JPH0251203A - Production of permanent magnet powder - Google Patents

Production of permanent magnet powder

Info

Publication number
JPH0251203A
JPH0251203A JP63202299A JP20229988A JPH0251203A JP H0251203 A JPH0251203 A JP H0251203A JP 63202299 A JP63202299 A JP 63202299A JP 20229988 A JP20229988 A JP 20229988A JP H0251203 A JPH0251203 A JP H0251203A
Authority
JP
Japan
Prior art keywords
powder
magnetic
alloy melting
molten metal
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63202299A
Other languages
Japanese (ja)
Inventor
Masami Yamamoto
正美 山本
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63202299A priority Critical patent/JPH0251203A/en
Publication of JPH0251203A publication Critical patent/JPH0251203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the scattering of a magnetic characteristic due to the differences of grain diameter of the powder and produce a magnetic powder superior in uniformity by allowing a purverized material of alloy melting by inactive gas jet to collide to a rotating rapid quench body. CONSTITUTION:Permanent magnetic alloy melting M having a specific component composition is produced in a high frequency fusion furnace 2 and passed out from an alloy melting nozzle 4 of the furnace bottom by the operation of a stopper 3. Slender alloy melting flow which flows down from the alloy melting nozzle 4 is pulverized and quenched by the dividing action of an inactive gas when it passes in an inactive gas jet nozzle 5 and the pulverized material collides with a conical cooling surface in which a lower rotating cooling body 6 is rotated fast. The powder collected in a lower powder collecting chamber 7 to collide with the rotating cooling body 6 has a good magnetic characteristic, its grain diameter is approximately 0.5-300mum, and the surface of grains has a clean surface state without oxidation, corrosion and other contamination.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改良された磁気特性を有する永久磁石粉末の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing permanent magnet powder with improved magnetic properties.

〔従来の技術〕[Conventional technology]

永久磁石粉末は、樹脂磁石、焼結磁石、磁気記録媒体の
磁性合金層等の原料として、近時その需要はますます増
大しつつある。
Demand for permanent magnet powder has been increasing recently as a raw material for resin magnets, sintered magnets, magnetic alloy layers of magnetic recording media, and the like.

永久磁石粉末の製造方法としては、(i)その合金の鋳
造物(インゴット)を機械的に粉砕し、その粉砕物を圧
粉成形して焼結したうえ、機械粉砕により粉末とする方
法、または(ii)合金溶湯を、単ロール法・双ロール
法、もしくは遠心象、冷性等の液体急冷法により超急冷
して、リボン状ないしはフレーク状の合金薄帯となし、
その合金薄帯を機械的Gど粉砕して粉末とする方法等が
行われている。
Permanent magnet powder can be produced by (i) mechanically pulverizing a casting (ingot) of the alloy, compacting and sintering the pulverized product, and then mechanically pulverizing it into powder; (ii) ultra-quenching the molten alloy by a single-roll method, a twin-roll method, or a liquid quenching method such as centrifugation or cooling to form a ribbon-like or flake-like alloy ribbon;
Methods such as mechanically pulverizing the alloy ribbon into powder using a G-force are used.

また、これらの方法に代わる改良された永久磁石粉末の
製造法として、本願出願人は、その合金溶湯流に不活性
ガス(Ar、He、N2等)の高圧噴射流を吹付けて象
、冷微粉末化する方法を提案している(特願昭62−2
18540号)。
In addition, as an improved method for producing permanent magnet powder in place of these methods, the applicant has developed a method of cooling the molten alloy by spraying a high-pressure jet stream of an inert gas (Ar, He, N2, etc.) onto the molten alloy stream. He proposed a method of pulverization (Patent Application 1986-2).
No. 18540).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

インゴット粉砕物の圧粉焼結体を再粉砕して磁粉末を得
る方法では、合金の溶製から粉末を得るまでに多数の工
程を必要とし、製造コストが極めて高(つく。しかもそ
の粉砕工程における粉末の表面酸化、腐食、その他汚染
による品質低下を避は得ない。また、この方法では、希
土類−遷移金属−ボロン系永久磁石粉末を製造する場合
、粉砕にともなって粉末の保磁力が急激に低下するとい
う問題がある。
The method of obtaining magnetic powder by re-pulverizing the compacted powder sintered body of the crushed ingot requires many steps from melting the alloy to obtaining the powder, and the manufacturing cost is extremely high. It is unavoidable that the quality of the powder deteriorates due to surface oxidation, corrosion, and other contamination.In addition, when producing rare earth-transition metal-boron permanent magnet powder with this method, the coercive force of the powder rapidly decreases as it is pulverized. There is a problem that the value decreases.

他方、合金溶湯を液体急冷処理して得たリボン状ないし
フレーク状の合金薄帯を粉末化する方法は、永久磁石粉
末が希土類元素を含む合金組成を有するものである場合
にも、比較的高い保磁力を有する粉末を得ることができ
るが、液体急冷工程と、機械粉砕工程の2段階の工程を
必要とし、またその機械粉砕に伴う粒子表面の汚染を避
は得ない。
On the other hand, the method of pulverizing a ribbon-like or flake-like alloy ribbon obtained by liquid quenching a molten alloy is relatively expensive, even when the permanent magnet powder has an alloy composition containing rare earth elements. Although it is possible to obtain a powder having coercive force, it requires two steps: a liquid quenching step and a mechanical pulverization step, and contamination of the particle surface due to the mechanical pulverization is unavoidable.

これに対し、永久磁石合金溶湯流に不活性ガス噴射流を
吹付けて溶湯を分断・粉末化する方法は、機械粉砕工程
を必要とせず、溶湯流に対する不活性ガスの吹付けとい
う一工程を以て良好な磁気特性を有する磁粉末が得られ
るという特徴を有している。しかし、その合金溶湯に対
する不活性ガス流の吹付けには、溶湯の粉化急冷効果を
十分ならしめるために50kg/c111以上の高圧力
噴射流を必要とし、またその噴射流による急冷微粉末化
にはムラがあり、微細粒子は象、冷効果による高い磁気
特性が付与される反面、粗大粒子は急冷効果が不十分な
ため、磁気特性が相対的に低く、結局得られる磁粉末は
、粒径による磁気特性のバラツキが不可避的に付随する
とう問題がある。
On the other hand, the method of dividing and pulverizing the molten metal by spraying an inert gas jet onto the molten permanent magnet alloy flow does not require a mechanical pulverization process, but involves a single step of spraying inert gas onto the molten metal flow. It has the characteristic that magnetic powder with good magnetic properties can be obtained. However, spraying the inert gas flow onto the molten alloy requires a high-pressure jet flow of 50 kg/c111 or more in order to achieve a sufficient pulverization and quenching effect of the molten metal, and the jet flow also rapidly cools and pulverizes the molten metal. Fine particles are uneven, and while fine particles are given high magnetic properties due to the cooling effect, coarse particles have relatively low magnetic properties due to insufficient quenching effect, and the resulting magnetic powder is There is a problem in that variations in magnetic properties depending on the diameter are inevitable.

本発明は、上記に鑑み、不活性ガス噴射流による磁粉末
の製造法における前記特徴を溶かしつつ、粉末の粒径の
差異による磁気特性のバラツキが少な(、均質性にすぐ
れた磁粉末を製造する方法を提供するものである。
In view of the above, the present invention solves the above-mentioned characteristics of the method for producing magnetic powder using an inert gas jet stream, and produces magnetic powder with excellent homogeneity, with little variation in magnetic properties due to differences in powder particle size. This provides a method to do so.

[課題を解決するための手段および作用]本発明の永久
磁石粉末の製造方法は、 所定の成分組成に調製された合金溶湯をノズルから流出
させながら、その溶湯流を不活性ガス噴射流の吹付けに
より分断粉化するとともに、その粉化物を回転冷却体に
衝突させることを特徴としている。
[Means and effects for solving the problem] The method for producing permanent magnet powder of the present invention comprises flowing out a molten alloy prepared to have a predetermined composition from a nozzle, and blowing the molten metal flow with an inert gas jet stream. It is characterized by dividing and pulverizing it by attaching it and colliding the pulverized product against a rotating cooling body.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明によれば、まず高周波溶解炉等により、所定の成
分組成を有する永久磁石合金溶湯を溶製し、これをノズ
ルから流出させながら、その溶湯流に不活性ガス(Ar
、He、Nzガス等)の噴射流を吹付ける。その不活性
ガスの吹付けにより溶湯流を分断粉化し、つづいてその
4う)化物を回転冷却体に衝突させる。
According to the present invention, a permanent magnet alloy molten metal having a predetermined composition is first melted in a high-frequency melting furnace or the like, and while flowing out from a nozzle, an inert gas (Ar
, He, Nz gas, etc.). The molten metal flow is divided and pulverized by spraying the inert gas, and then the 4) compound is made to collide with a rotating cooling body.

不活性ガスの噴射流により分断された溶湯粉化物は、微
小粒径から粗大粒径に亘る粒度分布(例えば、数分の1
μm〜数百μm)を有する粒子の混合物である。その混
合物中の微細粒子(おおむね20μm以下)は高い保磁
力(i ?(c )を有するが、粒径の大きい粒子はど
、その保磁力は低い。
The molten metal powder separated by the inert gas jet has a particle size distribution ranging from minute to coarse (for example, a fraction of
micrometers to several hundred micrometers). Fine particles (approximately 20 μm or less) in the mixture have a high coercive force (i?(c)), but larger particles have a lower coercive force.

これは、比表面積の大きい微細粒子は急速に冷却される
のに対し、粒径の大きい粒子の冷却速度は低く、粒径の
ちがいによる各粒子の受ける急冷効果が異なるためであ
る。本発明において、不活性ガス噴射流による溶湯の分
断粉化につづいて、その粉化物を回転冷却体に衝突させ
ることとしたのは、このような溶湯粉化物の粒径の差異
による急冷効果のバラツキを解消するためである。
This is because fine particles with a large specific surface area are cooled rapidly, whereas particles with a large particle size have a slow cooling rate, and the quenching effect that each particle receives differs depending on the particle size. In the present invention, following the fragmentation of the molten metal by an inert gas jet stream, the pulverized material is caused to collide with a rotary cooling body in order to improve the rapid cooling effect due to the difference in particle size of the molten metal and pulverized material. This is to eliminate variations.

すなわち、不活性ガス噴射流の分断作用により生じた溶
湯粉化物を回転冷却体に衝突させると、微細粒子は、回
転冷却体に衝突するまでの冷却固化度が高いので、回転
冷却体表面に衝突すると同時にはじき飛ばされ、他方粒
径が大きく冷却固化度の低い粗大粒子は微細粒子と異な
って回転冷却体表面への衝撃時に若干の偏平化を伴って
冷却体表面との接触関係を保ち伝導伝熱による冷却作用
をうける。粒径の大きい粒子程、回転冷却体によりうけ
る急冷効果は大である。このように、粒径の大きい粒子
が選択的に回転冷却体との接触による急冷効果を補償さ
れ、結果として、溶湯粉化物は、ブロードな粒径分布に
拘らず、その全粒径に亘って均一な磁気特性を有する磁
粉末とし゛て回収されるわけである。
In other words, when the molten metal powder produced by the splitting action of the inert gas jet collides with the rotary cooling body, the fine particles have a high degree of cooling and solidification before colliding with the rotary cooling body, so they collide with the surface of the rotary cooling body. On the other hand, coarse particles with a large particle size and a low degree of solidification on cooling differ from fine particles when they impact the rotating cooling body surface, flattening slightly and maintaining contact with the cooling body surface, allowing conductive heat transfer. receives a cooling effect from The larger the particle size, the greater the rapid cooling effect provided by the rotary cooling body. In this way, particles with a large particle size are selectively compensated for the quenching effect due to contact with the rotary cooling body, and as a result, the molten metal powder has a large particle size distribution over its entire particle size, regardless of the broad particle size distribution. It is recovered as magnetic powder with uniform magnetic properties.

合金溶湯流に対する不活性ガス噴射流の吹付は条件は、
それ程厳密さを必要とせず、例えば吹付は圧力約35〜
50kg/cIIN、溶湯流に対する吹付は流量の比(
不活性ガス流/?8湯流、重量比)約5〜15の吹付け
により、永久磁石等の原料として供し得る数分の1μm
ないし数百μmの粒径に分断粉化することができる。む
ろん、それ以上の高圧力噴射・高流量比としてさしつか
えないが、前記のように分断される溶湯粒径が比較的粗
大であっても、回転冷却体により急冷効果が補償される
ので、あえてそれ以上の高圧力・高流量比を設定する必
要はない。また、その吹付は圧力・流量比をあまり高く
すると、得られる粉末体の粒子内に非晶質相が多量に生
成することに伴って却って磁気特性の低下傾向をみるの
で、吹付は圧力は約80kg/c++1を、吹付は流量
比は約20を上限とするのが適当である。
The conditions for spraying the inert gas jet stream onto the molten alloy flow are as follows:
It does not require much precision; for example, spraying requires a pressure of about 35~
50kg/cIIN, spraying to molten metal flow is the ratio of flow rate (
Inert gas flow/? By spraying at a rate of about 5 to 15 (8 molten liquid flow, weight ratio), it is possible to reduce the size to a fraction of a μm, which can be used as raw material for permanent magnets.
It can be divided and powdered into particles with a particle size of several hundred μm. Of course, higher pressure injection and higher flow rate ratios can be used, but even if the diameter of the molten metal particles to be separated is relatively coarse as described above, the rapid cooling effect is compensated by the rotating cooling body, so There is no need to set a higher pressure/high flow rate ratio. In addition, if the pressure/flow rate ratio is too high, a large amount of amorphous phase will be generated in the particles of the resulting powder, and the magnetic properties will tend to deteriorate. It is appropriate that the upper limit of the flow rate ratio for spraying is 80 kg/c++1 and about 20.

分断された溶湯の粒化物を衝突させる回転冷却体は、銅
、その他の金属からなる冷却面を有する平円盤、円錐体
、または円筒体(ロール)等である。回転冷却体の冷却
面に衝突する粉化物の急冷効果は、その回転速度を高め
る程、増加するが、冷却面の線速度で、約500〜50
00m/分程度であってよい。
The rotating cooling body that collides the divided granules of the molten metal is a flat disk, cone, or cylinder (roll) having a cooling surface made of copper or other metal. The quenching effect of the powder that collides with the cooling surface of the rotary cooling body increases as the rotation speed increases;
The speed may be approximately 00 m/min.

次に本発明方法の実施態様例を第1図により説明すると
、(2)は貰周波溶解炉、(4)はその炉底に取付けら
れている溶湯ノズル、(5)は溶湯ノズル(4)の直下
に配置された不活性ガス噴射ノズル、(6)はその下方
に配置された回転冷却体であり、これらはチャンバ(1
)内に結膜されている。(7)はチャンバ(1)の下部
に設けられた磁粉未回収室である。チャンバ(1)およ
び磁粉未回収室(7)は不活性ガスで置換され、合金の
溶製から磁粉末の回収に到る一連の処理工程を不活性雰
囲気で行うようになっている。
Next, an embodiment of the method of the present invention will be explained with reference to FIG. 1. (2) is a high frequency melting furnace, (4) is a molten metal nozzle attached to the bottom of the furnace, and (5) is a molten metal nozzle (4). The inert gas injection nozzle (6) is placed directly under the chamber (1), and the rotary cooling body (6) is placed below it.
) is conjunctival within. (7) is a magnetic particle uncollected chamber provided at the lower part of the chamber (1). The chamber (1) and the unrecovered magnetic powder chamber (7) are replaced with an inert gas, so that a series of processing steps from alloy melting to magnetic powder recovery are performed in an inert atmosphere.

上記溶湯ノズル(4)のノズル孔径は、約2〜7帥であ
る。その直下の不活性ガス噴射ノズル(5)は、溶湯ノ
ズル(4)から流下する合金溶湯流のまわりを囲むよう
に円形配置された多孔ノズールであり、溶湯流に対して
約30〜50kg/cfflの吹付は圧力を以て不活性
ガスを噴射する。その溶湯流に対する吹付は流量比はお
おむね5〜15である。回転冷却体(6)は、銅製円錐
体であり、その垂直回転軸(61)により高速回転する
。円錐体の傾斜面は溶湯の粉化飛散物を衝突させる十分
な面積を有している。その回転速度は約500Orpm
である。
The nozzle hole diameter of the molten metal nozzle (4) is approximately 2 to 7 mm. The inert gas injection nozzle (5) directly below it is a multi-hole nozzle arranged in a circular manner so as to surround the molten alloy flow flowing down from the molten metal nozzle (4), and the inert gas injection nozzle (5) is approximately 30 to 50 kg/cffl with respect to the molten metal flow. Spraying injects inert gas under pressure. The flow rate ratio of spraying to the molten metal flow is approximately 5 to 15. The rotary cooling body (6) is a copper cone and rotates at high speed with its vertical rotation axis (61). The inclined surface of the cone has a sufficient area for collision of powdered molten metal particles. Its rotation speed is about 500Orpm
It is.

上記装置において、高周波溶解炉(2)内で所定の成分
組成を有する永久磁石合金溶湯(M)を溶製し、ストッ
パ(3)の操作により炉底の溶湯ノズノ喧4)から流出
させる。溶湯ノズル(4)からの溶湯の流出は自然落下
流であるが、必要に応じ(例えば、細孔ノズルからの溶
湯流出をスムースに行わせるために)、炉内溶湯面に適
宜の加圧力を加えて流出させてよい。
In the above-mentioned apparatus, a permanent magnet alloy molten metal (M) having a predetermined composition is melted in a high-frequency melting furnace (2), and is caused to flow out from a molten metal nozzle 4) at the bottom of the furnace by operating a stopper (3). The outflow of the molten metal from the molten metal nozzle (4) is a natural falling flow, but if necessary (for example, to make the molten metal flow out smoothly from the fine hole nozzle), an appropriate pressure may be applied to the surface of the molten metal in the furnace. In addition, it may be allowed to flow out.

溶湯ノズル(4)から流下する細い溶湯流は、不活性ガ
ス噴射ノズル(5)を通過する際の不活性ガスの噴射流
の分断作用により粉化・急冷され、その粉化物はつづい
て下方の回転冷却体(6)の高速回転している円錐形状
冷却面に衝突する。その粉化物のうち、粒径が微細で粉
化時の急冷による固化度の高い粒子は回転冷却面にはじ
き飛ばされ、粒径が大きく固化度の低い粗大粒子は、冷
却面への衝突時に若干の偏平化を伴って冷却面との接触
関係を保つことにより瞬時に急冷される。回転冷却体(
6)に衝突して下方の粉末回収室(7)に回収される粉
末は良好な磁気特性を有し、その粒径は、おおむね0.
5〜300μmであり、粒表面は酸化・腐食、その他の
汚染のない清浄な表面状態を有している。
The thin molten metal stream flowing down from the molten metal nozzle (4) is powdered and rapidly cooled by the splitting action of the inert gas jet flow when passing through the inert gas injection nozzle (5), and the powdered material continues to flow downward. It collides with the conical cooling surface of the rotary cooling body (6) which is rotating at high speed. Among the powdered products, particles with fine particle sizes and a high degree of solidification due to rapid cooling during powdering are repelled by the rotating cooling surface, while coarse particles with large particle sizes and a low degree of solidification are slightly crushed when they collide with the cooling surface. It is rapidly cooled instantly by flattening and maintaining contact with the cooling surface. Rotating cooling body (
The powder collided with 6) and collected into the powder collection chamber (7) below has good magnetic properties, and its particle size is approximately 0.
The particle size is 5 to 300 μm, and the grain surface has a clean surface condition free from oxidation, corrosion, and other contamination.

なお、本発明方法により得られる永久磁石粉末を原料と
する樹脂磁石、焼結磁石、磁気記録媒体等の製造は常法
に従って行えばよい。例えば、樹脂磁石を製造する場合
には、まずその磁粉末と樹脂との結着性改善のためのカ
ップリング剤による表面処理を必要に応じて施したのち
、これを樹脂(例えば、ナイロン6樹脂、アクリル樹脂
等)と適当な割合(例えば、重量比で85〜95 : 
15〜5)に混合し、滑剤、安定化剤等の添加剤を加え
て混練したうえ、適宜の加圧成形法(射出成形、押−出
成形、プレス成形等)に付すことにより、磁気特性のす
ぐれた樹脂磁石が得られる。
Incidentally, resin magnets, sintered magnets, magnetic recording media, etc. using the permanent magnet powder obtained by the method of the present invention as a raw material may be manufactured according to conventional methods. For example, when manufacturing a resin magnet, first surface treatment is performed with a coupling agent to improve the binding between the magnetic powder and the resin, and then the magnet is coated with a resin (for example, nylon 6 resin). , acrylic resin, etc.) and an appropriate ratio (for example, 85 to 95 by weight ratio:
15 to 5), add additives such as lubricants and stabilizers, knead, and then apply an appropriate pressure molding method (injection molding, extrusion molding, press molding, etc.) to improve magnetic properties. A resin magnet with excellent properties can be obtained.

〔実施例〕〔Example〕

第1図の粉末製造装置を用いて永久磁石粉末を製造する
Permanent magnet powder is manufactured using the powder manufacturing apparatus shown in FIG.

実施■土 (1)磁粉末の製造条件 (1)合金溶湯組成: Nd+aFetsBe (at
%)(2)溶湯ノズル孔径:4IIlffl(3)不活
性ガス噴射流吹付は条件 不活性ガス二Ar、吹付は圧カニ40kg/cIa、吹
付は流11(Arガス流/溶湯流、重量比)二8(4)
回転冷却体:銅製円錐体(底面直径30cm)、回転速
度5000rpm (粉化物の大部分が衝突する部分の
線速度は約1500〜4500m /分)。
Implementation ■ Soil (1) Manufacturing conditions of magnetic powder (1) Alloy molten metal composition: Nd+aFetsBe (at
%) (2) Molten metal nozzle hole diameter: 4IIlffl (3) Inert gas jet flow Conditions for spraying: Inert gas 2 Ar, pressure crab 40 kg/cIa, spraying flow 11 (Ar gas flow/molten metal flow, weight ratio) 28(4)
Rotary cooling body: copper cone (bottom diameter 30 cm), rotation speed 5000 rpm (linear velocity of the part where most of the powder collides is about 1500-4500 m / min).

(II)磁粉末の特性 得られた磁粉末は、平均粒径:40μmの粒状ないし片
状粉末である。その末分級の粉末の振動試料型測定法(
V、S、M、法)により測定される固有保磁力(jHc
)は11KOeである。
(II) Characteristics of Magnetic Powder The obtained magnetic powder is a granular or flaky powder with an average particle size of 40 μm. Vibrating sample measurement method for powder in the final classification (
Intrinsic coercive force (jHc) measured by V, S, M, method)
) is 11KOe.

更にその磁粉末を分級し、それぞれの固有保磁力をV、
S、M、法により測定し、第2図中(a)に示す結果を
得た。
Furthermore, the magnetic powder is classified, and the specific coercive force of each is determined as V,
It was measured by the S, M, method, and the results shown in (a) in FIG. 2 were obtained.

また、比較例として、溶湯粉化物の回転冷却体への衝突
処理を省略し、代わりに不活性ガス噴射流の吹付は圧力
を80kg/cfflに高めて溶湯の粉化急冷効果を強
め、その他の条件は上記実施例と同一に設定して同一組
成の磁粉末を製造した。その磁粉末について、上記と同
様に粒度別に固有保磁力を測定し、第1図中、(b)に
示す結果を得た。
In addition, as a comparative example, the collision treatment of the molten metal powder against the rotary cooling body was omitted, and instead, the inert gas jet stream was sprayed to increase the pressure to 80 kg/cffl to strengthen the pulverization and quenching effect of the molten metal, and other The conditions were set to be the same as in the above examples to produce magnetic powders with the same composition. Regarding the magnetic powder, the intrinsic coercive force was measured for each particle size in the same manner as above, and the results shown in (b) in FIG. 1 were obtained.

第1図の(a)と(b)の比較から明らかなように、不
活性ガス噴射流による溶湯の粉化急冷処理のみで得られ
た磁粉末(b)は、粒径による保磁力のバラツキが太き
(、その粉末の大部分を占める約40(tm以上の粒子
の保磁力は2〜3KOeの低いレベルにとどまっている
のに対し、不活性ガス噴射流による粉化急冷処理と回転
冷却体による急冷処理が施された発明例の磁粉末(a)
は、全粒径に亘って9KOeをこえる高い保磁力を有し
、磁気特性の均一性にすぐれていることがわかる。
As is clear from the comparison between (a) and (b) in Figure 1, the magnetic powder (b) obtained only by pulverization and quenching of the molten metal using an inert gas jet has a variation in coercive force depending on the particle size. The coercive force of particles larger than approximately 40 (tm), which account for most of the powder, remains at a low level of 2 to 3 KOe, whereas the powder quenching treatment using an inert gas jet flow and rotational cooling Magnetic powder (a) of the invention example subjected to quenching treatment by a body
It can be seen that the material has a high coercive force exceeding 9 KOe over the entire grain size, and has excellent uniformity of magnetic properties.

実施t2 (1)磁粉末の製造 各種組成の合金溶湯について、不活性ガス噴射の吹付は
圧力および回転冷却体の回転速度を変化させる点を除い
て実施例1と同じ条件により磁粉末(1)〜(4)を製
造した。
Implementation t2 (1) Production of magnetic powder For molten alloys of various compositions, magnetic powder (1) was prepared under the same conditions as in Example 1, except that the inert gas injection was performed by changing the pressure and the rotation speed of the rotary cooling body. -(4) were manufactured.

(It)磁粉末の特性 各供試磁性粉末についてV、S、M、法による保磁力を
測定し第1表に示す結果を得た。いずれも永久磁石粉末
として望まれる高い保磁力を有している。なお、磁粉末
(11)は、比較例として、従来の希土類系磁粉末の代
表的な製造法である液体急冷法による合金薄帯をアトラ
イタにより機械粉砕して得た磁粉末(合金組成は、磁粉
末(1)と同一)である。本発明例の磁粉末(1)〜(
4)は、これと同等ないしそれ以上の高い保磁力を有し
ていることがわかる。
(It) Characteristics of Magnetic Powder The coercive force of each sample magnetic powder was measured using the V, S, and M methods, and the results shown in Table 1 were obtained. Both have high coercive force, which is desired as a permanent magnet powder. As a comparative example, magnetic powder (11) was obtained by mechanically pulverizing an alloy ribbon using an attritor using a liquid quenching method, which is a typical manufacturing method for conventional rare earth magnetic powder (alloy composition: (same as magnetic powder (1)). Magnetic powders (1) to (1) of examples of the present invention
It can be seen that 4) has a coercive force equivalent to or higher than this.

(参考例:樹脂磁石の製造) 実施例2で製造したN(lz、FetsBe磁粉末(1
)および(11)を200メツシユアンダーに篩い分け
し、カップリング剤で表面処理したのち、樹脂粉末と混
合し、これに滑剤、安定化剤等を加え、250°Cで加
熱混練して原料コンパウンドとなし、ついでこれを射出
成形に供して樹脂磁石A(磁粉末1使用)および樹脂磁
石B(磁粉末1■使用)を得た。
(Reference example: Manufacture of resin magnet) N(lz, FetsBe magnetic powder (1
) and (11) are sieved to 200 mesh under, surface treated with a coupling agent, mixed with resin powder, added with a lubricant, stabilizer, etc., heated and kneaded at 250°C to obtain raw materials. A compound was prepared, and this was then subjected to injection molding to obtain resin magnet A (using 1 magnetic powder) and resin magnet B (using 1 inch magnetic powder).

配合割合 強磁性粉末            90重量部ナイロ
ン6樹脂          9重量部カップリング剤
(シラン系rA−1100J日本ユニカー鱒剤)   
       ・・・0.5重量部滑剤(ステアリン酸
亜鉛)   ・・・0.5重量部上記各樹脂磁石Aおよ
びBについてV、S、M。
Compounding ratio Ferromagnetic powder 90 parts by weight Nylon 6 resin 9 parts by weight Coupling agent (silane rA-1100J Japan Unicar trout agent)
...0.5 parts by weight Lubricant (zinc stearate) ...0.5 parts by weight V, S, M for each of the above resin magnets A and B.

法による保磁力(t Hc )を測定して次の結果を得
た。
The coercive force (t Hc ) was measured by the method and the following results were obtained.

Hc 樹脂磁石A(磁粉末1 )      12.9樹脂磁
石B(磁粉末11)      12.8〔発明の効果
〕 本発明によれば、 (i)不活性ガス噴射流による合金溶湯の粉化物を回転
急冷体に衝突させるという一工程を以て磁気特性のすぐ
れた永久磁石粉末が得られる。従って、機械粉砕工程を
含む多工程を必要とする従来の製造法に比し、製造コス
トが大幅に低減する。
Hc Resin magnet A (magnetic powder 1) 12.9 Resin magnet B (magnetic powder 11) 12.8 [Effects of the invention] According to the present invention, (i) Rotating the powdered molten alloy by an inert gas jet flow Permanent magnet powder with excellent magnetic properties can be obtained through a single process of colliding with a quenched body. Therefore, manufacturing costs are significantly reduced compared to conventional manufacturing methods that require multiple steps including mechanical crushing steps.

(ii)得られる磁粉末は、ブロードな粒度分布を有し
ていても、その全粒径に亘って高い保磁力を有し、均質
性にすぐれている。
(ii) Even though the obtained magnetic powder has a broad particle size distribution, it has a high coercive force over the entire particle size and has excellent homogeneity.

(iii )合金溶湯流に対する不活性ガス噴射流の吹
付条件により、得られる磁粉末の粒度分布を変えること
ができる。
(iii) The particle size distribution of the resulting magnetic powder can be changed by changing the conditions for spraying the inert gas jet onto the molten alloy flow.

(iv)得られる磁粉末は、球状ないし偏平な形状を有
しているので、従来の機械粉砕工程を経て得られる磁粉
末と異なって、永久磁石製造工程における成形性にすぐ
れている。
(iv) Since the resulting magnetic powder has a spherical or flat shape, it has excellent moldability in the permanent magnet manufacturing process, unlike magnetic powder obtained through a conventional mechanical crushing process.

このように、本発明方法は、簡素な工程を以て、磁気特
性およびハンドリング性にすぐれた永久磁石粉末を安価
に製造することができ、また、大量生産性にすぐれてお
り、その工業的価値は極めて大である。
As described above, the method of the present invention enables the production of permanent magnet powder with excellent magnetic properties and handling properties at low cost through a simple process, and also has excellent mass productivity, and its industrial value is extremely high. It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による永久磁石粉末の製造方法の具体例
を示す説明図、第2図は磁粉末の固有保磁力を粒度別に
示すグラフである。 l:チャンバ、2:高周波溶解炉、4:溶湯ノズル、5
:不活性ガス噴射ノズル、6:回転冷却体、7:粉末回
収室。
FIG. 1 is an explanatory diagram showing a specific example of the method for producing permanent magnet powder according to the present invention, and FIG. 2 is a graph showing the intrinsic coercive force of magnetic powder according to particle size. l: Chamber, 2: High frequency melting furnace, 4: Molten metal nozzle, 5
: Inert gas injection nozzle, 6: Rotary cooling body, 7: Powder recovery chamber.

Claims (2)

【特許請求の範囲】[Claims] 1.永久磁石合金溶湯をノズルより流出させながら、そ
の溶湯流を、不活性ガス噴射流の吹付けにより分断粉化
し、その粉化物を回転冷却体に衝突させることを特徴と
する永久磁石粉末の製造方法。
1. A method for producing permanent magnet powder, which comprises: flowing the molten permanent magnet alloy from a nozzle, dividing the molten metal flow into powder by spraying an inert gas jet flow, and colliding the powder with a rotating cooling body. .
2.永久磁石合金が、希土類元素−遷移金属元素−ボロ
ン系合金である請求項1に記載の永久磁石粉末の製造方
法。
2. 2. The method for producing permanent magnet powder according to claim 1, wherein the permanent magnet alloy is a rare earth element-transition metal element-boron alloy.
JP63202299A 1988-08-12 1988-08-12 Production of permanent magnet powder Pending JPH0251203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202299A JPH0251203A (en) 1988-08-12 1988-08-12 Production of permanent magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202299A JPH0251203A (en) 1988-08-12 1988-08-12 Production of permanent magnet powder

Publications (1)

Publication Number Publication Date
JPH0251203A true JPH0251203A (en) 1990-02-21

Family

ID=16455246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202299A Pending JPH0251203A (en) 1988-08-12 1988-08-12 Production of permanent magnet powder

Country Status (1)

Country Link
JP (1) JPH0251203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493377A (en) * 2016-12-29 2017-03-15 哈尔滨三地增材制造材料有限公司 Annular arrangement collision type aerodynamic atomization titanium alloy powder producing equipment and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106493377A (en) * 2016-12-29 2017-03-15 哈尔滨三地增材制造材料有限公司 Annular arrangement collision type aerodynamic atomization titanium alloy powder producing equipment and preparation method

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
US6302939B1 (en) Rare earth permanent magnet and method for making same
JP3932143B2 (en) Magnet manufacturing method
EP1395998B1 (en) Bonded magnets made with atomized permanent magnetic powders
KR0135209B1 (en) Fabrication method and equipment for granulated powders
JP2002249802A (en) Amorphous soft magnetic alloy compact, and dust core using it
EP0339767A2 (en) Method and apparatus for making flakes of RE-Fe-B-type magnetically-aligned material
US4994109A (en) Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JPH0354806A (en) Manufacture of rare-earth permanent magnet
EP1189245B1 (en) Magnetic alloy powder for permanent magnet and method for producing the same
JPH0251203A (en) Production of permanent magnet powder
US20010020494A1 (en) Method of making iron base magnetic material alloy powder
JP2002161302A (en) Alloyed magnetic powder for permanent magnet and manufacturing method for the same
JP3365628B2 (en) Iron-based alloy permanent magnet powder and method for producing the same
JPH01300503A (en) Manufacture of permanent magnet powder
JPH01205402A (en) Manufacture of rare earth fe-b magnetic powder
JP3840893B2 (en) Bond magnet manufacturing method and bond magnet
JPH10335124A (en) Magnetic powder and its manufacture
CA1276486C (en) Method of making rare-earth element containing permanent magnets
JPH07110966B2 (en) Manufacturing method of rare earth magnet alloy particles
JPH10223420A (en) Atomizing powder for alnico magnet and heat-treatment method therefor and bond magnet
JPS58120702A (en) Manufacture of rapid coagulated aluminum alloy powder
JPS63100107A (en) Production of amorphous alloy powder
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property