, it maintains high density even when sintered at a low temperature. , Therefore, Bi-Pb with excellent critical current density
A -8r -Ca -Cu -0-based superconducting oxide sintered body can be obtained, and since it is sintered at a low temperature, there is little oxygen loss during sintering.

また、上記焼結中の酸素の抜けが少ないために、本発明
により得られたBi  −Pb −Sr −CaCu−
0系超電導酸化物焼結体は、比較例1〜4で行っている
ような酸素アニールを省略することができるか、あるい
は酸素アニールの時間を短縮することができる。
Moreover, since the loss of oxygen during the sintering is small, the Bi-Pb-Sr-CaCu-
For the 0-type superconducting oxide sintered body, oxygen annealing as performed in Comparative Examples 1 to 4 can be omitted, or the oxygen annealing time can be shortened.

Claims (5)

【特許請求の範囲】[Claims] (1)Bi−Sr−Ca−Cu−O系酸化物粉末にBi
−Pb−O系酸化物粉末を混合して得られた混合粉末を
プレス成形して成形体を作製し、この成形体を焼結する
ことを特徴とする鉛を含むBi系超電導酸化物焼結体の
製造法。
(1) Bi-Sr-Ca-Cu-O based oxide powder
- Lead-containing Bi-based superconducting oxide sintering characterized by press-molding a mixed powder obtained by mixing Pb-O-based oxide powder to produce a compact, and sintering the compact. How the body is manufactured.
(2)Bi−Sr−Ca−Cu−O系酸化物粉末にBi
−Pb−O系酸化物粉末を混合して得られた混合粉末を
ホットプレスすることを特徴とする鉛を含むBi系超電
導酸化物焼結体の製造法。
(2) Bi-Sr-Ca-Cu-O based oxide powder
- A method for producing a lead-containing Bi-based superconducting oxide sintered body, which comprises hot pressing a mixed powder obtained by mixing Pb--O based oxide powder.
(3)上記Bi−Pb−O系酸化物粉末は、PbO−B
i_2O_3系複合酸化物粉末であることを特徴とする
請求項1または2記載の鉛を含むBi系超電導酸化物焼
結体の製造法。
(3) The Bi-Pb-O based oxide powder is PbO-B
3. The method for producing a lead-containing Bi-based superconducting oxide sintered body according to claim 1 or 2, wherein the powder is an i_2O_3-based composite oxide powder.
(4)上記PbO−Bi_2O_3系複合酸化物粉末は
、PbO:60〜80モル%の組成範囲を有するPbO
−Bi_2O_3系複合酸化物粉末、さらに好ましくは
PbO:73モル%、Bi_2O_3:27モル%の組
成を有することを特徴とするPbO−Bi_2O_3系
複合酸化物粉末であることを特徴とする請求項3記載の
鉛を含むBi系超電導酸化物焼結体の製造法。
(4) The PbO-Bi_2O_3-based composite oxide powder has a composition range of PbO: 60 to 80 mol%.
-Bi_2O_3-based composite oxide powder, more preferably a PbO-Bi_2O_3-based composite oxide powder having a composition of 73 mol% PbO and 27 mol% Bi_2O_3. A method for producing a Bi-based superconducting oxide sintered body containing lead.
(5)PbO:60〜80モル%の組成範囲を有するP
bO−Bi_2O_3系複合酸化物粉末、好ましくはP
bO:73モル%のPbO−Bi_2O_3系複合酸化
物粉末からなることを特徴とする鉛を含むBi系超電導
酸化物焼結体製造用焼結助剤。
(5) PbO: P having a composition range of 60 to 80 mol%
bO-Bi_2O_3-based composite oxide powder, preferably P
A sintering aid for producing a lead-containing Bi-based superconducting oxide sintered body, characterized by comprising PbO-Bi_2O_3-based composite oxide powder containing bO: 73 mol%.
JP63200409A 1988-08-11 1988-08-11 Method for producing Bi-based superconducting oxide sintered body containing lead Expired - Lifetime JP2751230B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63200409A JP2751230B2 (en) 1988-08-11 1988-08-11 Method for producing Bi-based superconducting oxide sintered body containing lead
US07/390,281 US5026680A (en) 1988-08-11 1989-08-07 Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing a sintered body therefrom
EP89114662A EP0354537B1 (en) 1988-08-11 1989-08-08 Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing of a sintered body therefrom
DE8989114662T DE68904260T2 (en) 1988-08-11 1989-08-08 METHOD FOR PRODUCING A POWDER FROM SUPRAL-CONDUCTIVE OXIDE ON THE BASIS OF WISMUT, WHICH CONTAINS LEAD, AND METHOD FOR PRODUCING A SINTER BODY THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200409A JP2751230B2 (en) 1988-08-11 1988-08-11 Method for producing Bi-based superconducting oxide sintered body containing lead

Publications (2)

Publication Number Publication Date
JPH0251467A true JPH0251467A (en) 1990-02-21
JP2751230B2 JP2751230B2 (en) 1998-05-18

Family

ID=16423836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200409A Expired - Lifetime JP2751230B2 (en) 1988-08-11 1988-08-11 Method for producing Bi-based superconducting oxide sintered body containing lead

Country Status (1)

Country Link
JP (1) JP2751230B2 (en)

Also Published As

Publication number Publication date
JP2751230B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
US4943557A (en) Method of making a high density YBa Cu3 Ox superconductor material
EP0398503A2 (en) Rare-earth barium copper oxide superconducting materials
US5026680A (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing a sintered body therefrom
JPH0251467A (en) Production of bi-based superconducting oxide sintered body containing lead
JP2555706B2 (en) Manufacturing method of Bi-based superconducting oxide powder containing lead and sintered body thereof
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH0196055A (en) Superconductive ceramic composition
JPH0345514A (en) Bi-based superconducting oxide powder and production of sintered compact using the same powder
JP2630397B2 (en) Superconductor manufacturing method
JPS63260853A (en) Superconductive material
Sastry et al. On the synthesis and structure of single-phase (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O 10
JPH03285823A (en) Oxide superconductor
JPH01160857A (en) Superconducting ceramic and production thereof
JP2859283B2 (en) Oxide superconductor
JPH0489320A (en) Production of source material for oxide superconductor
JPH01172259A (en) Production of ceramic superconducting molded body
JPH02208225A (en) Oxide superconductor
JPH03223118A (en) Production of oxide superconductor
JPH0570138A (en) Oxide superconductor and its production
JPH0292826A (en) Oxide superconductor
JPH0459654A (en) Oxide superconductor
JPH03290319A (en) Oxide superconductor and production thereof
JPH0570135A (en) Oxide superconductor and its production
JPH04124027A (en) Oxide superconductor and its production