JPH0251398A - Automatic voltage regulator for synchronous generator - Google Patents

Automatic voltage regulator for synchronous generator

Info

Publication number
JPH0251398A
JPH0251398A JP63199868A JP19986888A JPH0251398A JP H0251398 A JPH0251398 A JP H0251398A JP 63199868 A JP63199868 A JP 63199868A JP 19986888 A JP19986888 A JP 19986888A JP H0251398 A JPH0251398 A JP H0251398A
Authority
JP
Japan
Prior art keywords
circuit
output
order lag
automatic voltage
voltage regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63199868A
Other languages
Japanese (ja)
Other versions
JP2680055B2 (en
Inventor
Akira Koseki
小関 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Electric Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electric Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP63199868A priority Critical patent/JP2680055B2/en
Publication of JPH0251398A publication Critical patent/JPH0251398A/en
Application granted granted Critical
Publication of JP2680055B2 publication Critical patent/JP2680055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To continuously variably obtain a break frequency of a phase lag-lead circuit by constituting a signal amplifying phase adjusting circuit in an automatic voltage regulator of a first-order lag amplifying circuit and a coefficient adder circuit. CONSTITUTION:An automatic voltage regulator is constituted of a voltage deviation detector 4, signal amplification phase adjusting circuit 5 and a power amplification output circuit 6. While the signal amplification phase adjusting circuit 5 is constituted of a first-order lag amplifying circuit 13 and a coefficient adder circuit 14. An output of the first order lag amplifying circuit 13 and an input signal, performing coefficient addition by the coefficient adder circuit 14, are input to the power amplification output circuit 6. The first order lag amplifying circuit 13 connects a feedback input of a feedback arithmetic capacitor 18 to a divider output of output divider resistors 19, 20. By the constitution thus obtained, stability and the transient characteristic of an automatic voltage regulating system can be set to an optimum value.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は同期発電機用自動電圧調整器に係り、特に交流
励磁機を備えた。中小容量の同期発電機用自動電圧調整
器に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an automatic voltage regulator for a synchronous generator, and in particular, it is equipped with an AC exciter. be.

〔従来の技術〕[Conventional technology]

一般に同期発電機用自動電圧調整器では、自動制御ルー
プを高利得とする為、乱調防止の目的で乱調防止回路を
必要とするが、特に交流励磁機を備えたものにおいては
、励磁機出力回路、即ち同期発電機界磁回路が回転体と
なっている関係で乱調防止並列帰還回路を構成すること
が困難であり、直列増幅位相調整回路、即ち位相遅れ進
み回路が用いられている。この位相遅れ進み特性をもっ
た増幅位相調整回路として、従来は第2図に示す回路が
用いられてきた。
Generally, automatic voltage regulators for synchronous generators require a disturbance prevention circuit to prevent disturbances because the automatic control loop has a high gain, but especially in those equipped with an AC exciter, the exciter output circuit That is, since the synchronous generator field circuit is a rotating body, it is difficult to construct a disturbance prevention parallel feedback circuit, and a serial amplification phase adjustment circuit, that is, a phase delay/lead circuit is used. Conventionally, a circuit shown in FIG. 2 has been used as an amplification phase adjustment circuit having this phase delay/lead characteristic.

第2図において、1は同期発電機、2は交流励磁機、3
は自動電圧調整器で、自動電圧調整器は、電圧偏差検出
器4、信号増幅位相調整回路5、電力増幅出力回路6よ
り構成され、電圧偏差検出器により設定電圧と発電機電
圧との偏差を検出出力し、誤差信号を信号増幅位相調整
器5、電力増幅器6により増幅し、交流励磁機2を介し
て、同期発電機の出力電圧を一定値に負帰還制御する。
In Figure 2, 1 is a synchronous generator, 2 is an AC exciter, and 3 is a synchronous generator.
is an automatic voltage regulator. The automatic voltage regulator is composed of a voltage deviation detector 4, a signal amplification phase adjustment circuit 5, and a power amplification output circuit 6. The voltage deviation detector detects the deviation between the set voltage and the generator voltage. The detected error signal is amplified by a signal amplification phase adjuster 5 and a power amplifier 6, and the output voltage of the synchronous generator is controlled by negative feedback to a constant value via an AC exciter 2.

信号増幅位相調整回路5は演算増幅器7、入力演算抵抗
(R1)s、帰還演算抵抗(R2)9、高周波用帰還演
算抵抗(Ra)10、帰還演算コンデンサ(C)ilと
帰還演算コンデンサ容量選択スイッチ12より構成され
る。信号位相調整回路5は位相遅れ進み回路を構成して
いて、その伝達関数は、演算増幅器の増幅率が極めて大
きいので、演算子をSとして となり、 aC となる。
The signal amplification phase adjustment circuit 5 includes an operational amplifier 7, an input operational resistor (R1) s, a feedback operational resistor (R2) 9, a high frequency feedback operational resistor (Ra) 10, a feedback operational capacitor (C) il, and a feedback operational capacitor capacity selection. It is composed of a switch 12. The signal phase adjustment circuit 5 constitutes a phase delay/lead circuit, and since the amplification factor of the operational amplifier is extremely large, its transfer function is aC, where S is the operator.

即ち、遅れ、進み位相の折点、周波数はコンデンサ(C
)により変化し、同期機の励磁回路の遅れ位相折点周波
数に対応して、コンデンサ(C)11の容量を選択スイ
ッチ12により設定し、自動制御ループの遅れ位相を最
適値に補償して、自動制御係を安定化している。この種
の増幅器としては特開昭61−24245号、特開昭5
7−72211号を挙げることができる。
In other words, the corner point of the delay phase and the advance phase, the frequency is determined by the capacitor (C
), the capacitance of the capacitor (C) 11 is set by the selection switch 12 in accordance with the delayed phase corner frequency of the excitation circuit of the synchronous machine, and the delayed phase of the automatic control loop is compensated to the optimum value. The automatic control staff has been stabilized. As this type of amplifier, Japanese Patent Application Laid-open Nos. 61-24245 and 5
No. 7-72211 can be mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術は遅れ進み位相の折点周波数調整用演算
コンデンサの容量を連続的に可変する適切なコンデンサ
が無い為、選択スイッチで切換え設定せざるを得ず、位
相遅れ進み回路の折点周波数を連続的に可変することが
不可能である欠点がある。また帰還回路の電流が極めて
微小である為。
In the above conventional technology, since there is no suitable capacitor that can continuously vary the capacitance of the calculation capacitor for adjusting the corner frequency of the phase lag/lead phase, it is necessary to switch and set it with a selection switch, and the corner frequency of the phase lag/lead circuit The disadvantage is that it is impossible to vary the value continuously. Also, the current in the feedback circuit is extremely small.

選択スイッチ12の接触信頼性が悪くなり、回路特性の
信頼性を損う欠点があった。また更に、自動電圧調整器
としての整定精度を変化させる為。
This has the disadvantage that the contact reliability of the selection switch 12 deteriorates and the reliability of the circuit characteristics is impaired. Furthermore, to change the setting accuracy as an automatic voltage regulator.

帰還演算抵抗(R2)を調整して、低周波領域の領域の
特性、即ち安定度も変化してしまう欠点があった。
There is a drawback that adjusting the feedback calculation resistor (R2) changes the characteristics in the low frequency region, that is, the stability.

本発明の目的は、同期発電機の界磁時定数即ち、位相遅
れ折点周波数の実際の値に合せて、位相補償用の信号増
幅位相調整回路の位相遅れ、進み周波数を連続的に調整
設定可能な同期発電機用自動電圧調整器を提供すること
にある。
An object of the present invention is to continuously adjust and set the phase lag and lead frequencies of a signal amplification phase adjustment circuit for phase compensation in accordance with the actual value of the field time constant of a synchronous generator, that is, the phase lag corner frequency. An object of the present invention is to provide a possible automatic voltage regulator for a synchronous generator.

〔課題を解決するための°手段〕[°Means to solve the problem]

上記目的を達成する為に、自動電圧調整器の信号増幅位
相調整回路を一次遅れ増幅回路と係数加算回路とにより
構成し、一次遅れ増幅回路の帰環演算コンデンサの帰還
入力を演算増幅出力回路に接続された分圧抵抗の分圧出
力に接続し、入力信号を一次遅れ増幅回路で増幅した出
力と、入力信号とを係数加算することにより、位相遅れ
進み回路を構成したものであり、上記帰還演算コンデン
サの入力点となる分圧抵抗の分圧比を連続的に変化させ
ることにより、位相遅れ進み回路の折点周波数を連続可
変とするものである。
In order to achieve the above purpose, the signal amplification phase adjustment circuit of the automatic voltage regulator is configured with a first-order lag amplifier circuit and a coefficient addition circuit, and the feedback input of the loop calculation capacitor of the first-order lag amplifier circuit is connected to the operational amplifier output circuit. A phase lag/lead circuit is constructed by connecting to the divided voltage output of the connected voltage dividing resistor and adding a coefficient between the output of the input signal amplified by the first-order lag amplifier circuit and the input signal, and the above-mentioned feedback The corner frequency of the phase delay/lead circuit is made continuously variable by continuously changing the voltage dividing ratio of the voltage dividing resistor which is the input point of the operational capacitor.

〔作用〕[Effect]

上記一次遅れ増幅回路において、演算増幅器出力回路に
接続された分圧抵抗の分圧出力を入力とする帰還演算コ
ンデンサからの帰還信号量は、分圧抵抗の分圧比を連続
的に可変とすることにより、帰還演算コンデンサの容量
を連続可変した場合と等価的に変化させることができる
。従って、同期発電機の実際の定数に対応してダンピン
グ効果を連続的に調整可能な効果を有している。
In the above-mentioned first-order lag amplifier circuit, the amount of feedback signal from the feedback calculation capacitor which inputs the divided voltage output of the voltage dividing resistor connected to the operational amplifier output circuit is determined by continuously varying the voltage division ratio of the voltage dividing resistor. This allows the capacitance of the feedback calculation capacitor to be changed equivalently to the case where the capacitance is continuously varied. Therefore, the damping effect can be continuously adjusted in accordance with the actual constant of the synchronous generator.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

16は第2図で説明のものと同一であり、同期発電機1
の出力電圧を一定値に負帰還自動制御する。信号増幅位
相調整回路5は、一次遅れ増幅回路13と係数加算回路
14とにより構成され。
16 is the same as that explained in FIG. 2, and the synchronous generator 1
Automatically controls the output voltage to a constant value using negative feedback. The signal amplification phase adjustment circuit 5 includes a first-order lag amplification circuit 13 and a coefficient addition circuit 14.

次遅れ増幅回路13の出力と入力信号とは係数加算回路
14により係数加算されて、電力増幅出力回路6に入力
される。一次遅れ増幅回路13は演算増幅器15、入力
演算抵抗(Rr)16、帰還演算抵抗(Rz)17、負
還演算コンデンサ(c)18、演算増幅器15の出力電
圧分圧抵抗(rl)19、同分圧抵抗(rz)20、と
よりなり、帰還演算コンデンサ18の帰還入力は出力分
圧抵抗19.20の分圧出力に接続されている。従って
、一次遅れ増幅回路13の伝達関数は、分圧器分圧rl
+r2 極めて大きく、またrx<:Rz、即ちrlc<R2C
なるとき、 R21 R11+αR2C8 となり、1次遅れ増幅回路13の特性は、位相遅れ折点
角周波数    は分圧比αを変化させるαR2に とにより変化する。例えばrz=1.rt=o〜囲で変
化し、従って位相遅れ折点角周波数は1〜11の比率の
範囲で連続的に広範囲に変化させることが出来る。
The output of the next lag amplification circuit 13 and the input signal are subjected to coefficient addition by a coefficient addition circuit 14, and are input to the power amplification output circuit 6. The first-order lag amplifier circuit 13 includes an operational amplifier 15, an input operational resistor (Rr) 16, a feedback operational resistor (Rz) 17, a negative feedback operational capacitor (c) 18, an output voltage dividing resistor (rl) 19 of the operational amplifier 15, and an input operational resistor (Rr) 16. The feedback input of the feedback calculation capacitor 18 is connected to the divided voltage output of the output voltage dividing resistor 19.20. Therefore, the transfer function of the first-order lag amplifier circuit 13 is the voltage divider division voltage rl
+r2 is extremely large and rx<:Rz, i.e. rlc<R2C
Then, R21 R11+αR2C8 The characteristic of the first-order lag amplifier circuit 13 is that the phase lag corner angle frequency changes depending on αR2 which changes the voltage division ratio α. For example, rz=1. The phase delay corner angle frequency can be varied continuously over a wide range within the ratio range of 1 to 11.

係数加算回路14は、演算増幅器21、非反転入力端子
(+)用分圧入力抵抗(Rla)24、同分圧抵抗(R
14)25、反転入力端子(−)用人力演算抵抗(R1
1)22.帰還演算抵抗(Rtz)23とよりなり、分
圧入力抵抗(Rla)24には一次遅れ増幅器13の出
力電圧が印加され、また入力演算抵抗(Rlt) 22
には、一次遅れ増幅器13の信号入力、即ち電圧偏差検
出器4の出力が印加される。
The coefficient addition circuit 14 includes an operational amplifier 21, a voltage dividing input resistor (Rla) 24 for the non-inverting input terminal (+), and a voltage dividing resistor (Rla) 24 for the non-inverting input terminal (+).
14) 25, Manual operation resistance (R1) for inverting input terminal (-)
1)22. It consists of a feedback calculation resistor (Rtz) 23, the output voltage of the first-order lag amplifier 13 is applied to a voltage dividing input resistance (Rla) 24, and an input calculation resistance (Rlt) 22.
The signal input of the first-order lag amplifier 13, that is, the output of the voltage deviation detector 4 is applied to.

係数加算回路の出力電圧は、演算増幅器21の増幅率が
極めて大きいとして。
Assume that the output voltage of the coefficient addition circuit has an extremely large amplification factor of the operational amplifier 21.

R13+R14Rtt rt zt とすれば、 出力電圧=(非反転入力電圧) −(反転入力電圧)XKH となる。従って、信号増幅位相調整回路5の伝達進み位
相折点角周波数= αR2C K+K)l となり、周波数特性は位相遅れ、進み回路特性となり、 低周波領域増幅率= −(K + K1−1)高周波領
域増幅率= −K H Rlt 遅れ位相折点角周波数= αR2C r1+rz ちrlを連続可変とすることにより連続的に広範囲に変
化させることが可能となり、従って、同期発電機の位相
遅れ折点周波数の実際の値に対応して容易に調整可能と
なり、良好なダンピング特性、即ち最適な過渡応答特性
とすることができる。また、分圧抵抗器(r1+rz)
に通電する電流値を可変抵抗r1の接触信頼性を充分高
め得る値(通常0.1〜10mA程度)にすることによ
り、第2図におけるような帰還回路のインピーダンスが
高く、電流値が極めて小さい回路で、演算コンデンサの
容量を切換える場合に比べて、接触信頼性は極めて高い
ものとなる。さらにまた、自動電圧調整器としての整定
精度を変化させる為、R2を変化させ低周波領域増幅率
(K + K H)を変化させても、高周波領域増幅率
(K H)の変化は極めて少なく、従って高周波領域の
特性、即ち安定度や過渡応答特性を変化させない効果が
あり゛、第2図で説明した従来技術の欠点を全面的に改
良するものである。
If R13+R14Rtt rt zt, then output voltage=(non-inverting input voltage)-(inverting input voltage)XKH. Therefore, the transmission lead phase corner angle frequency of the signal amplification phase adjustment circuit 5 = αR2C K+K)l, the frequency characteristics are phase lag and lead circuit characteristics, and low frequency region amplification factor = -(K + K1-1) high frequency region Amplification factor = -K H Rlt Lag phase corner frequency = αR2C r1+rz By making rl continuously variable, it is possible to change it continuously over a wide range, and therefore, the actual phase lag corner frequency of the synchronous generator can be easily adjusted according to the value of , and good damping characteristics, that is, optimal transient response characteristics can be achieved. Also, voltage dividing resistor (r1+rz)
By setting the current value to a value that can sufficiently improve the contact reliability of the variable resistor r1 (usually about 0.1 to 10 mA), the impedance of the feedback circuit as shown in Figure 2 is high and the current value is extremely small. The contact reliability is extremely high compared to the case where the capacitance of the calculation capacitor is switched by a circuit. Furthermore, in order to change the setting accuracy as an automatic voltage regulator, even if you change R2 and change the low frequency region amplification factor (K + K H), the change in the high frequency region amplification factor (K H) is extremely small. Therefore, there is an effect that the characteristics in the high frequency region, that is, the stability and the transient response characteristics are not changed, and the drawbacks of the prior art described in FIG. 2 are completely improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同期発電機用自動電圧調整器において
、同期発電機の実特性に合致するように、信号増幅位相
調整回路の位相特性を連続的に可変とすることが可能と
なり、自動電圧調整系の安定度ならびに過渡特性を最適
値に設定可能となる効果を有する。
According to the present invention, in an automatic voltage regulator for a synchronous generator, it is possible to continuously vary the phase characteristics of the signal amplification phase adjustment circuit so as to match the actual characteristics of the synchronous generator. This has the effect that the stability and transient characteristics of the adjustment system can be set to optimal values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す、自動電圧調整器の回
路図、第2図は従来の自動電圧調整器の回路図である。 1・・・同期発電機、2・・・交流励磁器、3・・・自
動電圧調整器、4・・・電圧偏差検出器、5・・・信号
増幅位相調整回路、6・・・電力出力増幅回路、13一
次遅れ嶌1図 高2−因
FIG. 1 is a circuit diagram of an automatic voltage regulator showing an embodiment of the present invention, and FIG. 2 is a circuit diagram of a conventional automatic voltage regulator. DESCRIPTION OF SYMBOLS 1...Synchronous generator, 2...AC exciter, 3...Automatic voltage regulator, 4...Voltage deviation detector, 5...Signal amplification phase adjustment circuit, 6...Power output Amplifier circuit, 13 first-order delay 1 figure high 2-factor

Claims (1)

【特許請求の範囲】[Claims] 1、電圧偏差検出器、信号増幅位相調整回路、および電
力増幅出力回路よりなる同期発電機用自動電圧調整器に
おいて、信号増幅位相調整回路は入力信号の一次遅れ増
幅回路出力と、入力信号とを係数加算したものとし、該
一次遅れ増幅回路は、演算増幅器の一次遅れ構成用帰還
コンデンサの帰還入力を演算増幅器出力に接続された分
圧抵抗の分圧出力としたことを特徴とする同期発電機用
自動電圧調整器。
1. In an automatic voltage regulator for a synchronous generator consisting of a voltage deviation detector, a signal amplification phase adjustment circuit, and a power amplification output circuit, the signal amplification phase adjustment circuit detects the output of the first-order lag amplifier circuit of the input signal and the input signal. A synchronous generator characterized in that the first-order lag amplifier circuit has a feedback input of a feedback capacitor for a first-order lag configuration of an operational amplifier as a divided voltage output of a voltage dividing resistor connected to an output of the operational amplifier. Automatic voltage regulator.
JP63199868A 1988-08-12 1988-08-12 Automatic voltage regulator for synchronous generator Expired - Fee Related JP2680055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63199868A JP2680055B2 (en) 1988-08-12 1988-08-12 Automatic voltage regulator for synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63199868A JP2680055B2 (en) 1988-08-12 1988-08-12 Automatic voltage regulator for synchronous generator

Publications (2)

Publication Number Publication Date
JPH0251398A true JPH0251398A (en) 1990-02-21
JP2680055B2 JP2680055B2 (en) 1997-11-19

Family

ID=16414975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63199868A Expired - Fee Related JP2680055B2 (en) 1988-08-12 1988-08-12 Automatic voltage regulator for synchronous generator

Country Status (1)

Country Link
JP (1) JP2680055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705580B2 (en) 2006-08-07 2010-04-27 Denso Corporation System for smoothing output voltage of power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705580B2 (en) 2006-08-07 2010-04-27 Denso Corporation System for smoothing output voltage of power generator
DE102007035890B4 (en) * 2006-08-07 2016-07-28 Denso Corporation System for smoothing an output voltage of an alternator

Also Published As

Publication number Publication date
JP2680055B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US4967129A (en) Power system stabilizer
US4667168A (en) Integrated circuit with a phase-locked loop
US4773274A (en) Electromagnetic flow meter
US4897593A (en) Reactive power compensator for electric power system
JPH0251398A (en) Automatic voltage regulator for synchronous generator
US3873923A (en) Frequency detector
EP0361746B1 (en) Automatic phase controlling circuit
JP2979805B2 (en) PLL frequency synthesizer
US4560957A (en) Oscillator fine tune circuit
JPH02214206A (en) Amplifier circuit
JPH02262843A (en) Power system stabilizer
JP2895103B2 (en) Magnetic support device
JPH0354482B2 (en)
RU1800613C (en) Ultrasonic generator
JP2656546B2 (en) Phase locked oscillator
JPS63308406A (en) Automatic adjusting circuit for constant current
JPH0510845B2 (en)
JPS6389099A (en) Excitation controller
JPS63142906A (en) Oscillation circuit
JPH0325051B2 (en)
JPH0964733A (en) Frequency synthesizer
JPS61295702A (en) Amplifier
JPH07297707A (en) Phase locked loop oscillator circuit
JPS62201083A (en) Motor controlling method
JPH077328A (en) Fm demodulation circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees