JPH0251083A - Antenna for gps reception - Google Patents

Antenna for gps reception

Info

Publication number
JPH0251083A
JPH0251083A JP20230988A JP20230988A JPH0251083A JP H0251083 A JPH0251083 A JP H0251083A JP 20230988 A JP20230988 A JP 20230988A JP 20230988 A JP20230988 A JP 20230988A JP H0251083 A JPH0251083 A JP H0251083A
Authority
JP
Japan
Prior art keywords
antenna
geomagnetic sensor
section
radiation
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20230988A
Other languages
Japanese (ja)
Other versions
JP2566295B2 (en
Inventor
Atsushi Kobayashi
敦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63202309A priority Critical patent/JP2566295B2/en
Publication of JPH0251083A publication Critical patent/JPH0251083A/en
Application granted granted Critical
Publication of JP2566295B2 publication Critical patent/JP2566295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable assembling of an earth magnetism sensor by arranging the earth magnetism sensor between a radiation body at an antenna section composing a patch antenna and an earth plate to reduce effect on a radiation efficiency and radiation directivity of an antenna. CONSTITUTION:An antenna for GPS reception has an earth magnetism sensor 3 arranged between a patch near the center of a radiation body 4 and an earth plate as ceiling surface of a circuit housing section 2. In this case, the existence of the earth magnetism sensor 3 confines an adverse effect to an impedance characteristic of a patch antenna and reduces effect on radiation characteristic of the antenna substantially. This enables the assembling of the earth magnetism sensor with a reduction in effect on radiation efficiency and radiation directivity of the antenna.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は移動体に搭載して使用するGlobal  P
ostioning  System(以下GPSと略
す)受信用アンテナに関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a Global P
The present invention relates to a GPS receiving antenna.

[従来の技術] G P S受信用アンテナは他の位置標定用センサを必
要としない自立型システムであるため、GPS受信用ア
ンテナは屋根上部に独立して設けられていた。しかしな
がら都市部、山間部など比較的見通しの悪い地域でGP
S受信用アンテナを利用すると、測位に必要とされる3
個の衛星からの信号が受信できない場合がある。このよ
うな場合の補助手段として、車室内に設けた地磁気セン
ナで方位測定を行ない、さらに車軸の回転数から移動距
離を求めて相対的移動量を知り、前回のGPS衛星を利
用した測位結果を用いて補完的な測位を行なう方法があ
る。このような方法を採る際、GPS受信用アンテナに
はブースタ或いはコンパー夕等のアンテナ部に付属する
回路部が内蔵されるので供給電源により直流磁界が発生
して地磁気センサの誤差の原因となったり、地磁気セン
サの存在がアンテナ特性に悪影響を及ぼす恐れがある為
、前述のように地磁気センサをアンテナ部とは別に配置
して使用していた。
[Prior Art] Since the GPS receiving antenna is a self-contained system that does not require any other positioning sensor, the GPS receiving antenna has been independently provided on the roof. However, in areas with relatively poor visibility such as urban areas and mountainous areas, GP
When using the S receiving antenna, the 3
In some cases, signals from individual satellites cannot be received. As an auxiliary means in such cases, a geomagnetic sensor installed inside the vehicle measures the direction, calculates the distance traveled from the rotation speed of the axle to determine the relative amount of travel, and then uses the previous positioning results using GPS satellites. There is a method of performing complementary positioning using When using such a method, the GPS receiving antenna has built-in circuitry attached to the antenna such as a booster or comparator, so a DC magnetic field may be generated by the power supply and cause errors in the geomagnetic sensor. Since the presence of the geomagnetic sensor may have an adverse effect on the antenna characteristics, the geomagnetic sensor has been used separately from the antenna section as described above.

[発明が解決しようとする課題] ところで従来のGPS受信用アンテナはアンテナ部と地
磁気センサとが別個に用いられているため、GPS受信
システム及びその補完システム系の配線が複数本となっ
ており、その分システムの信頼性が低いという問題があ
った。
[Problems to be Solved by the Invention] By the way, in the conventional GPS receiving antenna, the antenna part and the geomagnetic sensor are used separately, so the GPS receiving system and its complementary system have multiple wiring lines. The problem was that the reliability of the system was low.

本発明は上述の問題点に鑑みて為されたもので、アンテ
ナ特性に及ぼす影響を少なくして地磁気センサとアンテ
ナ部とを近接配置することを可能としたGPS受信用ア
ンテナを提供することを目的とし、更にアンテナ部に付
属する回路部から発生する直流磁界が地磁気センサに影
響を与えないようにしたGPS受信用アンテナを提供す
ることを目的とし、またアンテナ部からのGPS受信信
号と、地磁気センサの検出信号処理手段へ出力する検出
信号とを外部へ送出する配線を必要最小限に押えたGP
S受信用アンテナを提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a GPS receiving antenna that makes it possible to place a geomagnetic sensor and an antenna part close to each other while reducing the influence on antenna characteristics. The purpose of the present invention is to provide a GPS receiving antenna in which the direct current magnetic field generated from the circuit section attached to the antenna section does not affect the geomagnetic sensor. A GP that minimizes the wiring for sending the detection signal to the detection signal processing means and to the outside.
The purpose of this invention is to provide an S receiving antenna.

[課題を解決するための手段] 本発明はパッチアンテナからアンテナ部を構成し、その
放射体とアース板との間に地磁気センサを配置したもの
である。
[Means for Solving the Problems] In the present invention, an antenna section is constructed from a patch antenna, and a geomagnetic sensor is arranged between the radiator and the ground plate.

更に詳しくはアンテナ部に付属する回路部を収納する筺
体の一部でアース板を構成し、且つ筺体を磁性体板で構
成して、前記回路部の磁気シールドを施して成る。
More specifically, a part of the casing that houses the circuit section attached to the antenna section constitutes a grounding plate, and the casing is composed of a magnetic plate to magnetically shield the circuit section.

また地磁気センサの検出信号処理手段の一部をアンテナ
部に付属する回路部と同一の筺体に収納し、且つ上記検
出信号処理手段の出力信号を高周波信号に変換してアン
テナ部の出力用同軸ケーブルに重畳する。
In addition, a part of the detection signal processing means of the geomagnetic sensor is housed in the same housing as the circuit section attached to the antenna section, and the output signal of the detection signal processing means is converted into a high frequency signal and a coaxial cable for outputting the antenna section. superimposed on

更にまた放射体を非磁性体導電板で構成する。Furthermore, the radiator is composed of a non-magnetic conductive plate.

[作用] しかしてパッチ部とアース板との間に地磁気センサを配
置したものであるから、パッチアンテナの周辺開口部か
ら地磁気センサを遠ざけることができ、アンテナの輻射
効率、輻射指向性への影響を少なくして地磁気センサを
組込むことができのである。
[Function] Since the geomagnetic sensor is placed between the patch part and the ground plate, the geomagnetic sensor can be moved away from the peripheral opening of the patch antenna, which has an effect on the radiation efficiency and radiation directivity of the antenna. This allows the geomagnetic sensor to be incorporated with less energy.

またアンテナ部に付属する回路部を収納する回路収納部
の筺体の一部でアー冬板を構成し、且つ筺体を磁性体板
で構成して前記回路部の磁気シールドを施すことにより
回路部から発生する直流磁界を遮蔽して地磁気センサへ
の影響を少なくするのである。
In addition, a part of the casing of the circuit storage section that stores the circuit section attached to the antenna section constitutes an air winter board, and the casing is composed of a magnetic material plate to provide magnetic shielding for the circuit section, so that the circuit section can be protected from the circuit section. This shields the generated DC magnetic field and reduces its influence on the geomagnetic sensor.

更に地磁気センサの検出信号処理手段の一部をアンテナ
部に付属する回路部と同一の筺体に収納し、且つ上記検
出信号処理手段の出力信号を高周波信号に変換してアン
テナ部の出力用同軸ケーブルに重畳するので、同軸ケー
ブルを一本外部に導出するだけでアンテナ部に付属する
回路部及び地磁気センサの回路への電源供給及びGPS
受信信号及び地磁気センナの検出信号の取り出しが行な
える。
Further, a part of the detection signal processing means of the geomagnetic sensor is housed in the same housing as the circuit section attached to the antenna section, and the output signal of the detection signal processing means is converted into a high frequency signal and is connected to a coaxial cable for output from the antenna section. Because it overlaps with
Received signals and geomagnetic sensor detection signals can be extracted.

更にアンテナ部を非磁性体導電板で構成することにより
アンテナ部が地磁気センサに影響を及ぼすのを防げるの
である。
Furthermore, by configuring the antenna section with a non-magnetic conductive plate, it is possible to prevent the antenna section from affecting the geomagnetic sensor.

[実施例] 第1図(a) 、 (b)は本発明の実施例を示してお
り、レドーム1内にはブースタ、コンバータなどアンテ
ナ部に付属する回路部などの回路を収納した磁性体製の
筺体2と、この筺体2の天井面をアース板とするアンテ
ナ部と、地磁気センサ3を配設しである。アンテナ部は
アース板上方に配置する矩形バッチを形成した放射体4
の対角線上に給電ピン5を接続して円偏波を受信するよ
うになっているものであり、地磁気センサ3はアース板
である筺体2の天井面と放射体4との間に配設される。
[Embodiment] Figures 1(a) and 1(b) show an embodiment of the present invention, in which a radome 1 is made of a magnetic material and houses circuits such as a booster, a converter, and other circuits attached to the antenna section. A casing 2, an antenna section using the ceiling surface of the casing 2 as a grounding plate, and a geomagnetic sensor 3 are arranged. The antenna part is a radiator 4 in the form of a rectangular batch placed above the ground plate.
The geomagnetic sensor 3 is arranged between the ceiling surface of the housing 2, which is a ground plate, and the radiator 4. Ru.

筺体2は先端に同軸コネクタ7を設けたアンテナ部の出
力用同軸ケーブル6を導出している。
The housing 2 leads out an output coaxial cable 6 of an antenna section, which has a coaxial connector 7 at its tip.

尚放射体4のパッチとしては円形バッチ或いは他の形状
のパッチを利用しても円偏波受信は可能である。ここで
パッチアンテナの輻射効率は放射体4及び放射体4と対
向するアース板の導電率及び特に放射体4の周囲の開口
部附近に存在する誘電体或いは磁性体に依る高周波損失
に支配される。
It is also possible to receive circularly polarized waves by using circular patches or patches of other shapes as the patches of the radiator 4. Here, the radiation efficiency of the patch antenna is controlled by the conductivity of the radiator 4 and the ground plate facing the radiator 4, and especially by the high frequency loss due to the dielectric or magnetic material present near the opening around the radiator 4. .

またパッチアンテナの輻射指向性もパッチ周囲の開口部
附近に存在する磁性体、誘電体、導電体の影けやすい。
Furthermore, the radiation directivity of the patch antenna is likely to be shadowed by magnetic materials, dielectric materials, and conductive materials that exist near the opening around the patch.

地磁気センサ3は第2図に示すようなフラックスゲート
型センサを用いており、パーマロイ等の磁性体による環
状コア8に地磁気センス出力巻線9.10を直交するよ
うに巻回し、更に励磁用巻線11を巻回して構成されて
いる。尚端子12゜13は出力端子、端子14は励磁入
力端子である。
The geomagnetic sensor 3 uses a fluxgate type sensor as shown in FIG. 2, and includes geomagnetic sense output windings 9 and 10 wound orthogonally around an annular core 8 made of a magnetic material such as permalloy, and an excitation winding. It is constructed by winding a wire 11. Note that terminals 12 and 13 are output terminals, and terminal 14 is an excitation input terminal.

この地磁気センサ3は次のような原理により動作する。This geomagnetic sensor 3 operates on the following principle.

つまり励磁用巻線11に周波数Fの励磁信号を印加し、
環状コア8が励磁信号の尖頭値附近で飽和するように信
号レベルを調整すると、環状コア8中に周波数2Fの成
分を含む歪磁束が発生する。この歪成分は磁性体の飽和
特性曲線の飽和部附近での非直線性が大きい程多く発生
し、且つ外部から地磁気などによる直流磁界が印加され
た場合の環状コア8中の磁束の微小な変化に対してもよ
り高感度に変化する。従って直交して巻回した出力巻線
9.10より周波数2F成分の信号のみ取り出せば高感
度の地磁気センサと使用できるのである。即ち出力巻線
9を南北方向センス巻線、出力巻線10を東西方向セン
ス巻線として用いれば、出力巻線10の巻線方向と角度
θで鎖交する地磁気が存在したとき、東西方向センス巻
線である出力巻線10の出力はsinθに比例し、南北
方向センス巻線である出力巻線9の出力はeO8θに比
例するので、夫々の出力巻線9.10から逆演算して地
磁気等外部磁界の方向を知ることができる。この種の地
磁気センサは周囲に直流磁界を発生する電気回路が存在
すると誤差が大きくなる。従って、パッチアンテナ下部
に配置したアンテナ部に付属する回路部の影響を最小に
する工夫が必要となる。
In other words, applying an excitation signal of frequency F to the excitation winding 11,
When the signal level is adjusted so that the annular core 8 is saturated near the peak value of the excitation signal, a distorted magnetic flux containing a frequency 2F component is generated in the annular core 8. This distortion component occurs more often as the nonlinearity near the saturation point of the saturation characteristic curve of the magnetic material increases, and it also occurs due to minute changes in the magnetic flux in the annular core 8 when a DC magnetic field is applied from the outside due to terrestrial magnetism. The sensitivity also changes to higher. Therefore, by extracting only the signal of the frequency 2F component from the output windings 9 and 10 wound orthogonally, it can be used as a highly sensitive geomagnetic sensor. In other words, if the output winding 9 is used as a north-south sense winding and the output winding 10 is used as an east-west sense winding, when there is a geomagnetic field interlinking with the winding direction of the output winding 10 at an angle θ, the east-west sense will be detected. The output of the output winding 10, which is a winding, is proportional to sinθ, and the output of the output winding 9, which is a north-south direction sense winding, is proportional to eO8θ. Therefore, by inversely calculating from the respective output windings 9 and 10, the earth's magnetic field is calculated. It is possible to know the direction of an external magnetic field. This type of geomagnetic sensor has a large error when there is an electric circuit around it that generates a DC magnetic field. Therefore, it is necessary to take measures to minimize the influence of the circuit section attached to the antenna section disposed below the patch antenna.

本発明では上述の様なパッチアンテナの輻射効率、輻射
指向性に地磁気センサ3が悪影響を及ぼさぬよう第1図
に示すように放射体4の中央附近のパッチと回路収納部
2の天井面であるアース板との間に地磁気センサ3を配
設しである。この場合地磁気センサ3の存在はパッチア
ンテナのインピーダンス特性に悪影響を与えるのみであ
り、アンテナの輻射特性への影響は少ない。
In the present invention, in order to prevent the geomagnetic sensor 3 from having an adverse effect on the radiation efficiency and radiation directivity of the patch antenna as described above, as shown in FIG. A geomagnetic sensor 3 is disposed between it and a certain ground plate. In this case, the presence of the geomagnetic sensor 3 only has an adverse effect on the impedance characteristics of the patch antenna, and has little effect on the radiation characteristics of the antenna.

一方、地磁気センサ3の特性に対゛してパッチアンテナ
及び回路部が悪影響を及ぼさないようにする為に回路部
は磁性体板で形成した筺体2内に収納して磁気シールド
を施し、放射体4は非磁性体板で構成している。この場
合筺体2を構成する磁性体板がアース板としての導電率
を良好にする必要もあるので錫鍍金鋼板等の導電鍍金処
理をした磁性体板を使用する。また上記放射体4を形成
する非磁性体板もパッチアンテナ特性を良好にする為に
導電率の良好な銅板、アルミニュウム板等を用いている
On the other hand, in order to prevent the patch antenna and the circuit section from having an adverse effect on the characteristics of the geomagnetic sensor 3, the circuit section is housed in a casing 2 made of a magnetic plate and magnetically shielded. 4 is composed of a non-magnetic plate. In this case, since the magnetic plate constituting the housing 2 needs to have good electrical conductivity as a ground plate, a magnetic plate subjected to conductive plating such as a tin-plated steel plate is used. Further, the non-magnetic plate forming the radiator 4 is made of a copper plate, an aluminum plate, etc. having good conductivity in order to improve the patch antenna characteristics.

第3図は上記の構成でGPS受信用アンテナに地磁気セ
ンサ3を組込んだ場合の回路を示しており、地磁気セン
サ3の励磁巻線11には励磁信号発振器15から出力さ
れ、励磁信号増幅器16で増幅された40KHzの正弦
波が印加されるようになっている。
FIG. 3 shows a circuit when the geomagnetic sensor 3 is incorporated into the GPS receiving antenna with the above configuration. A 40 KHz sine wave amplified by

また環状コア8が励磁信号により飽和レベル迄励磁され
た結果生じた2倍の周波数成分(例えば80KHz)信
号が直交した出力巻線9,1oによって地磁気の影響を
受けながら検出されるので帯域通過フィルタ17.18
により選択するようになっている。
In addition, since the double frequency component (e.g. 80 KHz) signal generated as a result of the annular core 8 being excited to the saturation level by the excitation signal is detected by the orthogonal output windings 9 and 1o while being affected by the earth's magnetism, the band pass filter is used. 17.18
It is possible to select according to

帯域通過フィルタ17.18を通過した信号は増幅器1
9.20で夫々増幅され、更に振幅検波器21.22で
検波され、直流増幅器23.24で直流増幅される。
The signal passed through the bandpass filters 17 and 18 is sent to the amplifier 1.
They are each amplified at 9.20, further detected by amplitude detectors 21.22, and DC amplified by DC amplifiers 23.24.

この直流増幅された地磁気の影響含む信号成分から地磁
気磁束の出力巻線9,10との鎖交角度が逆演算回路2
5で求められる。例えば上記励磁信号のレベルを環状コ
ア8の飽和レベル直前のレベルに設定し、地磁気の静磁
界により環状コア8が飽和するようにすれば地磁気と、
一方の出力巻線9又は10との鎖交角をθとしたとき、
一方の出力巻線9又は10からの2倍歪波検出レベルは
sinθに比例し、他方の出力巻線10又は9からの2
倍歪検出レベルはCO8θに比例するので各出力巻線9
.10からの出力の比を取り、逆正接を求めれば鎖交角
θを検出できることになる。このような逆演算回路25
はダイオードと演算増幅器を用いて容易に構成できる6 逆演算回路25により検出された地磁気と出力巻線9,
10の鎖交角度信号は、FM変調器26を介して高周波
信号(例えば100KHzのFM信号)に変換され、更
にコンデンサ27、コイル28よりなる直列共振回路(
この場合は共振周波数100KHz)で同軸ケーブル6
に供給される。
The inverse calculation circuit 2 calculates the interlinkage angle of the geomagnetic flux with the output windings 9 and 10 from the DC amplified signal component including the influence of the geomagnetism.
It is found in 5. For example, if the level of the excitation signal is set to a level just before the saturation level of the annular core 8, and the annular core 8 is saturated by the static magnetic field of the earth's magnetism, the earth's magnetism and
When the interlinkage angle with one output winding 9 or 10 is θ,
The double distorted wave detection level from one output winding 9 or 10 is proportional to sin θ, and the double distortion wave detection level from the other output winding 10 or 9 is proportional to sin θ.
Since the double distortion detection level is proportional to CO8θ, each output winding 9
.. By taking the ratio of the outputs from 10 and finding the arctangent, the interlinkage angle θ can be detected. Such an inverse calculation circuit 25
can be easily configured using a diode and an operational amplifier 6 Earth's magnetism detected by the inverse calculation circuit 25 and the output winding 9,
The interlinkage angle signal No. 10 is converted into a high frequency signal (for example, a 100 KHz FM signal) via an FM modulator 26, and is further converted into a series resonant circuit (
In this case, the resonant frequency is 100KHz) and the coaxial cable 6
is supplied to

一方GPS受信用アンテナAで受信された1゜5GHz
帯の信号は帯域通過フィルタ2つ、高質幅器30、結合
コンデンサ31を介して同軸ケーブル6に供給される。
On the other hand, 1°5 GHz received by GPS receiving antenna A
The band signal is supplied to the coaxial cable 6 via two band pass filters, a high quality width filter 30, and a coupling capacitor 31.

この同軸ゲーブル6の一点鎖線で区分した左側の部分は
移動体内部に搭載された信号処理回路(図示せず)の一
部であり、端子32より高周波チョークコイル33を介
して直流電源が供給され、同軸ケーブル6のアンテナ部
(図中−点鎖線の右側に部分)側で高周波チョークコイ
ル34により直流成分が分離され、端子35よりアンテ
ナ部の直流電源を得るよう構成されている。
The left side section of the coaxial cable 6 marked by a dashed line is a part of a signal processing circuit (not shown) mounted inside the moving body, and DC power is supplied from a terminal 32 via a high frequency choke coil 33. A high-frequency choke coil 34 separates a DC component from the antenna section of the coaxial cable 6 (the part to the right of the dotted chain line in the figure), and DC power for the antenna section is obtained from a terminal 35.

尚コンデンサ36は結合コンデンサ、端子37はGPS
受信信号取り出し端子、コイル38、コンデンサ39は
直列共振回路(この場合の共振周波数は100KHz)
であり、端子40は地磁気角度信号取り出し端子である
Note that the capacitor 36 is a coupling capacitor, and the terminal 37 is a GPS
The received signal extraction terminal, coil 38, and capacitor 39 are a series resonant circuit (resonant frequency in this case is 100 KHz)
Terminal 40 is a terminal for taking out a geomagnetic angle signal.

上記同軸ケーブル6には1.5GHz帯のGPS受信信
号の他に、角度検出信号(本実施例では100KHz)
と直流電源が重畳されるので、コンデンサ31.36の
りアクタンスは角度検出信号周波に対しては充分大きく
なるように、また直列共振回路を構成するコイル28、
コンデンサ27及びコイル38、コンデンサ39のイン
ピーダンスはGPS受信信号周波に対して充分大きくな
るように選択される。更に高周波チョークコイル34.
33のリアクタンスは角度検出信号周波、GPS受信信
号周波のいずれに対しても充分大きくなるように選ぶ。
In addition to the 1.5 GHz band GPS reception signal, the coaxial cable 6 carries an angle detection signal (100 KHz in this embodiment).
and DC power are superimposed, the actance of the capacitors 31 and 36 should be sufficiently large for the angle detection signal frequency, and the coil 28, which constitutes the series resonant circuit,
The impedances of the capacitor 27, coil 38, and capacitor 39 are selected to be sufficiently large with respect to the GPS reception signal frequency. Furthermore, a high frequency choke coil 34.
The reactance of 33 is selected so as to be sufficiently large for both the angle detection signal frequency and the GPS reception signal frequency.

[発明の効果] 本発明は放射体とアース板との間に地磁気センサを配置
したものであるから、パッチアンテナの開口部から地磁
気センサを遠ざけることができ、その為アンテナの輻射
効率、輻射指向性への影響を少なくして地磁気センサを
組込むことができるという効果が有る。
[Effects of the Invention] Since the present invention arranges the geomagnetic sensor between the radiator and the ground plate, the geomagnetic sensor can be moved away from the opening of the patch antenna, which improves the radiation efficiency and radiation direction of the antenna. This has the effect that a geomagnetic sensor can be incorporated with less influence on the magnetic field.

またアンテナ部に付属する回路部を収納する筺体の一部
でアース板を構成し、且つ上記筺体を磁性体板で構成し
て前記回路部の磁気シールドを施すことにより地磁気セ
ンサに対する上記回路部から発生する直流磁界の影響を
少なくできる。
In addition, a part of the casing that houses the circuit section attached to the antenna section constitutes a grounding plate, and the casing is composed of a magnetic plate to provide magnetic shielding for the circuit section. The influence of the generated DC magnetic field can be reduced.

更に地磁気センサの検出信号処理手段の一部をアンテナ
部に付属する回路部と同一の筺体に収納し、且つ検出信
号処理手段の出力信号を高周波信号に変換してアンテナ
部出力同軸ケーブルに重畳することにより、同軸ケーブ
ルを一本外部に導出するだけで回路部の地磁気センサの
回路部への電源供給及びG P S受信信号及び地磁気
センサの検出信号の取り出しが行なえ、その結果配線本
数が少なく済みシステムの信頼性を高めることができる
という効果が有る。
Further, a part of the detection signal processing means of the geomagnetic sensor is housed in the same housing as the circuit section attached to the antenna section, and the output signal of the detection signal processing means is converted into a high frequency signal and superimposed on the antenna section output coaxial cable. This allows you to supply power to the circuit section of the geomagnetic sensor in the circuit section and take out the GPS reception signal and the detection signal of the geomagnetic sensor by simply leading one coaxial cable to the outside, and as a result, the number of wires can be reduced. This has the effect of increasing the reliability of the system.

更にまた放射体を非磁性体導電板で構成することにより
地磁気センサにアンテナ部の影響を少なくすることがで
きるという効果が有る。
Furthermore, by configuring the radiator with a non-magnetic conductive plate, there is an effect that the influence of the antenna section on the geomagnetic sensor can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施例の断面図、第1図(b)
は同上の一部破断せる上面図、第2図は同上の地磁気セ
ンサの拡大斜視図、第3図は同上の回路図である。 2は筺体、3は地磁気センサ、4は放射体、6は同軸ケ
ーブルである。
FIG. 1(a) is a sectional view of an embodiment of the present invention, FIG. 1(b)
2 is an enlarged perspective view of the geomagnetic sensor, and FIG. 3 is a circuit diagram of the same. 2 is a housing, 3 is a geomagnetic sensor, 4 is a radiator, and 6 is a coaxial cable.

Claims (4)

【特許請求の範囲】[Claims] (1)パッチアンテナを構成するアンテナ部の放射体と
アース板との間に地磁気センサを配置したことを特徴と
するGPS受信用アンテナ。
(1) A GPS receiving antenna characterized in that a geomagnetic sensor is disposed between a radiator of an antenna part constituting a patch antenna and a ground plate.
(2)アンテナ部に付属する回路部を収納する筺体の一
部でアース板を構成し、且つ上記筺体を磁性体板で構成
して、前記回路部の磁気シールドを施して成ることを特
徴とする請求項1記載のGPS受信用アンテナ。
(2) A part of the casing that houses the circuit section attached to the antenna section constitutes a grounding plate, and the casing is composed of a magnetic plate to magnetically shield the circuit section. The GPS receiving antenna according to claim 1.
(3)地磁気センサの検出信号処理手段の一部をアンテ
ナ部に付属する回路部と同一の筺体に収納し、且つ上記
検出信号処理手段の出力信号を高周波信号に変換してア
ンテナ部の出力用同軸ケーブルに重畳して成ることを特
徴とする請求項2記載のGPS受信用アンテナ。
(3) Part of the detection signal processing means of the geomagnetic sensor is housed in the same housing as the circuit section attached to the antenna section, and the output signal of the detection signal processing means is converted into a high frequency signal for output from the antenna section. 3. The GPS receiving antenna according to claim 2, wherein the antenna is superimposed on a coaxial cable.
(4)放射体を非磁性体導電板で構成して成ることを特
徴とする請求項1記載S受信用アンテナ。
(4) The S receiving antenna according to claim 1, wherein the radiator is formed of a non-magnetic conductive plate.
JP63202309A 1988-08-12 1988-08-12 GPS receiving antenna Expired - Lifetime JP2566295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202309A JP2566295B2 (en) 1988-08-12 1988-08-12 GPS receiving antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202309A JP2566295B2 (en) 1988-08-12 1988-08-12 GPS receiving antenna

Publications (2)

Publication Number Publication Date
JPH0251083A true JPH0251083A (en) 1990-02-21
JP2566295B2 JP2566295B2 (en) 1996-12-25

Family

ID=16455412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202309A Expired - Lifetime JP2566295B2 (en) 1988-08-12 1988-08-12 GPS receiving antenna

Country Status (1)

Country Link
JP (1) JP2566295B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253060A (en) * 2004-02-04 2005-09-15 Yokoba Kogyo Kk Monitoring camera apparatus and monitoring camera system
JP2014523588A (en) * 2011-07-11 2014-09-11 サムスン エレクトロニクス カンパニー リミテッド Input device
US8892258B2 (en) 2011-04-29 2014-11-18 Raytheon Company Variable strength magnetic end effector for lift systems
US8942846B2 (en) 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US8977388B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Platform perturbation compensation
JP2016007198A (en) * 2014-06-26 2016-01-18 株式会社クボタ Paddy field work machine
US9314921B2 (en) 2011-03-17 2016-04-19 Sarcos Lc Robotic lift device with human interface operation
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
US9626038B2 (en) 2011-07-11 2017-04-18 Samsung Electronics Co., Ltd Input device
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253060A (en) * 2004-02-04 2005-09-15 Yokoba Kogyo Kk Monitoring camera apparatus and monitoring camera system
US9314921B2 (en) 2011-03-17 2016-04-19 Sarcos Lc Robotic lift device with human interface operation
US8892258B2 (en) 2011-04-29 2014-11-18 Raytheon Company Variable strength magnetic end effector for lift systems
US8942846B2 (en) 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US8977388B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Platform perturbation compensation
US8977398B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Multi-degree of freedom torso support for a robotic agile lift system
US9533411B2 (en) 2011-04-29 2017-01-03 Sarcos Lc System and method for controlling a teleoperated robotic agile lift system
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
JP2014523588A (en) * 2011-07-11 2014-09-11 サムスン エレクトロニクス カンパニー リミテッド Input device
US9626038B2 (en) 2011-07-11 2017-04-18 Samsung Electronics Co., Ltd Input device
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
JP2016007198A (en) * 2014-06-26 2016-01-18 株式会社クボタ Paddy field work machine

Also Published As

Publication number Publication date
JP2566295B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US5568162A (en) GPS navigation and differential-correction beacon antenna combination
US6040806A (en) Circular-polarization antenna
US3495264A (en) Loop antenna comprising plural helical coils on closed magnetic core
JP3481575B2 (en) antenna
US5633648A (en) RF current-sensing coupled antenna device
JP2566295B2 (en) GPS receiving antenna
JPH0622283B2 (en) Car antenna device
EP0183521B1 (en) Automobile antenna system
US3898565A (en) Magnetic wave communication system
CA1252881A (en) Automobile antenna system with a high-frequency pick-up coil
US4823141A (en) Vehicle antenna system
EP0180462B1 (en) Automobile antenna system
JP3927727B2 (en) Antenna device
JP4537260B2 (en) Antenna device
EP0183522B1 (en) Automobile antenna device
US9065169B2 (en) High frequency magnetic field antenna
JP3487720B2 (en) Antenna device
JP2000082914A (en) Microstrip antenna, antenna device using the antenna and radio device
USH1217H (en) Easily tunable detector for covering discontinuities in buried energized antenna ground wipes
JPH066586Y2 (en) External auxiliary antenna
CN213936549U (en) Nested GNSS antenna and GNSS device
EP0213743B1 (en) Automobile antenna system
JP2002171124A (en) Antenna device
JPH0744093Y2 (en) Wide wavelength band receiving antenna
JP2000138518A (en) Antenna