JP3790328B2 - Gas turbine cooling blade - Google Patents

Gas turbine cooling blade Download PDF

Info

Publication number
JP3790328B2
JP3790328B2 JP13845597A JP13845597A JP3790328B2 JP 3790328 B2 JP3790328 B2 JP 3790328B2 JP 13845597 A JP13845597 A JP 13845597A JP 13845597 A JP13845597 A JP 13845597A JP 3790328 B2 JP3790328 B2 JP 3790328B2
Authority
JP
Japan
Prior art keywords
flow path
serpentine
blade
partition wall
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13845597A
Other languages
Japanese (ja)
Other versions
JPH10325301A (en
Inventor
康意 富田
宏紀 福野
潔 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13845597A priority Critical patent/JP3790328B2/en
Publication of JPH10325301A publication Critical patent/JPH10325301A/en
Application granted granted Critical
Publication of JP3790328B2 publication Critical patent/JP3790328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電などに適用されるガスタービンの冷却翼に関する。
【0002】
【従来の技術】
図2および図3は火力発電などに使用されている従来のガスタービンの冷却動翼の説明図である。図2において、本ガスタービンの冷却動翼はサーペンタイン方式が採用されており、冷却媒体の空気、或いは蒸気が翼根51の冷却媒体の入口52から翼根51内に入り、翼53のサーペンタイン流路54aを矢印で示す方向に流れて翼53の前縁を冷却した後、翼頂部で仕切壁58に沿って反転(リターン)して翼53の中央部を冷却する。そして、翼台55で再び仕切壁58に沿って反転し、最終のサーペンタイン流路54bを通って翼53の後縁を冷却した後、翼根51の冷却媒体の出口56から流出するようになっている。
【0003】
図3において、サーペンタイン流路54a,54bにはサーペンタイン流路54a,54bに対して水平に、或いは図に示すように外周側に傾斜した複数列のタービュレータ57が設けられており、タービュレータ57の下流および上流には渦が発生し、この渦に誘導されて冷却媒体の空気、或いは蒸気の流れが層流から乱流に転じ、擾乱が発生する。これらの渦の端は流体中で互いに繋がるか、或いは境界面で終わっており、流れは個所Aで流路壁に再付着するが、熱伝達率はタービュレータ57後流の渦域で急激に低下し、再付着以降で上昇する。
【0004】
このようにサーペンタイン流路54a,54bにタービュレータ57を設けることにより、サーペンタイン流路54a,54bを流れる冷却媒体の空気、或いは蒸気に対する抵抗は増すが、冷却媒体の流れを強制的に乱流に遷移させるとともに、冷却通路と交叉する方向の二次流れを発生させ、サーペンタイン流路54a,54bにおける熱伝達率を向上させて冷却効果を増大させる。
【0005】
【発明が解決しようとする課題】
上記のように、従来のガスタービンの冷却動翼においては複数列のタービュレータ57がサーペンタイン流路54a,54bに対して水平に、或いは外周側に傾斜して設けられており、このようにサーペンタイン流路54a,54bにタービュレータ57を設けることにより、サーペンタイン流路54a,54bを流れる冷却媒体に対する抵抗が増す。
【0006】
また、冷却媒体の流れが翼頂部、或いは翼台55で反転した後に冷却媒体の流れに剥離が生じるため、サーペンタイン流路54a,54bにおけるC域に比べてB域における熱伝達量が小さく、局所的に冷却性能が衰えることにより冷却効果に大きな差を生じている。
【0007】
【課題を解決するための手段】
本発明に係るガスタービンの冷却翼は上記課題の解決を目的にしており、翼内部に仕切壁によりU字状に仕切られて冷却媒体が流れるサーペンタイン流路を備えたガスタービンの冷却翼において、上記サーペンタイン流路の少なくとも上記仕切壁により仕切られたUターン部下流の内壁に冷却媒体の流れに対して上記仕切壁側に下がるように傾斜し上記サーペンタイン流路の全幅にわたって設けられた第一のタービュレータと第一のタービュレータよりも短く、上記サーペンタイン流路の全幅の半分程度の長さの第二のタービュレータとを具え、上記第一のタービュレータと第二のタービュレータとを交互に同一傾斜方向に設けると共に、上記第二のタービュレータを上記仕切壁に当接して設けられている。
【0008】
このように、本発明に係るガスタービンの冷却翼においては、サーペンタイン流路におけるUターン部下流に内周の仕切壁側に傾斜を有しサーペンタイン流路幅の全幅にわたるように配設された第一のタービュレータと、この第一のタービュレータと同様に傾斜し仕切壁に当接して配設され第一のタービュレータよりも短い第二のタービュレータとが設けられており、特に剥離を生じ易いサーペンタイン流路のUターン部下流に内周側に傾斜した第一のタービュレータをサーペンタイン流路の全幅にわたって配設したことによって冷却媒体の流れがUターンした後にサーペンタイン流路の仕切壁側(内周側)に案内され、仕切壁の内周側における冷却媒体の流れの剥離が生じ難くなる。
【0009】
また、特に剥離を生じ易いサーペンタイン流路のUターン部下流に短い第二のタービュレータを内周側に傾斜させ仕切壁に当接して配設したことによって冷却媒体の流れがUターンした後にサーペンタイン流路の仕切壁側(内周側)に案内され、サーペンタイン流路における冷却媒体の流れに対する抵抗を増すことなく、仕切壁の内周側における冷却媒体の流れの剥離がより一層生じ難くなる。
【0010】
【発明の実施の形態】
図1は本発明の実施の一形態に係るガスタービンの冷却動翼の説明図である。図において、本実施の形態に係るガスタービンの冷却動翼は火力発電などに使用されるガスタービンの冷却動翼で、サーペンタイン流路にタービュレータを配列する場合の配列方向やタービュレータの構造などを改良している。図における符号1はサーペンタイン流路、2は仕切壁、3はサーペンタイン流路の全幅にわたるタービュレータ、4はサーペンタイン流路幅の半分程度の短いタービュレータ(案内用突起)、5はガスタービンの翼である。
【0011】
本ガスタービンの冷却動翼は図に示すようにサーペンタイン方式が採用されており、従来例のガスタービンの冷却動翼と同様に冷却媒体の空気、或いは蒸気が翼根の冷却媒体の入口から翼根内に入り、翼5のサーペンタイン流路1を矢印で示す方向に流れて翼5の前縁を冷却した後、翼頂部で仕切壁2に沿って反転(リターン)して翼5の中央部を冷却する。そして、翼台で再び仕切壁2に沿って反転し、最終のサーペンタイン流路1を通って翼5の後縁を冷却した後、翼根の冷却媒体の出口から流出するようになっている。
【0012】
また、本ガスタービンの冷却動翼においては図に示すように、サーペンタイン流路1には仕切壁2によってリターン部が形成されており、仕切壁2側(内周側)に下がるように傾斜したタービュレータ3がサーペンタイン流路1の全幅にわたって配設されている。そして、このサーペンタイン流路1の全幅にわたるタービュレータ3とタービュレータ3との間に、サーペンタイン流路1流路幅の半分程度の短いタービュレータ4が同様に仕切壁2側(内周側)に下がるように傾斜し仕切壁2に当接して配設されている。
【0013】
このようにサーペンタイサーペンタイン流路1に複数列のタービュレータ3を設けることにより、タービュレータ3の下流および上流に渦が発生し、この渦に誘導されて冷却媒体の空気、或いは蒸気の流れを層流から強制的に乱流に遷移させて擾乱を発生させるとともに、冷却通路と交叉する方向の二次流れを発生させ、サーペンタイン流路1における熱伝達率を向上させて冷却効果を増大させる。また、本ガスタービンの冷却翼においてはサーペンタイン流路1のリターン部にタービュレータ3がサーペンタイン流路1の内周側に下がるように傾斜を有しサーペンタイン流路1流路幅の全幅にわたるように配列され、このタービュレータ3とタービュレータ3との間に内周側に下がるように傾斜を有しサーペンタイン流路1流路幅の半分程度の短いタービュレータ4が仕切壁2に当接して配列されており、従来のサーペンタイン流路においては冷却媒体の流れがサーペンタイン流路1のリターン部で外周側に案内されてしまうために仕切壁2近傍の内周側で剥離が生じて著しく伝熱性能が損われるが、本ガスタービンの冷却翼においては内周側に下がるように傾斜したタービュレータ3がサーペンタイン流路1の全幅にわたって配列されていることにより、このタービュレータ3によって冷却媒体の流れが仕切壁2側に案内され、仕切壁2の内周側における冷却媒体の流れの剥離が生じ難くなって伝熱性能が向上するとともに剥離が生じ易いリターン後の仕切壁2部分の伝熱性能が向上する。また、サーペンタイン流路1の全幅にわたるタービュレータ3とタービュレータ3との間に同様に内周側に下がるように傾斜しサーペンタイン流路1の全幅にはわたらない短いタービュレータ4が配列されていることにより、この短いタービュレータ4によって冷却媒体の流れが仕切壁2側に案内され、サーペンタイン流路1における冷却媒体の流れに対する抵抗を増すことなく、仕切壁2の内周側における冷却媒体の流れの剥離がより一層生じ難くなり、伝熱性能が向上するとともに剥離が生じ易いリターン後の仕切壁2部分の伝熱性能が向上する。
【0014】
従来のガスタービンの冷却動翼においては、複数列のタービュレータがサーペンタイン流路に対して水平に、或いは外周側に傾斜して設けられており、このようにサーペンタイン流路にタービュレータを設けることにより、サーペンタイン流路を流れる冷却媒体に対する抵抗が増す。また、冷却媒体の流れが翼頂部、或いは翼台で反転した後に冷却媒体の流れに剥離が生じるため、局所的に冷却性能が衰えることにより冷却効果に大きな差を生じている。なお、このような現象は既に様々な文献などで報告されている。
【0015】
これに対し、本ガスタービンの冷却動翼においては、このような問題点を解消するためにサーペンタイン流路1のリターン部に内周側に下がる傾斜を有しサーペンタイン流路1の全幅にわたるようにタービュレータ3を配列するとともに、このタービュレータ3とタービュレータ3との間に内周側に下がる傾斜を有しサーペンタイン流路1流路幅の半分程度の短いタービュレータ4を仕切壁2に当接して配列している。
【0016】
このように、特に剥離を生じ易いサーペンタイン流路1のリターン部に、タービュレータ3を内周側に下がる傾斜でサーペンタイン流路1の全幅にわたるように配列したことにより、仕切壁2に沿って反転した冷却媒体の流れがサーペンタイン流路1の仕切壁2側(内周側)に案内されてサーペンタイン流路のUターン部下流に剥離が生じ難くなり、伝熱性能の不均一が解消されて伝熱性能が向上する。
【0017】
また、特に剥離を生じ易いサーペンタイン流路1のリターン部に、サーペンタイン流路1全幅の半分程度の短いタービュレータ4を内周側に下がる傾斜で仕切壁2に当接して配列したことにより、仕切壁2に沿って反転した冷却媒体の流れがサーペンタイン流路1の仕切壁2側(内周側)に案内され、サーペンタイン流路1における冷却媒体の流れに対する抵抗を増すことなく、サーペンタイン流路1のUターン部下流に剥離がより一層生じ難くなり、サーペンタイン流路1の仕切壁2によるUターン部下流における伝熱性能の不均一が解消されて伝熱性能が向上する。
【0018】
これらにより、特に剥離が生じ易いリターン部における伝熱性能の不均一が解消されてサーペンタイン流路1の全領域でより一層均一な伝熱性能が得られ、ガスタービンの翼5における冷却性能が向上する。
【0019】
【発明の効果】
本発明に係るガスタービンの冷却翼は前記のように構成されており、サーペンタイン流路における冷却媒体の流れに対する抵抗を増すことなく、仕切壁の内周側における冷却媒体の流れの剥離がより一層生じ難くなるので、サーペンタイン流路における伝熱性能の不均一が解消されてサーペンタイン流路の全領域で均一な伝熱性能が得られ、これによりガスタービンの冷却翼における冷却性能が向上する。
【図面の簡単な説明】
【図1】図1は本発明の実施の一形態に係るガスタービンの冷却動翼におけるタービュレータの模式図である。
【図2】図2は従来のガスタービンの冷却動翼の斜視図である。
【図3】図3(a)はそのタービュレータの断面図、同図(b)はその作用説明図、同図(c)はその模式図である。
【符号の説明】
1 サーペンタイン流路
2 仕切壁
3 サーペンタイン流路の全幅にわたるタービュレータ
4 短いタービュレータ(案内用突起)
5 翼
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling blade of a gas turbine applied to thermal power generation or the like.
[0002]
[Prior art]
2 and 3 are explanatory views of a cooling blade of a conventional gas turbine used for thermal power generation or the like. In FIG. 2, the cooling blade of this gas turbine employs a serpentine system, and air or steam as a cooling medium enters the blade root 51 from the cooling medium inlet 52 of the blade root 51, and the serpentine flow of the blade 53 After flowing through the path 54a in the direction indicated by the arrow to cool the leading edge of the blade 53, the center of the blade 53 is cooled by being reversed (returned) along the partition wall 58 at the blade top. Then, the blade tip 55 reverses again along the partition wall 58 and cools the trailing edge of the blade 53 through the final serpentine channel 54b, and then flows out from the cooling medium outlet 56 of the blade root 51. ing.
[0003]
In FIG. 3, the serpentine channels 54 a and 54 b are provided with a plurality of rows of turbulators 57 inclined in the horizontal direction with respect to the serpentine channels 54 a and 54 b or on the outer peripheral side as shown in the figure. Further, a vortex is generated in the upstream, and the flow of the cooling medium air or vapor is changed from a laminar flow to a turbulent flow, and a disturbance is generated. The ends of these vortices are connected to each other in the fluid, or end at the boundary surface, and the flow reattaches to the flow path wall at the location A, but the heat transfer coefficient decreases rapidly in the vortex region downstream of the turbulator 57. And rise after reattachment.
[0004]
By providing the turbulators 57 in the serpentine channels 54a and 54b in this manner, the resistance of the cooling medium flowing through the serpentine channels 54a and 54b to air or steam increases, but the flow of the cooling medium is forcibly changed to turbulent flow. At the same time, a secondary flow in a direction crossing the cooling passage is generated to improve the heat transfer coefficient in the serpentine channels 54a and 54b, thereby increasing the cooling effect.
[0005]
[Problems to be solved by the invention]
As described above, in the cooling blades of the conventional gas turbine, a plurality of rows of turbulators 57 are provided horizontally with respect to the serpentine channels 54a and 54b or inclined toward the outer peripheral side. By providing the turbulators 57 in the paths 54a and 54b, resistance to the cooling medium flowing through the serpentine channels 54a and 54b is increased.
[0006]
In addition, since the flow of the cooling medium is separated after the flow of the cooling medium is reversed at the blade top part or the blade base 55, the heat transfer amount in the B area is small compared to the C area in the serpentine channels 54a and 54b, In particular, a significant difference in cooling effect is caused by a decline in cooling performance.
[0007]
[Means for Solving the Problems]
The cooling blade of a gas turbine according to the present invention aims to solve the above-described problems. In the cooling blade of a gas turbine provided with a serpentine flow path that is partitioned into a U shape by a partition wall and through which a cooling medium flows. There are, provided over at least the the U-turn portion downstream of the inner wall which is partitioned by the partition walls to the flow of the cooling medium of the upper Symbol serpentine flow path inclined to decrease in the partition wall side full width of the serpentine flow path alternating with the first turbulators, the rather short than the first turbulators, comprising a second turbulators about half of the length of the overall width of the serpentine flow path and said first turbulators and second turbulators Are provided in the same inclination direction, and the second turbulator is provided in contact with the partition wall.
[0008]
As described above, in the cooling blade of the gas turbine according to the present invention, the serpentine flow path has a slope on the inner peripheral partition wall side downstream of the U-turn portion and is disposed so as to cover the entire width of the serpentine flow path. A serpentine flow path that is particularly prone to peeling, including one turbulator and a second turbulator that is inclined and in contact with the partition wall and is shorter than the first turbulator in the same manner as the first turbulator The first turbulator inclined to the inner peripheral side downstream of the U-turn portion is disposed over the entire width of the serpentine flow path, and the cooling medium flow makes a U-turn on the partition wall side (inner peripheral side) of the serpentine flow path. As a result, the separation of the flow of the cooling medium on the inner peripheral side of the partition wall is less likely to occur.
[0009]
Also, the serpentine flow after the flow of the cooling medium makes a U-turn by disposing the short second turbulator in the inner peripheral side and in contact with the partition wall at the downstream side of the U-turn part of the serpentine flow path that is particularly prone to peeling. It is guided to the partition wall side (inner peripheral side) of the passage, and the separation of the cooling medium flow on the inner peripheral side of the partition wall is more difficult to occur without increasing the resistance to the cooling medium flow in the serpentine flow path.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory diagram of a cooling blade of a gas turbine according to an embodiment of the present invention. In the figure, the cooling blade of the gas turbine according to the present embodiment is a cooling blade of a gas turbine used for thermal power generation and the like, and the arrangement direction and the structure of the turbulator when the turbulator is arranged in the serpentine channel are improved. is doing. In the figure, reference numeral 1 is a serpentine flow path, 2 is a partition wall, 3 is a turbulator over the entire width of the serpentine flow path, 4 is a short turbulator (guide protrusion) about half the serpentine flow path width, and 5 is a blade of a gas turbine. .
[0011]
As shown in the figure, the cooling blade of this gas turbine employs a serpentine system, and the cooling medium air or steam is transferred from the inlet of the cooling medium at the blade root as in the cooling blade of the conventional gas turbine. After entering the root and flowing through the serpentine flow path 1 of the blade 5 in the direction indicated by the arrow to cool the leading edge of the blade 5, the center of the blade 5 is reversed (returned) along the partition wall 2 at the top of the blade. Cool down. Then, it reverses along the partition wall 2 again at the blade base, cools the trailing edge of the blade 5 through the final serpentine flow path 1, and then flows out from the outlet of the cooling medium at the blade root.
[0012]
Further, as shown in the figure, in the cooling blade of this gas turbine, a return portion is formed in the serpentine flow path 1 by a partition wall 2 and is inclined so as to be lowered to the partition wall 2 side (inner peripheral side). A turbulator 3 is disposed over the entire width of the serpentine channel 1. Then, between the turbulator 3 and the turbulator 3 over the entire width of the serpentine channel 1, a short turbulator 4 that is about half the width of the serpentine channel 1 is similarly lowered to the partition wall 2 side (inner peripheral side). Inclined and disposed in contact with the partition wall 2.
[0013]
In this way, by providing a plurality of rows of turbulators 3 in the serpentine serpentine flow path 1, vortices are generated downstream and upstream of the turbulators 3, and the flow of the cooling medium air or vapor is induced by the vortices in a laminar flow. The turbulent flow is forcibly changed to a turbulent flow, and a secondary flow is generated in a direction crossing the cooling passage to improve the heat transfer coefficient in the serpentine flow path 1 and increase the cooling effect. Further, in the cooling blade of this gas turbine, the turbulator 3 is inclined at the return portion of the serpentine flow path 1 so as to descend to the inner peripheral side of the serpentine flow path 1 and arranged so as to cover the entire width of the serpentine flow path 1. A short turbulator 4 having an inclination so as to be lowered to the inner peripheral side between the turbulator 3 and the turbulator 3 and being about half the width of the serpentine flow path 1 is arranged in contact with the partition wall 2. In the conventional serpentine flow path, the flow of the cooling medium is guided to the outer peripheral side at the return portion of the serpentine flow path 1, so that separation occurs on the inner peripheral side in the vicinity of the partition wall 2, but the heat transfer performance is significantly impaired. In the cooling blade of this gas turbine, the turbulators 3 inclined so as to descend toward the inner peripheral side are arranged over the entire width of the serpentine channel 1. As a result, the flow of the cooling medium is guided to the partition wall 2 by the turbulator 3, and the separation of the cooling medium flow on the inner peripheral side of the partition wall 2 is less likely to occur, improving the heat transfer performance and causing the separation. Heat transfer performance of the partition wall 2 after easy return is improved. Further, between the turbulators 3 and the turbulators 3 extending over the entire width of the serpentine channel 1, the short turbulators 4 that are similarly inclined so as to descend toward the inner peripheral side and do not reach the entire width of the serpentine channel 1 are arranged. The short turbulator 4 guides the flow of the cooling medium to the partition wall 2 side, and the separation of the flow of the cooling medium on the inner peripheral side of the partition wall 2 is further increased without increasing the resistance to the flow of the cooling medium in the serpentine flow path 1. Further, the heat transfer performance is improved, and the heat transfer performance of the parted partition wall 2 after the return that is likely to be peeled off is improved.
[0014]
In the cooling blade of the conventional gas turbine, a plurality of rows of turbulators are provided horizontally or inclined to the outer peripheral side with respect to the serpentine flow path, and by providing a turbulator in the serpentine flow path in this way, Resistance to the cooling medium flowing through the serpentine channel is increased. Further, since the flow of the cooling medium is separated after the flow of the cooling medium is reversed at the blade top or the blade mount, the cooling performance is locally reduced, so that a large difference is generated in the cooling effect. Such a phenomenon has already been reported in various literatures.
[0015]
On the other hand, in the cooling rotor blade of the present gas turbine, in order to solve such a problem, the return portion of the serpentine flow path 1 has an inclination that descends to the inner peripheral side so as to cover the entire width of the serpentine flow path 1. The turbulators 3 are arranged, and a short turbulator 4 having a slope that falls to the inner peripheral side between the turbulators 3 and the turbulator 3 and about half the width of the serpentine channel 1 is arranged in contact with the partition wall 2. ing.
[0016]
In this manner, the turbulator 3 is arranged so as to extend over the entire width of the serpentine channel 1 at the return portion of the serpentine channel 1 that is particularly likely to be peeled, so that it is inverted along the partition wall 2. The flow of the cooling medium is guided to the partition wall 2 side (inner peripheral side) of the serpentine flow path 1 so that separation is unlikely to occur downstream of the U-turn part of the serpentine flow path, and uneven heat transfer performance is eliminated. Performance is improved.
[0017]
Further, the return wall of the serpentine channel 1 that is particularly likely to be peeled off has a short turbulator 4 that is about half of the entire width of the serpentine channel 1 arranged in contact with the partition wall 2 with an inclination that is lowered toward the inner periphery. 2 is guided to the partition wall 2 side (inner peripheral side) of the serpentine flow path 1 without increasing the resistance to the flow of the cooling medium in the serpentine flow path 1. Separation is less likely to occur downstream of the U-turn portion, and uneven heat transfer performance downstream of the U-turn portion due to the partition wall 2 of the serpentine channel 1 is eliminated, thereby improving heat transfer performance.
[0018]
As a result, non-uniformity in the heat transfer performance in the return portion, which is particularly prone to peeling, is eliminated, and a more uniform heat transfer performance is obtained in the entire region of the serpentine flow path 1, and the cooling performance in the blades 5 of the gas turbine is improved. To do.
[0019]
【The invention's effect】
The cooling blade of the gas turbine according to the present invention is configured as described above, and the separation of the cooling medium flow on the inner peripheral side of the partition wall is further increased without increasing the resistance to the cooling medium flow in the serpentine flow path. Since the heat transfer performance in the serpentine flow path is not uniform, the heat transfer performance is uniform in the entire region of the serpentine flow path, thereby improving the cooling performance of the cooling blades of the gas turbine.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a turbulator in a cooling rotor blade of a gas turbine according to an embodiment of the present invention.
FIG. 2 is a perspective view of a cooling blade of a conventional gas turbine.
3A is a cross-sectional view of the turbulator, FIG. 3B is an operation explanatory view thereof, and FIG. 3C is a schematic view thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Serpentine flow path 2 Partition wall 3 Turbulator covering the full width of a serpentine flow path 4 Short turbulator (guide protrusion)
5 wings

Claims (1)

翼内部に仕切壁によりU字状に仕切られて冷却媒体が流れるサーペンタイン流路を備えたガスタービンの冷却翼において、上記サーペンタイン流路の少なくとも上記仕切壁により仕切られたUターン部下流の内壁に冷却媒体の流れに対して上記仕切壁側に下がるように傾斜し上記サーペンタイン流路の全幅にわたって設けられた第一のタービュレータと、該第一のタービュレータよりも短く、上記サーペンタイン流路の全幅の半分程度の長さの第二のタービュレータとを具え、上記第一のタービュレータと第二のタービュレータとを交互に同一傾斜方向に設けると共に、上記第二のタービュレータを上記仕切壁に当接して設けたことを特徴とするガスタービンの冷却翼。In a cooling blade of a gas turbine provided with a serpentine flow path that is partitioned in a U-shape by a partition wall inside the blade and through which a cooling medium flows, on the inner wall downstream of the U-turn portion partitioned by at least the partition wall of the serpentine flow path A first turbulator inclined over the entire width of the serpentine flow path so as to be lowered toward the partition wall with respect to the flow of the cooling medium, and shorter than the first turbulator and half the full width of the serpentine flow path comprising a degree of length of the second turbulators, is provided on the first turbulators same inclination direction alternately second and turbulators, may the second turbulators digits set in contact with the partition wall A gas turbine cooling blade.
JP13845597A 1997-05-28 1997-05-28 Gas turbine cooling blade Expired - Lifetime JP3790328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13845597A JP3790328B2 (en) 1997-05-28 1997-05-28 Gas turbine cooling blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13845597A JP3790328B2 (en) 1997-05-28 1997-05-28 Gas turbine cooling blade

Publications (2)

Publication Number Publication Date
JPH10325301A JPH10325301A (en) 1998-12-08
JP3790328B2 true JP3790328B2 (en) 2006-06-28

Family

ID=15222423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13845597A Expired - Lifetime JP3790328B2 (en) 1997-05-28 1997-05-28 Gas turbine cooling blade

Country Status (1)

Country Link
JP (1) JP3790328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331098B1 (en) * 1999-12-18 2001-12-18 General Electric Company Coriolis turbulator blade
CN101779001B (en) 2007-08-30 2014-09-24 三菱重工业株式会社 Blade cooling structure of gas turbine
KR101405014B1 (en) * 2012-07-25 2014-06-10 연세대학교 산학협력단 Cooling pipe

Also Published As

Publication number Publication date
JPH10325301A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
JP4063937B2 (en) Turbulence promoting structure of cooling passage of blade in gas turbine engine
JP5675168B2 (en) Gas turbine blades with improved cooling capacity
JP3053174B2 (en) Wing for use in turbomachine and method of manufacturing the same
US8920111B2 (en) Airfoil incorporating tapered cooling structures defining cooling passageways
KR100653816B1 (en) Hollow airfoil for a gas turbine engine
US7131818B2 (en) Airfoil with three-pass serpentine cooling channel and microcircuit
US7753650B1 (en) Thin turbine rotor blade with sinusoidal flow cooling channels
EP1961917B1 (en) Local indented trailing edge heat transfer devices
EP1561902B1 (en) Turbine blade comprising turbulation promotion devices
US7637720B1 (en) Turbulator for a turbine airfoil cooling passage
JP5080688B2 (en) Turbine blades or vanes for gas turbines and molded cores for the manufacture of the interior
US8043059B1 (en) Turbine blade with multi-vortex tip cooling and sealing
US7762775B1 (en) Turbine airfoil with cooled thin trailing edge
JP2007263112A (en) Cooling passage and turbine engine component
JPH0370084B2 (en)
JP2004308658A (en) Method for cooling aerofoil and its device
JPS6147286B2 (en)
JP4017708B2 (en) Cooled blade
US7967568B2 (en) Gas turbine component with reduced cooling air requirement
JP3040590B2 (en) Gas turbine blades
JP3790328B2 (en) Gas turbine cooling blade
CN215633158U (en) Turbine cooling blade of gas turbine
JPH08338202A (en) Rotor blade of gas turbine
JPH11173105A (en) Moving blade of gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term