JPS58184498A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS58184498A
JPS58184498A JP6758982A JP6758982A JPS58184498A JP S58184498 A JPS58184498 A JP S58184498A JP 6758982 A JP6758982 A JP 6758982A JP 6758982 A JP6758982 A JP 6758982A JP S58184498 A JPS58184498 A JP S58184498A
Authority
JP
Japan
Prior art keywords
fluid
wire
heat transfer
heat exchanger
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6758982A
Other languages
Japanese (ja)
Other versions
JPS624640B2 (en
Inventor
Ryoichi Koga
良一 古閑
Yutaka Takahashi
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6758982A priority Critical patent/JPS58184498A/en
Publication of JPS58184498A publication Critical patent/JPS58184498A/en
Publication of JPS624640B2 publication Critical patent/JPS624640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/14Fins in the form of movable or loose fins

Abstract

PURPOSE:To control the variation of the heat conduction efficiency due to the flow rate of a fluid and to reduce the resistance against the passage of the fluid due to an increase in the flow rate of the fluid by a method wherein a helical wire is fitted about a tubular fluid passage in such a manner that one end of the wire is held stationary while the other end is made slidable so that the wire is made flexible. CONSTITUTION:The helical wire 8 is fitted about the outer periphery of the tubular fluid passage 1 so as to induce the generation of scales and a turbulent flow of the fluid. In this case, the end 8a of the helical wire 8 on the side of a fluid inlet port 5 is fixed to the fluid passage 1 with a projection 9 of the passage 1 and the other end 8b is held slidable with the heat generating surface of a heat generating element 3 so as to move into a clearance 10 formed between the top end 3a of the heat generating element 3 and an outer cylinder 2 covering the fluid passage 1. In operation, when the flow rate of the fluid passing through the heat exchanger increases, the flexible helical wire 8 is subjected to a force in the flow direction of the fluid due to the resistance of the fluid. However, since the wire 8 is held stationary at its one end adjacent to the fluid inlet port 5, it projects into the clearance 10 by deforming itself in the flow direction of the fluid as it enlarges the pitch among the helical sections thereof so that scales adhered to the heat transfer surface 4 are removed. Further, the pitch among the helical sections of the wire 8 is large on the side of the fluid inlet port 5 and becomes a smaller toward the flow direction of the fluid so that a desirable heat transfer efficiency distribution is obtained.

Description

【発明の詳細な説明】 本発明は伝熱面が環状流路に設けられだ熱交換器に関す
るもので、特に伝熱面がセラミック発熱素子により構成
されている場合に有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger in which a heat transfer surface is provided in an annular flow path, and is particularly effective when the heat transfer surface is constituted by a ceramic heating element.

従来の伝熱面が環状流路よりなる熱交換器、例2・・−
ツ えば電気式瞬間湯沸器の熱交換器として用いるものでは
、利用できる水道の元圧が限られているため、環状流路
の幅を比較的広くとって水の流通抵抗を低減していた。
Conventional heat exchanger whose heat transfer surface is an annular flow path, Example 2...-
For heat exchangers used in electric instantaneous water heaters, the usable source pressure of the water supply is limited, so the width of the annular channel is relatively wide to reduce water flow resistance. .

この種の熱交換器では、熱伝達率が低く、伝熱面温度の
上昇に1よるスケールの付着を防止するために、広い伝
熱面積が必要であり、熱交換器が大型化するという問題
があった。
This type of heat exchanger has a low heat transfer coefficient, and a large heat transfer area is required to prevent scale adhesion due to an increase in heat transfer surface temperature, resulting in a large heat exchanger. was there.

さらに最近実用化されたセラミック発熱素子を用いた場
合、この素子が伝熱面と発熱部とを近接して(例えば0
4mm)設けることができるということより、即熱性が
優れかつ発熱密度が高くとれるという特徴を有する半面
、スケールの付着には敏感で、スケールの付着によるセ
ラミック発熱素子の破壊を防止するためにスケールの付
着を高いレベルで防止することが必要であった、一般に
スケールの付着を防止するだめには、伝熱面温度を下げ
ることが有効であり、このためには熱伝達率を高めるこ
と、伝熱面積を広くすることが考えられる。従来の単に
環状流路のみによる熱交換器では、熱伝達率を高めるだ
めに環状流路3ベーン の幅を極限にまで狭くする必要があり、これにより流路
抵抗が高くなるのみならず、高い寸法精度が要求されて
実用的では々かった。
Furthermore, when using a ceramic heating element that has been put into practical use recently, this element has a heat transfer surface and a heating part close to each other (for example,
Although it has the characteristics of being able to heat up quickly and have a high heating density, it is sensitive to scale adhesion, and in order to prevent the destruction of the ceramic heating element due to scale adhesion, it is necessary to It was necessary to prevent scale adhesion at a high level.In general, lowering the temperature of the heat transfer surface is effective in preventing scale adhesion, and for this purpose, increasing the heat transfer coefficient, It is possible to increase the area. In a conventional heat exchanger using only an annular flow path, in order to increase the heat transfer coefficient, it is necessary to make the width of the three vanes of the annular flow path as narrow as possible, which not only increases the flow resistance but also increases the Dimensional accuracy was required and it was not practical.

これらの欠点を克服するために、環状流路に螺旋状綿体
を挿入して、環状流の乱流化、スケールの発生により熱
伝達率の向上が図られた、この形式の熱交換器は従来の
単に環状流のみの熱交換と比較して、低い圧力損失で高
い熱伝達率が得られるが、熱交換器の貫流流量が大きく
変化する場合につぎのような問題が生じる。
In order to overcome these drawbacks, this type of heat exchanger inserts a spiral cotton body into the annular flow path to make the annular flow turbulent and increase the heat transfer coefficient by generating scale. Compared to conventional heat exchange using only annular flow, a high heat transfer coefficient can be obtained with low pressure loss, but the following problem occurs when the flow rate through the heat exchanger changes significantly.

熱交換器の熱伝達率は、最小流量時に所定の値が得られ
るように設計される。したがって流量が最小流量よりも
増加すれば、熱伝達率は必要以上に増加するのみならず
、圧力損失も増大し、さらに流量が増加すれば圧力損失
が高くなりすぎて実用できない。これを解消するには熱
交換器を大きくすれば良いが、それではセラミ、ツ、り
発熱素子および上記熱伝達機構の改善による熱交換器の
コンパクト化という長所を十分に生かすことはやきない
The heat transfer coefficient of the heat exchanger is designed so that a predetermined value is obtained at the minimum flow rate. Therefore, if the flow rate increases more than the minimum flow rate, not only will the heat transfer coefficient increase more than necessary, but also the pressure loss will increase, and if the flow rate increases further, the pressure loss will become too high to be practical. To solve this problem, the heat exchanger can be made larger, but this does not make it possible to take full advantage of the advantages of making the heat exchanger more compact due to the improved heat transfer mechanism of ceramics, polyurethane heating elements, and the heat transfer mechanism.

本発明はこのような従来の熱交換器の欠点を除去するも
ので、熱伝達率を高める機構を生かしつつ、熱交換器の
質流流量に応じて熱伝達率が必要以上に高くならないよ
うに制御し、この結果流量が多く流れても流路抵抗はそ
れほど増加せず広い流量変化に対応するとともに、形状
の小型化も図った熱交換器を提供することを目的とする
The present invention eliminates these drawbacks of conventional heat exchangers, and while making use of the mechanism that increases heat transfer coefficient, it also prevents the heat transfer coefficient from becoming higher than necessary depending on the mass flow rate of the heat exchanger. It is an object of the present invention to provide a heat exchanger that can handle a wide range of flow rate changes without significantly increasing flow path resistance even when a large flow rate flows, and that is also compact in size.

この目的を達成するために本発明は、環状流路に螺旋状
綿体を挿入するとともに、螺旋状綿体の一端を固定し、
他端を摺動可能とし、かつ螺旋状綿体に可撓性を持たせ
ることにより、流量による熱伝達率の変化を制御すると
ともに流路の抵抗係数の値を変化させて、流量増加にょ
る流路抵抗の増加を低減したものである。
In order to achieve this objective, the present invention inserts a spiral cotton body into an annular channel, fixes one end of the spiral cotton body,
By making the other end slidable and giving flexibility to the spiral cotton body, changes in heat transfer coefficient due to flow rate can be controlled, and the value of the resistance coefficient of the flow path can be changed to increase the flow rate. This reduces the increase in flow path resistance.

この構成によって、環状流路に設けられた螺旋状綿体に
流量に応じた流体抵抗力が作用する結果、螺旋状綿体は
流量が多龜はどピ・ソチを広げて抵抗係数を低下させる
8また熱伝達率は流量の増加による熱伝達率向上効果の
ため、抵抗係数の低下による熱伝達率の低下を補償し、
十分に高い値が得5・−ア られる。
With this configuration, a fluid resistance force depending on the flow rate acts on the spiral cotton body provided in the annular flow path, and as a result, the spiral cotton body expands the flow rate and reduces the drag coefficient. 8 Also, because the heat transfer coefficient is improved by increasing the flow rate, it compensates for the decrease in the heat transfer coefficient due to the decrease in the resistance coefficient.
A sufficiently high value is obtained and 5.-a is obtained.

以下本発明の一実施例について説明する。第1図は本実
施例による熱交換器を示す概略断面図である。、1は環
状流路であり、外筒2および発熱素子3の主として外周
面で構成される伝熱面4とで構成される〜5は流入口で
あり、被加熱流体を導入するとともに、この導入された
非加熱流体を環状流路1に供給する。6は流出口であり
、環状流路1と発熱素子3の内周面で構成される流路7
より流出する非加熱流体を導出する。8は螺旋状綿体で
あり、環状流路1に外周面4に沿うように挿入されて、
スケールおよび乱流を誘起する、螺旋状綿体8の流入口
6側の端部8aは環状流路1に設けた突起部9により固
定されており、もう一方の側の端部8bは発熱素子3の
発熱面4に摺動自在に設置され、発熱素子3の先端3a
と外筒2により形成される空間10へ移動可能となって
いる。
An embodiment of the present invention will be described below. FIG. 1 is a schematic sectional view showing a heat exchanger according to this embodiment. , 1 is an annular flow path, and 5 is an inlet, which is composed of an outer cylinder 2 and a heat transfer surface 4 mainly composed of the outer circumferential surface of the heating element 3, through which the fluid to be heated is introduced. The introduced non-heated fluid is supplied to the annular flow path 1. Reference numeral 6 denotes an outlet, and a flow path 7 constituted by the annular flow path 1 and the inner circumferential surface of the heating element 3
The non-heated fluid flowing out is led out. 8 is a spiral cotton body, which is inserted into the annular channel 1 along the outer peripheral surface 4,
An end 8a of the spiral cotton body 8 on the inlet 6 side, which induces scale and turbulence, is fixed by a protrusion 9 provided in the annular flow path 1, and an end 8b on the other side is fixed to a heating element. The tip 3a of the heating element 3 is slidably installed on the heating surface 4 of the heating element 3.
and the space 10 formed by the outer cylinder 2.

本実施例において熱交換器11は以上のように構成され
、さらに発熱素子3はセラミック基材12と発熱抵抗体
13を保持したセラミックシート146パ−/ とを一体に成形したセラミック発熱素子である。
In this embodiment, the heat exchanger 11 is constructed as described above, and the heating element 3 is a ceramic heating element formed by integrally molding the ceramic base material 12 and the ceramic sheet 146 holding the heating resistor 13. .

本発熱素子3は、発熱部である発熱抵抗体13と発熱面
4が薄いセラミックシート14を介して熱的に結合して
いるため、発熱部で発生した熱量の大部分は外周面に伝
熱され、したがって外周面が伝熱面4となる。
In this heating element 3, the heating resistor 13, which is the heating part, and the heating surface 4 are thermally coupled via the thin ceramic sheet 14, so that most of the heat generated in the heating part is transferred to the outer peripheral surface. Therefore, the outer peripheral surface becomes the heat transfer surface 4.

つぎに本実施例の作用、効果につき説明する。Next, the functions and effects of this embodiment will be explained.

第2図は本実施例による熱交換器が流量が多くなったと
きの動作を示す説明図である。熱交換器を通過する流量
が増加すると、可撓性を有する螺旋状綿体8が流体抵抗
力のために流れ方向に力を受ける。螺旋状綿体8は流入
口5側の一端を固定されているために、螺旋状綿体8は
ピンチ間隔を広げながら流れ方向に変形し空間10へ突
出する。
FIG. 2 is an explanatory diagram showing the operation of the heat exchanger according to this embodiment when the flow rate increases. When the flow rate passing through the heat exchanger increases, the flexible spiral cotton body 8 receives a force in the flow direction due to fluid resistance force. Since the spiral cotton body 8 has one end on the inflow port 5 side fixed, the spiral cotton body 8 deforms in the flow direction and protrudes into the space 10 while increasing the pinch interval.

第3図は本実施例による熱交換器の流量Qによる熱伝達
率αおよび抵抗係数Ofの変化を示す。
FIG. 3 shows changes in the heat transfer coefficient α and the resistance coefficient Of depending on the flow rate Q of the heat exchanger according to this embodiment.

流量が増加し、螺旋状綿体8のピッチ間隔が広がるにつ
れて、抵抗係数Cfは低下するとともに熱伝達率αはゆ
るやかに増加することが示されている。
It is shown that as the flow rate increases and the pitch interval of the spiral cotton body 8 widens, the resistance coefficient Cf decreases and the heat transfer coefficient α gradually increases.

7ペ、−7 まだ本実施例においては、螺旋伏線体8は伝熱面4に沿
うように挿入されているため、熱交流量が変化し、螺旋
伏線体8が流れ方向に移動しだ場合、伝熱面4に付着す
るスケールを除去する効果が期待できる。
7, -7 In the present embodiment, the spiral cover body 8 is inserted along the heat transfer surface 4, so if the amount of heat exchange changes and the spiral cover body 8 begins to move in the flow direction. , the effect of removing scale adhering to the heat transfer surface 4 can be expected.

さらに本実施例においては、流体抵抗力による螺旋伏線
体8のピッチ間隔の変化は、被加熱流体の流入口5側の
ほうが太きい。伝熱面の熱伝達率の分布は、非加熱流体
の温度が高いところほど高いことが望ましいが、本実施
例では流入口5側のピッチが広く、流れ方向にピッチが
狭くなるため、上記望ましい熱伝達率の分布が得られる
という効果がある。
Furthermore, in this embodiment, the change in the pitch interval of the spiral foreground body 8 due to fluid resistance force is greater on the side of the inlet 5 of the fluid to be heated. It is desirable that the distribution of the heat transfer coefficient on the heat transfer surface be higher as the temperature of the non-heated fluid increases, but in this example, the pitch on the inlet 5 side is wide and the pitch is narrow in the flow direction, so the above desirable distribution is achieved. This has the effect of providing a distribution of heat transfer coefficients.

したがって本実施例による熱交換器は、環状流路に設け
た螺旋伏線体を、流体抵抗力で変形し得るように構成す
ることにより、高い熱伝達率を有しながら圧力損失をそ
れほど高めることなく、広: い流量範囲で実用できるものである。
Therefore, the heat exchanger according to this embodiment has a high heat transfer coefficient without significantly increasing pressure loss by configuring the spiral bending body provided in the annular flow path so that it can be deformed by fluid resistance force. , Wide: Can be put to practical use over a wide flow rate range.

つぎに本発明の他の実施例につき説明する。Next, other embodiments of the present invention will be described.

さきの実施例でも説明したように、被加熱流体の温度は
、伝熱面上を通過するにつれて上昇するため、下流側の
伝熱面の温度上昇を防止するためには、下流側伝熱面の
熱伝達率を高めることが必要である。この実施例におい
ては第4図に示したように螺旋伏線体20のピッチを下
流側に行くほどせまくしだものであり、伝熱面4の均熱
化に効果がある。
As explained in the previous example, the temperature of the heated fluid increases as it passes over the heat transfer surface, so in order to prevent the temperature of the downstream heat transfer surface from increasing, it is necessary to It is necessary to increase the heat transfer coefficient of In this embodiment, as shown in FIG. 4, the pitch of the spiral contour body 20 becomes narrower toward the downstream side, which is effective in making the heat transfer surface 4 uniform.

さらに他の実施例による螺旋伏線体21を第6図に示す
。この実施例においては、螺旋伏線体21に凹凸22を
設けたものである。熱交換器11の流量が変化して、螺
旋伏線体が軸方向に移動したとき、螺旋伏線体21に設
けた凹凸21により伝熱面である外周面4に付着したス
ケール等の異物を取り除くことができる。さらに、凹凸
21には伝熱面4近くの流れを乱流化する上で効果があ
る。
A spiral foreground body 21 according to yet another embodiment is shown in FIG. In this embodiment, a spiral foreground body 21 is provided with concavities and convexities 22. When the flow rate of the heat exchanger 11 changes and the spiral cover body moves in the axial direction, foreign matter such as scale attached to the outer circumferential surface 4, which is a heat transfer surface, is removed by the unevenness 21 provided on the spiral cover body 21. I can do it. Furthermore, the unevenness 21 is effective in making the flow near the heat transfer surface 4 turbulent.

以上のように、本発明の熱交換器は高い熱伝達率を有し
、かつ流量め変化による圧力損失の変化が比較的少ない
優れた効果を奏するものである。
As described above, the heat exchanger of the present invention has a high heat transfer coefficient and exhibits an excellent effect in that the change in pressure loss due to the change in flow rate is relatively small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す熱交換器の9ベー: 概略断面図、第2図は同熱交換器の動作を示す概略断面
図、第3図は同熱交換器の流量と熱伝達率。 抵抗係数の関係を示す特性図、第4図は第2実施例を示
す熱交換器の概略断面図、第6図は第3実施例による螺
旋伏線体の部分断面図である。 1・・・・・・環状流路、4・・・・・・伝熱面、5・
・・・・・流入口、6・・・・・・流出口、8,20.
21・・・・・・螺旋伏線体、sa 、sb・・・・・
・端部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
Fig. 1 is a schematic sectional view of a 9-bay heat exchanger showing the first embodiment of the present invention, Fig. 2 is a schematic sectional view showing the operation of the heat exchanger, and Fig. 3 is a flow rate diagram of the heat exchanger. and heat transfer coefficient. A characteristic diagram showing the relationship between the resistance coefficients, FIG. 4 is a schematic cross-sectional view of a heat exchanger according to the second embodiment, and FIG. 6 is a partial cross-sectional view of a spiral profile body according to the third embodiment. 1... Annular flow path, 4... Heat transfer surface, 5...
...Inflow port, 6...Outflow port, 8, 20.
21...Spiral foreshadowing body, sa, sb...
·edge. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
figure

Claims (3)

【特許請求の範囲】[Claims] (1)環状流路の少くとも一面に形成された伝熱面と、
前記環状流路と連通ずる流入口と流出口および前記環状
流路に挿入された螺旋伏線体とを有し、さらにこの螺旋
伏線体の前記流入口側の端部は固定されるとともに、こ
の螺旋伏線体のもう一方の端部は摺動可能とし、かつ前
記螺旋伏線体が可撓性を有する熱交換器。
(1) a heat transfer surface formed on at least one side of the annular flow path;
It has an inlet and an outlet communicating with the annular flow path, and a spiral wrap-around body inserted into the annular flow path, and further, an end of the spiral wrap-around body on the inlet side is fixed, and the spiral A heat exchanger in which the other end of the foreground body is slidable and the spiral foreclosure body is flexible.
(2)螺旋伏線体はピンチを不等間隔にした特許請求の
範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein the spiral contour body has pinches arranged at unequal intervals.
(3)螺旋伏線体は 表面を粗面にした特許請求の範囲
第1項記載の熱交換器。
(3) The heat exchanger according to claim 1, wherein the spiral contour body has a roughened surface.
JP6758982A 1982-04-21 1982-04-21 Heat exchanger Granted JPS58184498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6758982A JPS58184498A (en) 1982-04-21 1982-04-21 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6758982A JPS58184498A (en) 1982-04-21 1982-04-21 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS58184498A true JPS58184498A (en) 1983-10-27
JPS624640B2 JPS624640B2 (en) 1987-01-31

Family

ID=13349248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6758982A Granted JPS58184498A (en) 1982-04-21 1982-04-21 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58184498A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736199B2 (en) 2002-04-23 2004-05-18 Exxonmobil Research And Engineering Company Heat exchanger with floating head
US6779596B2 (en) 2002-03-22 2004-08-24 Exxonmobil Research And Engineering Company Heat exchanger with reduced fouling
US6874572B2 (en) 2002-03-22 2005-04-05 Exxonmobil Research And Engineering Company Heat exchanger flow-through tube supports
JP2008524624A (en) * 2004-12-20 2008-07-10 アンジェラントーニ インダストリエ エスピーエー Energy-saving environmental test tank and operation method
WO2009021328A1 (en) * 2007-08-14 2009-02-19 Marc Hoffman Heat exchanger
EP1861668A4 (en) * 2005-03-09 2011-01-19 Kelix Heat Transfer Systems Llc Coaxial-flow heat transfer structures for use in diverse applications
WO2011008129A1 (en) * 2009-07-14 2011-01-20 Открытое Акционерное Общество "Hayчнo-Иccлeдoвaтeльcкий И Проектный Институт Карбамида И Продуктов Органического Cинтeзa" (Оао Ниик) Heat exchange apparatus
US8161759B2 (en) 2005-03-09 2012-04-24 Kelix Heat Transfer Systems, Llc Method of and apparatus for transferring heat energy between a heat exchanging subsystem above the surface of the earth and material therebeneath using one or more coaxial-flow heat exchanging structures producing turbulence in aqueous-based heat-transfering fluid flowing along helically-extending outer flow channels formed therein
US11615908B2 (en) 2018-04-09 2023-03-28 State Grid Corporation Of China Flow-guiding rod, bushing and converter transformer system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114227U (en) * 1986-01-10 1987-07-21

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779596B2 (en) 2002-03-22 2004-08-24 Exxonmobil Research And Engineering Company Heat exchanger with reduced fouling
US6874572B2 (en) 2002-03-22 2005-04-05 Exxonmobil Research And Engineering Company Heat exchanger flow-through tube supports
US6736199B2 (en) 2002-04-23 2004-05-18 Exxonmobil Research And Engineering Company Heat exchanger with floating head
JP2008524624A (en) * 2004-12-20 2008-07-10 アンジェラントーニ インダストリエ エスピーエー Energy-saving environmental test tank and operation method
EP1861668A4 (en) * 2005-03-09 2011-01-19 Kelix Heat Transfer Systems Llc Coaxial-flow heat transfer structures for use in diverse applications
US8161759B2 (en) 2005-03-09 2012-04-24 Kelix Heat Transfer Systems, Llc Method of and apparatus for transferring heat energy between a heat exchanging subsystem above the surface of the earth and material therebeneath using one or more coaxial-flow heat exchanging structures producing turbulence in aqueous-based heat-transfering fluid flowing along helically-extending outer flow channels formed therein
WO2009021328A1 (en) * 2007-08-14 2009-02-19 Marc Hoffman Heat exchanger
WO2011008129A1 (en) * 2009-07-14 2011-01-20 Открытое Акционерное Общество "Hayчнo-Иccлeдoвaтeльcкий И Проектный Институт Карбамида И Продуктов Органического Cинтeзa" (Оао Ниик) Heat exchange apparatus
EA019810B1 (en) * 2009-07-14 2014-06-30 Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) Heat exchange apparatus
US11615908B2 (en) 2018-04-09 2023-03-28 State Grid Corporation Of China Flow-guiding rod, bushing and converter transformer system
EP3575725B1 (en) * 2018-04-09 2023-05-10 State Grid Corporation of China Bushing and converter transformer system

Also Published As

Publication number Publication date
JPS624640B2 (en) 1987-01-31

Similar Documents

Publication Publication Date Title
JPS58184498A (en) Heat exchanger
EP0082025B1 (en) Water heating device
KR102322280B1 (en) Instntaneous heating apparatus
CA2209369A1 (en) Heating element for water heaters with scale control
JP4411954B2 (en) Heat exchanger and sanitary washing device equipped with the same
JPH0125238Y2 (en)
JPH0135256B2 (en)
JPS5840A (en) Heat exchanger
JPS58120040A (en) Hot-water heater
JPS58106351A (en) Water heater
JPS58178198A (en) Heat exchanger
JPH0132905B2 (en)
JP2936152B2 (en) Fluid heater
KR101399717B1 (en) Sanitary washing device
JPS5862447A (en) Electric water heater
JPS6010034A (en) Puvic washing apparatus
JPS58103795A (en) Hot water heater
RU211742U1 (en) Tubular heater
JP4423992B2 (en) Heat exchanger and sanitary washing device equipped with the same
JP3790328B2 (en) Gas turbine cooling blade
JPS6237074Y2 (en)
JPS607187B2 (en) Heat exchanger
JPS625045A (en) Fluid temperature raising device
JP2005226897A (en) Heat exchanger and sanitary washing device provided with the same
JPS6139906Y2 (en)