JPH0251307B2 - - Google Patents

Info

Publication number
JPH0251307B2
JPH0251307B2 JP58126675A JP12667583A JPH0251307B2 JP H0251307 B2 JPH0251307 B2 JP H0251307B2 JP 58126675 A JP58126675 A JP 58126675A JP 12667583 A JP12667583 A JP 12667583A JP H0251307 B2 JPH0251307 B2 JP H0251307B2
Authority
JP
Japan
Prior art keywords
signal
dropout
circuit
data identification
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58126675A
Other languages
Japanese (ja)
Other versions
JPS6018044A (en
Inventor
Naoki Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58126675A priority Critical patent/JPS6018044A/en
Publication of JPS6018044A publication Critical patent/JPS6018044A/en
Publication of JPH0251307B2 publication Critical patent/JPH0251307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/069Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection by detecting edges or zero crossings

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば磁気記録再生系のように直流
成分の伝送ができない伝送系を介して伝送された
デイジタル信号の受信信号を元のデイジタル信号
に効果的に再生することのできる信号識別装置に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to converting a received signal of a digital signal transmitted through a transmission system that cannot transmit DC components, such as a magnetic recording/reproducing system, into the original digital signal. The present invention relates to a signal identification device that can effectively reproduce signals.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、デイジタル信号処理技術の発展に伴つて
オーデイオ信号をデイジタル符号化して記録再生
することが行われ、またこの記録再生をビデオ・
テープ・レコーダを利用して磁気的に行うことも
試みられている。ところが、このような磁気記録
再生系のように直流成分の伝送が不可能な系を介
して伝送されたデイジタル信号の受信・再生信号
を復調して、元のデイジタル信号を復元する場
合、その失われた直流成分に起因するデータ識別
誤りが問題となる。この為、受信信号のデータ識
別時点におけるアイパターンを拡げて上記識別誤
り率を下げるべく、伝送によつて失われた直流成
分を補償することが重要な課題となる。
In recent years, with the development of digital signal processing technology, audio signals have been digitally encoded and recorded and played back.
Attempts have also been made to do this magnetically using a tape recorder. However, when restoring the original digital signal by demodulating the received/reproduced signal of a digital signal transmitted through a system in which direct current components cannot be transmitted, such as a magnetic recording/reproducing system, the loss of the original digital signal occurs. Errors in data identification caused by the DC component caused by Therefore, it is important to compensate for the DC component lost during transmission in order to widen the eye pattern at the time of data identification of the received signal and reduce the identification error rate.

ところで従来、このような直流成分の補償、つ
まり直流再生の手段としては、例えば (i) IEEE TRANS.on MAG. Vol.MAG−16,No.1,JANUARY 1980,
PP104〜110に紹介されるような信号のエンベロ
ープの中点をデータ識別時の基準電圧として利用
するもの、 (ii) IEEE TRANS.on MAG Vol.MAG−14,No.4,JULY 1978,PP218〜
222に紹介されるような量子化帰還を用いるもの
等が知られている。しかして受信データの復調を
積分検出方式を用いて行う場合、一般に再生信号
を増幅し、これを波形等化したのち積分して、そ
の識別が行われる。この場合、上記波形等化が十
分に行われていれば、前記(i)の方式を用いて比較
的簡単に直流再生を行い得るが、波形等化が不十
分な場合には前記(ii)の方式として知られる比較的
高級な量子化帰還法を用いることが必要となる。
By the way, heretofore, as a means of compensation for such DC components, that is, DC regeneration, for example, (i) IEEE TRANS.on MAG. Vol. MAG-16, No. 1, JANUARY 1980,
A method that uses the midpoint of the signal envelope as a reference voltage during data identification, as introduced in PP104-110, (ii) IEEE TRANS.on MAG Vol.MAG-14, No.4, JULY 1978, PP218-
222, which uses quantized feedback, is known. When demodulating received data using an integral detection method, the reproduced signal is generally amplified, waveform-equalized, and then integrated to identify it. In this case, if the above-mentioned waveform equalization is sufficiently performed, DC regeneration can be performed relatively easily using the method (i) above, but if the waveform equalization is insufficient, the above-mentioned (ii) It is necessary to use a relatively advanced quantization feedback method known as the method.

第1図はこの量子化帰還法を採用した信号識別
装置の概略構成図であり、1は加算回路、2は零
交差検出器等の弁別回路、3はD型フリツプフロ
ツプ等からなる波形整形回路、そして4はPLL
回路を含んで構成されるクロツク再生回路であ
る。上記加算回路1にて受信信号と後述する量子
化帰還信号とが加算され、この加算回路1の出力
信号のゼロクロス点を弁別回路2で検出し、クロ
ツク再生回路4からのクロツクを受けて動作する
波形整形回路3にて前記弁別回路2の出力を処理
してデイジタル信号を再生している。そして、こ
の再生されたデイジタル信号の一部を低域波器
(LPF)5を介してフイルタリングして前記量子
化帰還信号が生成される。尚、図中Aは信号入力
端子、Bは信号出力端子である。
FIG. 1 is a schematic configuration diagram of a signal identification device employing this quantization feedback method, in which 1 is an adder circuit, 2 is a discrimination circuit such as a zero-crossing detector, 3 is a waveform shaping circuit consisting of a D-type flip-flop, etc. and 4 is PLL
This is a clock regeneration circuit that includes a circuit. The adder circuit 1 adds the received signal and a quantized feedback signal, which will be described later.The discriminator circuit 2 detects the zero-cross point of the output signal of the adder circuit 1, and operates in response to the clock from the clock regeneration circuit 4. A waveform shaping circuit 3 processes the output of the discrimination circuit 2 to reproduce a digital signal. Then, a part of this reproduced digital signal is filtered through a low frequency filter (LPF) 5 to generate the quantized feedback signal. In the figure, A is a signal input terminal, and B is a signal output terminal.

このようにして量子化帰還信号を入力信号(受
信信号)に足し込んでから、そのデータ識別を行
うことによつて、上記入力信号の直流レベル変動
の影響を効果的に除去してデータ識別を行うこと
が可能となる。
In this way, by adding the quantized feedback signal to the input signal (received signal) and then performing data identification, it is possible to effectively remove the influence of the DC level fluctuation of the input signal and perform data identification. It becomes possible to do so.

然し乍ら、このようにして直流再生を施した上
でデータ識別を行うと雖ども、その入力信号にド
ロツプアウトが存在すると、前記量子化帰還信号
を生成する帰還ループ全体が収束しなくなり、デ
ータの識別誤りが増えると云う不具合がある。即
ち、デイジタル信号を磁気記録再生する場合、磁
気記録媒体の汚れや傷、あるいは磁気ヘツドとの
接触性によつて信号のドロツプアウトが生じ易
い。このドロツプアウトは、例えば第2図に再生
信号のエンベロープを模式的に示すように、信号
の欠落やレベルの低下を招くものである。しか
も、このドロツプアウトの期間Tは、一般に数
10μsecから10msec程度と比較的長い。この為、
入力信号にこのようなドロツプアウトが生じる
と、前記直流再生系の帰還ループが不安定化し、
収束しなくなる。この結果、ドロツプアウトの発
生期間のみならず、ドロツプアウト期間が過ぎて
も上記帰還ループが安定せず、結局データ識別を
確実に行えないと云う問題があつた。
However, if data identification is performed after performing DC regeneration in this way, if there is a dropout in the input signal, the entire feedback loop that generates the quantized feedback signal will not converge, resulting in data identification errors. There is a problem that increases. That is, when magnetically recording and reproducing digital signals, signal dropouts are likely to occur due to dirt or scratches on the magnetic recording medium, or due to contact with the magnetic head. This dropout causes signal loss and a drop in level, as shown schematically in the envelope of the reproduced signal in FIG. 2, for example. Moreover, this dropout period T is generally several
It is relatively long, about 10μsec to 10msec. For this reason,
When such a dropout occurs in the input signal, the feedback loop of the DC regeneration system becomes unstable.
It will no longer converge. As a result, the feedback loop is not stabilized not only during the dropout period but also after the dropout period has elapsed, resulting in a problem that data cannot be identified reliably.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたも
ので、その目的とするところは、ドロツプアウト
による悪影響を最小限に抑えて受信信号のデータ
識別を常に安定に行い得る実用性の高い信号識別
装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a highly practical signal identification device that can constantly and stably perform data identification of received signals while minimizing the adverse effects caused by dropout. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は量子化帰還方式を採用して構成される
信号識別装置であつて、ドロツプアウト検出回路
を設けて入力信号(受信信号)のドロツプアウト
を検出し、このドロツプアウト検出時に量子化帰
還信号の帰還ループを開放するようにしたもので
ある。
The present invention is a signal identification device configured by adopting a quantization feedback method, which includes a dropout detection circuit to detect a dropout of an input signal (received signal), and when detecting this dropout, a feedback loop of the quantization feedback signal. It was designed to open up the .

即ち、直流成分を伝送することのできない伝送
路を介して伝送されたデイジタル信号の受信信号
に量子化帰還信号を加算したのち、この加算出力
信号を識別してデイジタル信号を再生するに際し
て、前記受信信号にドロツプアウトが生じたと
き、前記量子化帰還信号の加算回路への帰還を阻
止するようにしたものである。
That is, after adding a quantized feedback signal to a received signal of a digital signal transmitted through a transmission line that cannot transmit a DC component, when identifying this added output signal and reproducing the digital signal, the received When dropout occurs in the signal, the quantized feedback signal is prevented from being fed back to the adder circuit.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、常時は帰還された量
子化帰還信号を用いて受信信号の直流レベル変動
を効果的に補償しながらそのデータ識別を行い、
また受信信号にドロツプアウトが生じた場合には
上記量子化帰還信号の帰還を阻止し、受信信号そ
のものについてデータ識別を行うので、帰還ルー
プの不安定化による識別誤りを招来することがな
い。そして、ドロツプアウト期間以外の時点にお
けるドロツプアウトによる悪影響を最小限に抑え
ることができ、この結果データ識別時点における
誤り率を小さくすることができる。しかも、ドロ
ツプアウトの検出と、帰還ループの開放によつて
簡易に且つ効果的に帰還ループの不安定化を未然
に防ぐことができ、その実用的利点は絶大であ
る。
Thus, according to the present invention, data identification is performed while effectively compensating for DC level fluctuations of the received signal using the quantized feedback signal fed back;
Further, when a dropout occurs in the received signal, the feedback of the quantized feedback signal is prevented and data identification is performed on the received signal itself, so that identification errors due to instability of the feedback loop do not occur. In addition, the adverse effects of dropout at times other than the dropout period can be minimized, and as a result, the error rate at the time of data identification can be reduced. Moreover, by detecting dropout and opening the feedback loop, it is possible to easily and effectively prevent the feedback loop from becoming unstable, which has great practical advantages.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例につき
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図は本発明の実施例装置の概略構成図であ
り、第1図に示す従来装置と同一部分には同一符
号を付して示してある。この装置が特徴とすると
ころは、入力端子Aから入力される受信信号を入
力し、そのドロツプアウトを検出するドロツプア
ウト検出回路6と、前記LPF5と加算回路1と
の間に設けられて上記ドロツプアウト検出回路6
の出力を受けて量子化帰還信号の帰還ループを開
放するスイツチ回路7を設けた点にある。そし
て、スイツチ回路7は、ドロツプアウトが検出さ
れないとき、前記帰還ループを形成して、加算回
路1、弁別回路2等による量子化帰還方式を第1
図に示す如く構成して入力信号の直流再生補償し
たデータ識別を行わしめる。またドロツプアウト
検出回路6がドロツプアウトを検出した場合、ス
イツチ回路7はLPF5が構成する帰還ループを
開放する。従つてこのときには、入力信号は加算
回路1を介してそのまま弁別回路2に供給され、
この信号に対してそのままデータ識別処理が行わ
れることになる。
FIG. 3 is a schematic diagram of an apparatus according to an embodiment of the present invention, in which the same parts as those of the conventional apparatus shown in FIG. 1 are denoted by the same reference numerals. This device is characterized by a dropout detection circuit 6 which receives a received signal input from the input terminal A and detects its dropout, and a dropout detection circuit which is provided between the LPF 5 and the addition circuit 1. 6
A switch circuit 7 is provided which receives the output of the quantized feedback signal and opens the feedback loop of the quantized feedback signal. Then, when dropout is not detected, the switch circuit 7 forms the feedback loop and switches the quantization feedback method by the adder circuit 1, the discriminator circuit 2, etc. to the first one.
The system is configured as shown in the figure to perform data identification with DC reproduction compensation of the input signal. Further, when the dropout detection circuit 6 detects a dropout, the switch circuit 7 opens the feedback loop constituted by the LPF 5. Therefore, at this time, the input signal is directly supplied to the discriminator circuit 2 via the adder circuit 1,
Data identification processing is performed on this signal as it is.

LPF5は、例えば第4図に示すように演算増
幅器11をバツフアとして用いた1次のCR型
波器として実現される。このLPF5の周波数特
性は、例えば磁気記録再生系(伝送系)、波形等
化器、積分器等の周波数特性を考慮して定めるこ
とが必要である。そして、前記スイツチ回路7
は、第5図に示すようにドライバ回路12を備え
たアナログスイツチ13を用いて構成すればよ
い。
The LPF 5 is realized, for example, as a first-order CR waveform filter using an operational amplifier 11 as a buffer, as shown in FIG. The frequency characteristics of the LPF 5 must be determined in consideration of the frequency characteristics of, for example, a magnetic recording/reproducing system (transmission system), a waveform equalizer, an integrator, and the like. Then, the switch circuit 7
may be constructed using an analog switch 13 equipped with a driver circuit 12 as shown in FIG.

また入力信号のドロツプアウトを検出するドロ
ツプアウト検出回路6については、例えば第6図
に示すようにピーク検出器14、レベル比較器1
5、遅延回路16により構成すればよい。ピーク
検出器14は第7図に例示するように絶対値検出
回路14aと積分回路14bとによつて構成され
るもので、これによつて入力信号のエンベロープ
レベルが検出される。レベル比較器15はこのエ
ンベロープレベルと所定の闘値とを比較してドロ
ツプアウトの発生を検出している。尚、上記闘値
は前記帰還ループが安定に動作する入力信号のレ
ベル範囲に応じて決定される。そして、このピー
ク検出およびレベル比較により検出されたドロツ
プアウト検知結果は遅延回路16を通して前記加
算回路1からLPF5に至る信号処理の時間遅れ
と、ピーク検出およびレベル比較の処理時間遅れ
とが補償された上で出力される。
Furthermore, as for the dropout detection circuit 6 that detects the dropout of the input signal, for example, as shown in FIG.
5. The delay circuit 16 may be used. As illustrated in FIG. 7, the peak detector 14 is composed of an absolute value detection circuit 14a and an integration circuit 14b, and thereby detects the envelope level of the input signal. The level comparator 15 compares this envelope level with a predetermined threshold value to detect the occurrence of dropout. The threshold value is determined depending on the level range of the input signal in which the feedback loop operates stably. The dropout detection result detected by this peak detection and level comparison is obtained by compensating for the time delay in signal processing from the adder circuit 1 to the LPF 5 through the delay circuit 16 and the processing time delay in peak detection and level comparison. is output.

かくして、このように構成された本装置によれ
ば、直流成分が失われた伝送信号を識別してデイ
ジタル信号を再生復元するに際して、上記伝送信
号にドロツプアウトが生じてもドロツプアウト期
間以外にドロツプアウトの悪影響を招くことがな
い。従つて、失われた直流成分を再生しながらそ
のデータ識別を安定に、且つ確実に行うことがで
き、データ識別誤りを大幅に低減することが可能
となる。
Thus, according to the present device configured in this way, when a transmission signal in which the DC component has been lost is identified and a digital signal is regenerated and restored, even if a dropout occurs in the transmission signal, there is no adverse effect of the dropout other than the dropout period. It never invites. Therefore, data identification can be performed stably and reliably while regenerating the lost DC component, and data identification errors can be significantly reduced.

尚、本発明は上記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲で種々変形して
実施可能なことは云うまでもない。また磁気記録
再生系以外の伝送系における直流再生・データ識
別にも適用可能である。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the spirit thereof. It is also applicable to DC reproduction and data identification in transmission systems other than magnetic recording and reproduction systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のデータ識別装置の概略構成図、
第2図は伝送信号のドロツプアウトを示す図、第
3図は本発明の一実施例装置の概略構成図、第4
図は同実施例におけるLPFの構成図、第5図は
同実施例におけるスイツチ回路の構成図、第6図
は同実施例におけるドロツプアウト検出回路の構
成図、第7図はピーク検出器の構成図である。 1……加算回路、2……弁別回路、3……波形
整形回路、4……クロツク再生回路、5……低域
波器、6……ドロツプアウト検出回路、7……
スイツチ回路。
FIG. 1 is a schematic configuration diagram of a conventional data identification device.
FIG. 2 is a diagram showing dropout of a transmission signal, FIG. 3 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention, and FIG.
Figure 5 is a configuration diagram of the LPF in the same embodiment, Figure 5 is a configuration diagram of the switch circuit in the same embodiment, Figure 6 is a configuration diagram of the dropout detection circuit in the same embodiment, and Figure 7 is a configuration diagram of the peak detector. It is. DESCRIPTION OF SYMBOLS 1...Addition circuit, 2...Discrimination circuit, 3...Waveform shaping circuit, 4...Clock regeneration circuit, 5...Low frequency generator, 6...Dropout detection circuit, 7...
switch circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 直流成分の伝送ができない伝送系を介して伝
送されたデイジタル信号の受信信号と量子化帰還
信号とを加算する加算回路と、この加算回路の出
力信号を識別してデイジタル信号を再生する手段
と、この再生されたデイジタル信号を低域波し
て前記量子化帰還信号を生成する手段と、前記受
信信号のドロツプアウトを検出するドロツプアウ
ト検出回路と、このドロツプアウト検出時に前記
量子化帰還信号の前記加算回路への帰還を阻止す
るスイツチ回路とを具備したことを特徴とする信
号識別装置。
1. An adder circuit for adding a received digital signal and a quantized feedback signal transmitted through a transmission system that cannot transmit DC components, and means for identifying the output signal of the adder circuit and reproducing the digital signal. , a means for generating the quantized feedback signal by applying a low frequency signal to the reproduced digital signal, a dropout detection circuit for detecting dropout of the received signal, and the addition circuit for adding the quantized feedback signal when detecting the dropout. What is claimed is: 1. A signal identification device comprising: a switch circuit for preventing a signal from returning to the signal;
JP58126675A 1983-07-12 1983-07-12 Signal identifier Granted JPS6018044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126675A JPS6018044A (en) 1983-07-12 1983-07-12 Signal identifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126675A JPS6018044A (en) 1983-07-12 1983-07-12 Signal identifier

Publications (2)

Publication Number Publication Date
JPS6018044A JPS6018044A (en) 1985-01-30
JPH0251307B2 true JPH0251307B2 (en) 1990-11-07

Family

ID=14941073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126675A Granted JPS6018044A (en) 1983-07-12 1983-07-12 Signal identifier

Country Status (1)

Country Link
JP (1) JPS6018044A (en)

Also Published As

Publication number Publication date
JPS6018044A (en) 1985-01-30

Similar Documents

Publication Publication Date Title
US5265125A (en) Signal detection apparatus for detecting digital information from PCM signal
US5166955A (en) Signal detection apparatus for detecting digital information from a PCM signal
US5134528A (en) Low frequency component restoration circuit for restoring and compensating for a low frequency component lost in a digital signal transmission system
JPH065016A (en) Data detecting apparatus
EP0324532B1 (en) Threshold tracking system
US6549352B1 (en) Signal processing apparatus utilizing a partial response method, and signal processing method, information recording apparatus, and information reproduction apparatus therefore
JPH0251307B2 (en)
JPH06150216A (en) Digital signal reproducing method and apparatus
JP2763454B2 (en) Data detection device
JP3519110B2 (en) Signal regenerator for binary signal
JPH06205051A (en) Signal identifying device
JPH0683269B2 (en) Signal identification device
JPH07296524A (en) Digital data reproducing device
JPH0473236B2 (en)
JP3225588B2 (en) Digital signal regeneration circuit
JPH04183042A (en) Digital information detector
JPS6212957A (en) Digital signal detector
JPS60216627A (en) Digital data generating device
JPH0785598A (en) Device for reproducing data
JPH05210913A (en) Data reproducing circuit and data storage device using its circuit
JPH0528655A (en) Data reproducing device
JPH06309793A (en) Digital signal recording and reproducing device
JPH04268255A (en) Reproducing signal level deciding device of storage device
Lagadec Digital data equalizing in multitrack digital audio recording
JPH09245433A (en) Data reproducing equipment