JPH0251236B2 - - Google Patents
Info
- Publication number
- JPH0251236B2 JPH0251236B2 JP56204333A JP20433381A JPH0251236B2 JP H0251236 B2 JPH0251236 B2 JP H0251236B2 JP 56204333 A JP56204333 A JP 56204333A JP 20433381 A JP20433381 A JP 20433381A JP H0251236 B2 JPH0251236 B2 JP H0251236B2
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- base material
- heating
- thin film
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 82
- 239000000919 ceramic Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 32
- 239000010409 thin film Substances 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 10
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 3
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- QWDJLDTYWNBUKE-UHFFFAOYSA-L magnesium bicarbonate Chemical compound [Mg+2].OC([O-])=O.OC([O-])=O QWDJLDTYWNBUKE-UHFFFAOYSA-L 0.000 description 1
- 229910000022 magnesium bicarbonate Inorganic materials 0.000 description 1
- 235000014824 magnesium bicarbonate Nutrition 0.000 description 1
- 239000002370 magnesium bicarbonate Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Resistance Heating (AREA)
Description
【発明の詳細な説明】
本発明は給湯用、暖房用などに用いられる温水
加熱装置に使用すると好適な発熱素子に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating element suitable for use in a hot water heating device used for hot water supply, space heating, etc.
従来の発熱素子を使用した温水加熱装置は、第
6図及び第7図に示すように、一端を冷水路と接
続する流入口21とした円筒状の面発熱体22
と、この円筒状の面発熱体22の外周との間に加
熱流路23を形成する外ケース24とにより構成
されている。前記外ケース24には、面発熱体2
2の流入口21側に位置して流出路25を設けて
いる。また前記円筒状の面発熱体22は円筒状の
セラミツク材からなる基材A26と、基材B27
とで線状のヒータパターンよりなる発熱抵抗体2
8を挾持して構成している。そして前記基材A2
6は成形時の歪みを極力小さくするとともに、円
筒状の面発熱体22の機械的強度を保持するため
に、所定の厚みt1を必要とし、また基材B27は
基材A26の外周にローリングするため、その作
業が良好に行なえるように、基材A26の厚みt1
に比べ、非常に小さな厚みt2で構成されている。 A hot water heating device using a conventional heating element, as shown in FIGS. 6 and 7, has a cylindrical surface heating element 22 with an inlet 21 connected to a cold waterway at one end.
and an outer case 24 that forms a heating flow path 23 between the outer periphery of the cylindrical surface heating element 22. The outer case 24 includes a surface heating element 2.
An outflow passage 25 is provided on the inflow port 21 side of No. 2. Further, the cylindrical surface heating element 22 includes a base material A26 and a base material B27 made of a cylindrical ceramic material.
and a heating resistor 2 consisting of a linear heater pattern.
It is made up of 8 sandwiched together. and the base material A2
6 requires a predetermined thickness t 1 in order to minimize distortion during molding and maintain the mechanical strength of the cylindrical surface heating element 22, and the base material B27 is rolled around the outer periphery of the base material A26. Therefore, in order to perform this work well, the thickness t 1 of the base material A26 is
It is composed of a very small thickness t 2 compared to .
上記従来の構成において、流入口21から流入
した冷水は円筒状の面発熱体22の内管路22′
で加熱されながら左端開放部に達し、その後、加
熱流路23に流入し、さらに加熱され、流出路2
5より温水となつて流出する。 In the conventional configuration described above, the cold water flowing in from the inlet 21 flows into the inner pipe 22' of the cylindrical surface heating element 22.
It reaches the left end open part while being heated, and then flows into the heating channel 23, where it is further heated and flows into the outflow channel 2.
From 5, it flows out as warm water.
上記加熱加工において、円筒状の面発熱体22
における内管路22′の流速は、加熱流路23の
流速に比べて速いため、円筒状の面発熱体22の
内周面の水への熱伝達率は外周面の熱伝達率より
大きくなる。一方、円筒状の面発熱体22の内周
面側基材A26の厚みt1は外周面側基材B27の
厚みt2に比べて大きい。したがつて発熱抵抗体2
8から円筒状の面発熱体22の内周面への伝熱抵
抗は外周面への伝熱抵抗より大きい。その結果、
円筒状の面発熱体22の内周面は、水への熱伝達
率が大きいのに対し、発熱抵抗体28からの伝熱
抵抗が大きいため、その表面温度は第8図のTS1
で示すように低下する。また円筒状の面発熱体2
2の外周面は、水への熱伝達率が小さいのに対
し、発熱抵抗体28からの伝熱抵抗が小さいた
め、その表面温度は第8図のTS0で示すように高
くなる。 In the above heating process, the cylindrical surface heating element 22
Since the flow velocity in the inner pipe 22' is faster than the flow velocity in the heating channel 23, the heat transfer coefficient to water on the inner circumferential surface of the cylindrical surface heating element 22 is greater than the heat transfer coefficient on the outer circumferential surface. . On the other hand, the thickness t 1 of the inner peripheral surface side base material A26 of the cylindrical surface heating element 22 is larger than the thickness t 2 of the outer peripheral surface side base material B27. Therefore, heating resistor 2
The heat transfer resistance from 8 to the inner peripheral surface of the cylindrical surface heating element 22 is greater than the heat transfer resistance to the outer peripheral surface. the result,
The inner circumferential surface of the cylindrical surface heating element 22 has a high heat transfer coefficient to water, while the heat transfer resistance from the heating resistor 28 is large, so the surface temperature is T S1 in FIG.
It decreases as shown in . Also, a cylindrical surface heating element 2
The outer circumferential surface of No. 2 has a low heat transfer coefficient to water, but a low resistance to heat transfer from the heating resistor 28, so its surface temperature becomes high as shown by T S0 in FIG.
以上のように従来の発熱素子を用いた温水加熱
装置においては、円筒状の面発熱体22の内周
面、外周面上での表面温度下が非常に大きいた
め、熱交換状態にアンバランスを生じ、その結
果、発熱体の全表面が熱交換するのに対し有効に
生かされず、熱交換効率が低下する。 As described above, in a hot water heating device using a conventional heating element, the surface temperature drop on the inner peripheral surface and outer peripheral surface of the cylindrical surface heating element 22 is extremely large, which causes an imbalance in the heat exchange state. As a result, the entire surface of the heating element is not utilized effectively for heat exchange, and the heat exchange efficiency decreases.
また前記面発熱体22の外周面は高温になり、
局部的な核沸騰を起こし、スケールの主成分であ
る重炭酸カルシウム、重炭酸マグネシウムの飽和
溶解度を示す温度以上となり、スケールが面発熱
体22の表面に析出する。第9図は重炭酸カルシ
ウムのPHと温度と溶解度の関係を示したものであ
る。そしてこのスケールは円筒状の面発熱体22
の表面で徐々に厚みを増し、発熱抵抗体28から
面発熱体22の表面への熱伝達を悪化させ、熱交
換効率を下げるとともに、発熱抵抗体28の温度
を異常に高めてしまうため、発熱抵抗体28を断
線させてしまう。 Further, the outer peripheral surface of the surface heating element 22 becomes high temperature,
Local nucleate boiling occurs, and the temperature reaches a temperature higher than the saturated solubility of calcium bicarbonate and magnesium bicarbonate, which are the main components of scale, and scale is deposited on the surface of the surface heating element 22. Figure 9 shows the relationship between pH, temperature, and solubility of calcium bicarbonate. This scale is a cylindrical surface heating element 22.
The thickness gradually increases on the surface of the heating resistor 28, worsening the heat transfer from the heating resistor 28 to the surface of the surface heating element 22, lowering the heat exchange efficiency, and abnormally increasing the temperature of the heating resistor 28. This causes the resistor 28 to become disconnected.
さらに従来の発熱素子においては、円筒状の面
発熱体22の外周面の表面温度を低くするため
に、表面積を増大させる、すなわち面発熱体22
の外径D2を増大させる手段を施すことにより、
スケールの付着や、発熱抵抗体28の異常高温に
よる断線を防止するようにしていたが、これにお
いては発熱素子自体が非常に大きくなるという欠
点を有するものであつた。 Furthermore, in conventional heating elements, in order to lower the surface temperature of the outer peripheral surface of the cylindrical surface heating element 22, the surface area is increased, that is, the surface heating element 22
By applying means to increase the outer diameter D 2 of
Although attempts have been made to prevent scale adhesion and disconnection of the heating resistor 28 due to abnormally high temperatures, this method has the disadvantage that the heating element itself becomes very large.
そこで本発明は発熱素子の全表面を熱伝達に均
等に寄与させ、同一伝熱面積での発熱素子の表面
の最高温度を下げることを目的とする。 Therefore, an object of the present invention is to make the entire surface of the heating element contribute equally to heat transfer, and to lower the maximum temperature of the surface of the heating element with the same heat transfer area.
本発明は厚みの異なる2つのセラミツク基材の
間に発熱抵抗体を挾持し、前記2つのセラミツク
基材のうち、厚みの薄いセラミツク基材の前記発
熱抵抗体を挾持する面と反対側の表面にこのセラ
ミツク基材より熱伝導率の小さなフツ素系樹脂よ
りなる薄膜を形成することにより、発熱素子の両
側面の表面平均温度が略等しくなるようにしたも
のであり、これにより発熱素子の表面平均温度を
スケール生成温度以下に容易に保持することがで
きるようにするとともに、発熱素子のコンパクト
化がはかれるようにしたものである。 In the present invention, a heating resistor is sandwiched between two ceramic substrates having different thicknesses, and a surface of the thinner ceramic substrate of the two ceramic substrates is opposite to the surface on which the heating resistor is sandwiched. By forming a thin film made of fluororesin, which has a lower thermal conductivity than this ceramic base material, the average surface temperature on both sides of the heating element is made to be approximately equal. This makes it possible to easily maintain the average temperature below the scale formation temperature and to make the heating element more compact.
以下、本発明の一実施例について、第1図〜第
5図にもとづいて説明する。第1図、第2図にお
いて、1は円筒状に構成された発熱素子で、この
発熱素子1はセラミツク基材A2とセラミツク基
板B3で線状のヒータパターンよりなる発熱抵抗
体4を挾持することにより構成している。また前
記発熱素子1は内管路5を有するとともに、一端
には、冷水供給間への接続ねじ6を取付けた流体
流入口7を内管路5と連通するように設けてい
る。8は外ケースで、この外ケース8は発熱素子
1の外周との間に加熱流路9を形成し、かつ前記
発熱素子1の内管路5の他端側を閉塞し、さらに
前記流体流入口7側に位置して流体流出口10を
設けている。第3図において、11はセラミツク
基材B3の表面にコーテイングにより形成された
薄膜で、この薄膜11はセラミツク基材B3より
熱伝導率の小さなフツ素系樹脂により構成されて
いる。 Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 5. In FIGS. 1 and 2, reference numeral 1 denotes a heating element having a cylindrical shape, and this heating element 1 has a heating resistor 4 made of a linear heater pattern sandwiched between a ceramic base material A2 and a ceramic substrate B3. It is composed of: The heat generating element 1 also has an inner pipe line 5, and at one end thereof, a fluid inlet 7 with a connecting screw 6 for connecting to a cold water supply is provided so as to communicate with the inner pipe line 5. Reference numeral 8 denotes an outer case, which forms a heating flow path 9 between it and the outer periphery of the heat generating element 1, closes the other end side of the inner pipe line 5 of the heat generating element 1, and further controls the fluid flow. A fluid outlet 10 is provided on the inlet 7 side. In FIG. 3, reference numeral 11 denotes a thin film formed by coating on the surface of the ceramic base material B3, and this thin film 11 is made of a fluororesin having a lower thermal conductivity than the ceramic base material B3.
次に上記実施例におけるセラミツク基材B3の
表面にコーテイングにより形成した薄膜11の熱
伝導率の最適化について述べる。セラミツク基材
A2とセラミツク基材B3の厚みtA,tBは材料費
あるいは熱容量の面から当然薄い方が良いが、セ
ラミツク基材A2の厚みtAについては、成形時の
歪みを極力小さく押さえ、かつ発熱素子1の機械
的強度を保持するために所定の厚みを必要とし、
またセラミツク基材B3の厚みtBについては、電
気絶縁性を保つためにある一定の厚みが要求され
るが、セラミツク基材A2の外周にローリングす
るため、その作業が良好に行なえるように、セラ
ミツク基材A2の厚みtAに比べ非常に小さな厚み
としている。 Next, optimization of the thermal conductivity of the thin film 11 formed by coating on the surface of the ceramic base material B3 in the above embodiment will be described. The thicknesses tA and tB of ceramic base material A2 and ceramic base material B3 are naturally better from the viewpoint of material cost or heat capacity, but the thickness tA of ceramic base material A2 is determined by minimizing distortion during molding. , and requires a predetermined thickness to maintain the mechanical strength of the heating element 1,
Furthermore, the thickness t B of the ceramic base material B3 is required to be a certain thickness in order to maintain electrical insulation, but since it is rolled around the outer periphery of the ceramic base material A2, in order to perform the work well, The thickness is much smaller than the thickness tA of the ceramic base material A2.
以上述べたような条件を満たす厚みtA,tBを有
する発熱素子1において、セラミツク基材B3の
表面にコーテイングにより形成した薄膜11の熱
伝導率λによる熱伝導条件の変化を示すと、第3
図のようになる。この第3図において、発熱素子
1の外周側12の表面平均温度TS0、発熱素子1
の内周側13の表面平均温度TS1の最高値は、薄
膜11の熱伝導率λにより、P1→P2→P3のよう
に変化し、そして両者が交わるP2点、すなわち、
TS0=TS1 ……(1)
となる点において、同一発熱量に対して表面平均
温度は最小となるため、スケール生成温度TSP以
下に制御することができるとともに、両者の熱交
換率のアンバランスもなくなるものである。 In the heating element 1 having thicknesses t A and t B that satisfy the conditions described above, the change in heat conduction conditions depending on the thermal conductivity λ of the thin film 11 formed by coating on the surface of the ceramic base material B 3 is as follows. 3
It will look like the figure. In this FIG. 3, the surface average temperature T S0 of the outer peripheral side 12 of the heating element 1,
The maximum value of the surface average temperature T S1 on the inner peripheral side 13 of the thin film 11 changes as P 1 → P 2 → P 3 depending on the thermal conductivity λ of the thin film 11, and the maximum value of the surface average temperature T S1 on the inner peripheral side 13 of At the point where S0 = T S1 ...(1), the surface average temperature becomes the minimum for the same calorific value, so it is possible to control the scale formation temperature to T SP or lower, and to reduce the imbalance of the heat exchange rate between the two. There will be no balance.
また、第5図は発熱素子1の表面平均温度をス
ケール生成温度以下に保持する場合に必要な発熱
素子1の外径D1と、薄膜11の熱伝導率λとの
関係を示したもので、所定の条件を満たす発熱素
子1の外径D1の最小値は、薄膜11の熱伝導率
λが最適熱伝導率λCに等しくなつた時であり、こ
れは前述した薄膜11の熱伝導率λが最適熱伝導
率λCに等しくなつた時であり、これは前述した薄
膜11の熱伝導率λの最適条件と一致するもので
ある。 Furthermore, FIG. 5 shows the relationship between the outer diameter D 1 of the heating element 1 and the thermal conductivity λ of the thin film 11, which is required when the average surface temperature of the heating element 1 is maintained below the scale formation temperature. , the minimum value of the outer diameter D 1 of the heating element 1 that satisfies the predetermined conditions is when the thermal conductivity λ of the thin film 11 becomes equal to the optimum thermal conductivity λ C , which means that the thermal conductivity of the thin film 11 described above This is when the thermal conductivity λ becomes equal to the optimum thermal conductivity λ C , which coincides with the optimum condition for the thermal conductivity λ of the thin film 11 described above.
したがつて、上記(1)式を満足する発熱素子1は
同一発熱量に対して、最も小型で省資源となる発
熱素子1を構成することができる。 Therefore, the heating element 1 that satisfies the above formula (1) can constitute the smallest and resource-saving heating element 1 for the same amount of heat generation.
なお、第4図および第5図に示した関係は発熱
素子1と、内管路5および加熱流路9を流れる流
体との熱伝導率、発熱抵抗体4の発熱量等を入力
して、数値計算を行なうことにより得られる。 The relationships shown in FIGS. 4 and 5 are determined by inputting the thermal conductivity between the heating element 1 and the fluid flowing through the inner pipe 5 and the heating channel 9, the amount of heat generated by the heating resistor 4, etc. Obtained by performing numerical calculations.
また前記セラミツク基材A2の厚みtAとセラミ
ツク基材B3の厚みtBは前述したようにそれぞれ
異ならせていて、tA>tBの関係にしているため、
円筒状の発熱素子1の内側と外側の表面平均温度
を等しくするためには、発熱抵抗体4からの熱が
セラミツク基材A2側を通過する熱伝導率と、発
熱抵抗体4からの熱がセラミツク基材B3側に通
過する熱伝導率とが略等しくなるようにする必要
があり、したがつて本発明の一実施例において
は、厚み的に薄いセラミツク基材B3の表面に、
セラミツク基材B3を構成する一般のフアインセ
ラミツク材料と比較して熱伝導率が2桁ほど小さ
いフツ素系樹脂よりなる薄膜11をコーテイング
して形成したものである。このような構成とする
ことにより、フツ素系樹脂よりなる薄膜11の熱
伝導率λが非常に小さいため、薄膜11が前述し
た最適伝熱条件(1)式を満足させる厚みは十分小さ
な値となり、その結果、発熱素子1の外径D1が
大きくなることはなく、コンパクトなものとな
る。またフツ素系樹脂は非付着性を有するため、
スケール等も付着しにくいものである。 Furthermore, since the thickness tA of the ceramic base material A2 and the thickness tB of the ceramic base material B3 are different from each other as described above, and the relationship is tA > tB ,
In order to equalize the average temperature of the inner and outer surfaces of the cylindrical heating element 1, the heat conductivity at which the heat from the heating resistor 4 passes through the ceramic base material A2 and the heat from the heating resistor 4 must be adjusted. It is necessary to make the thermal conductivity of the ceramic substrate B3 substantially equal to that of the ceramic substrate B3. Therefore, in one embodiment of the present invention, on the surface of the thin ceramic substrate B3,
It is formed by coating a thin film 11 made of a fluororesin whose thermal conductivity is two orders of magnitude lower than that of the general fine ceramic material constituting the ceramic base material B3. With such a configuration, the thermal conductivity λ of the thin film 11 made of fluororesin is very small, so the thickness of the thin film 11 that satisfies the above-mentioned optimum heat transfer condition equation (1) becomes a sufficiently small value. As a result, the outer diameter D 1 of the heating element 1 does not become large, and the heating element 1 becomes compact. In addition, since fluorine-based resin has non-adhesive properties,
Scale and the like are also difficult to adhere to.
以上のように本発明によれば、厚みの異なる2
つのセラミツク基材の間に発熱抵抗体を挾持して
構成するとともに、前記2つのセラミツク基材の
うち、厚みの薄いセラミツク基材の前記発熱抵抗
体を挾持する面と反対側の表面に、このセラミツ
ク基材より熱伝導率の小さなフツ素系樹脂よりな
る薄膜を形成しているため、この薄膜の存在によ
り、発熱素子の両側面の表面平均温度を略等しく
することができ、その結果、発熱素子の表面平均
温度をスケール生成温度以下に容易に保持するこ
とができ、また薄膜の厚みは十分小さな値ですむ
ため、発熱素子の外径が大きくなるということも
なく、したがつてコンパクトな発熱素子を提供す
ることができるものである。 As described above, according to the present invention, two
The heating resistor is sandwiched between two ceramic base materials, and the thinner ceramic base material is provided with the heat generating resistor on the surface opposite to the surface on which the heat generating resistor is sandwiched between the two ceramic base materials. Because it forms a thin film made of fluororesin, which has a lower thermal conductivity than the ceramic base material, the presence of this thin film makes it possible to make the surface average temperature on both sides of the heating element approximately equal, and as a result, the heat generation The average surface temperature of the element can be easily maintained below the scale formation temperature, and the thickness of the thin film can be kept to a sufficiently small value, so the outer diameter of the heating element does not need to be large, resulting in compact heating. It is possible to provide an element.
第1図は本発明の一実施例を示す発熱素子を採
用した温水加熱装置の一部破断側面図、第2図は
第1図のA−A′線断面図、第3図は同装置の要
部拡大断面図、第4図は発熱素子の表面温度と薄
膜の熱伝導率の関係を示す特性図、第5図は同発
熱素子の外径と薄膜の熱伝導率の関係を示す特性
図、第6図は従来の発熱素子を採用した温水加熱
装置の一部破断側面図、第7図は第6図のB−
B′線断面図、第8図は従来の円筒状面発熱体の
表面温度を示す展開グラフ、第9図は重炭酸カル
シウムのPHと温度と溶解度との関係を示すグラフ
である。
1……発熱素子、2……セラミツク基材A、3
……セラミツク基材B、4……発熱抵抗体、11
……薄膜。
Fig. 1 is a partially cutaway side view of a hot water heating device employing a heating element showing one embodiment of the present invention, Fig. 2 is a sectional view taken along line A-A' in Fig. 1, and Fig. 3 is a cross-sectional view of the same device. An enlarged cross-sectional view of the main part, Figure 4 is a characteristic diagram showing the relationship between the surface temperature of the heating element and the thermal conductivity of the thin film, and Figure 5 is a characteristic diagram showing the relationship between the outer diameter of the heating element and the thermal conductivity of the thin film. , Fig. 6 is a partially cutaway side view of a hot water heating device employing a conventional heating element, and Fig. 7 is a view of B- in Fig. 6.
8 is a developed graph showing the surface temperature of a conventional cylindrical surface heating element, and FIG. 9 is a graph showing the relationship between pH, temperature, and solubility of calcium bicarbonate. 1... Heat generating element, 2... Ceramic base material A, 3
...Ceramic base material B, 4...Heating resistor, 11
...Thin film.
Claims (1)
熱抵抗体を挾持し、前記2つのセラミツク基材の
うち、厚みの薄いセラミツク基材の前記発熱抵抗
体を挾持する面と反対側の表面に、このセラミツ
ク基材より熱伝導率の小さなフツ素系樹脂よりな
る薄膜を形成した発熱素子。1. A heating resistor is sandwiched between two ceramic substrates having different thicknesses, and of the two ceramic substrates, on the surface of the thinner ceramic substrate opposite to the surface on which the heating resistor is sandwiched, This heating element is made of a thin film made of fluorine-based resin, which has a lower thermal conductivity than this ceramic base material.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20433381A JPS58106785A (en) | 1981-12-16 | 1981-12-16 | Heating element |
US06/455,244 US4563571A (en) | 1981-12-16 | 1982-12-10 | Electric water heating device with decreased mineral scale deposition |
CA000417730A CA1205841A (en) | 1981-12-16 | 1982-12-15 | Water heating device |
EP82306725A EP0082025B1 (en) | 1981-12-16 | 1982-12-16 | Water heating device |
DE8282306725T DE3271699D1 (en) | 1981-12-16 | 1982-12-16 | Water heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20433381A JPS58106785A (en) | 1981-12-16 | 1981-12-16 | Heating element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58106785A JPS58106785A (en) | 1983-06-25 |
JPH0251236B2 true JPH0251236B2 (en) | 1990-11-06 |
Family
ID=16488755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20433381A Granted JPS58106785A (en) | 1981-12-16 | 1981-12-16 | Heating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58106785A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5441646A (en) * | 1977-09-09 | 1979-04-03 | Casio Comput Co Ltd | Undefined line number display system |
JPS5541646A (en) * | 1978-09-18 | 1980-03-24 | Shinetsu Polymer Co | Hollow tubular heater |
JPS5543751A (en) * | 1978-09-21 | 1980-03-27 | Tokyo Shibaura Electric Co | Plane heating element |
-
1981
- 1981-12-16 JP JP20433381A patent/JPS58106785A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5441646A (en) * | 1977-09-09 | 1979-04-03 | Casio Comput Co Ltd | Undefined line number display system |
JPS5541646A (en) * | 1978-09-18 | 1980-03-24 | Shinetsu Polymer Co | Hollow tubular heater |
JPS5543751A (en) * | 1978-09-21 | 1980-03-27 | Tokyo Shibaura Electric Co | Plane heating element |
Also Published As
Publication number | Publication date |
---|---|
JPS58106785A (en) | 1983-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4563571A (en) | Electric water heating device with decreased mineral scale deposition | |
CA1098951A (en) | In line heater for fluid moving in a conduit | |
ATE339619T1 (en) | MICROFLUID VALVE WITH ELECTRICAL OPENING CONTROL | |
JPS64651B2 (en) | ||
CN113378404A (en) | Segmented thermal calculation method for heat exchanger | |
JPH0251236B2 (en) | ||
JPS58184498A (en) | Heat exchanger | |
JPH0135256B2 (en) | ||
CN113065262B (en) | Water-saving pipeline and design method and control device thereof | |
JPS58103796A (en) | Heating element | |
JPS58179765A (en) | Water heater | |
JPH027519B2 (en) | ||
JPS58106351A (en) | Water heater | |
DE102004017021A1 (en) | Latent heat store for central heating system has closed jacket with inlet and outlet for fluid, phase change material and matrix through which fluid flows | |
JPH04339218A (en) | Thermal flowmeter | |
JPS58120040A (en) | Hot-water heater | |
JPH056099B2 (en) | ||
James et al. | Forced convection heat transfer in asymmetrically heated ducts of rectangular cross-section | |
JPS58178198A (en) | Heat exchanger | |
JPS60155856A (en) | Hot-water heater | |
JPS5844274Y2 (en) | instant water heater | |
JP3039671U (en) | Tank for hot water washer | |
Pederson et al. | Heat transfer from a cylinder in crossflow situated in a turbulent pipe flow | |
JP2024505136A (en) | Temperature control device for gaseous media | |
JPS6314041A (en) | Hot water supply device |