JP2566295B2 - GPS receiving antenna - Google Patents

GPS receiving antenna

Info

Publication number
JP2566295B2
JP2566295B2 JP63202309A JP20230988A JP2566295B2 JP 2566295 B2 JP2566295 B2 JP 2566295B2 JP 63202309 A JP63202309 A JP 63202309A JP 20230988 A JP20230988 A JP 20230988A JP 2566295 B2 JP2566295 B2 JP 2566295B2
Authority
JP
Japan
Prior art keywords
antenna
geomagnetic sensor
gps receiving
receiving antenna
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63202309A
Other languages
Japanese (ja)
Other versions
JPH0251083A (en
Inventor
敦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63202309A priority Critical patent/JP2566295B2/en
Publication of JPH0251083A publication Critical patent/JPH0251083A/en
Application granted granted Critical
Publication of JP2566295B2 publication Critical patent/JP2566295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は移動体に搭載して使用するGlobal Postionin
g System(以下GPSと略す)受信用アンテナに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a Global Postion
g System (hereinafter abbreviated as GPS) Receiving antenna.

[従来の技術] GPS受信用アンテナは他の位置標定用センサを必要と
しない自立型システムであるため、GPS受信用アンテナ
は屋根上部に独立して設けられていた。しかしながら都
市部、山間部など比較的見通しの悪い地域でGPS受信用
アンテナを利用すると、測位に必要とされる3個の衛星
からの信号が受信できない場合がある。このような場合
の補助手段として、車室内に設けた地磁気センサで方位
測定を行ない、さらに車軸の回転数から移動距離を求め
て相対的移動量を知り、前回のGPS衛星を利用した測位
結果を用いて補完的な測位を行なう方法がある。このよ
うな方法を採る際、GPS受信用アンテナにはブースタ或
いはコンバータ等のアンテナ部に付属する回路部が内蔵
されるので供給電源により直流磁界が発生して地磁気セ
ンサの誤差の原因となったり、地磁気センサの存在がア
ンテナ特性に悪影響を及ぼす恐れがある為、前述のよう
に地磁気センサをアンテナ部とは別に配置して使用して
いた。
[Prior Art] Since the GPS receiving antenna is a self-supporting system that does not require any other position locating sensor, the GPS receiving antenna was provided independently on the roof top. However, if the GPS receiving antenna is used in an area with relatively poor visibility such as an urban area or a mountainous area, the signals from the three satellites required for positioning may not be received. As an auxiliary means in such a case, a geomagnetic sensor provided in the vehicle interior is used to measure the direction, and the moving distance is calculated from the number of rotations of the axle to know the relative movement amount, and the positioning result using the previous GPS satellite is calculated. There is a method of performing complementary positioning by using. When adopting such a method, since the GPS receiving antenna has a built-in circuit part attached to the antenna part such as a booster or a converter, a DC magnetic field is generated by the power supply, which causes an error of the geomagnetic sensor, Since the presence of the geomagnetic sensor may adversely affect the antenna characteristics, the geomagnetic sensor is used separately from the antenna section as described above.

[発明が解決しようとする課題] ところで従来のGPS受信用アンテナはアンテナ部と地
磁気センサしが別個に用いられているため、GPS受信シ
ステム及びその補完システム系の配線が複数本となって
おり、その分システムの信頼性が低いという問題があっ
た。
[Problems to be Solved by the Invention] By the way, since the conventional GPS receiving antenna uses the antenna section and the geomagnetic sensor separately, the GPS receiving system and its complementary system system have a plurality of wiring lines. There was a problem that the reliability of the system was low.

本発明は上述の問題点に鑑みて為されたもので、アン
テナ特性に及ぼす影響を少なくして地磁気センサとアン
テナ部とを近接配置することを可能としたGPS受信用ア
ンテナを提供することを目的とし、更にアンテナ部に付
属する回路部から発生する直流磁界が地磁気センサに影
響を与えないようにしたGPS受信用アンテナを提供する
ことを目的とし、またアンテナ部からのGPS受信信号
と、地磁気センサの検出信号処理手段へ出力する検出信
号とを外部へ送出する配線を必要最小限に押えたGPS受
信用アンテナを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a GPS receiving antenna capable of arranging a geomagnetic sensor and an antenna unit in proximity while reducing the influence on the antenna characteristics. The purpose of the present invention is also to provide a GPS receiving antenna in which the DC magnetic field generated from the circuit section attached to the antenna section does not affect the geomagnetic sensor. Also, the GPS receiving signal from the antenna section and the geomagnetic sensor are provided. It is an object of the present invention to provide a GPS receiving antenna in which the wiring for sending the detection signal to be output to the detection signal processing means and the wiring for sending the detection signal to the outside are suppressed to a necessary minimum.

[課題を解決するための手段] 本発明はパッチアンテナからアンテナ部を構成し、そ
の放射体とアース板との間に地磁気センサを配置したも
のである。
[Means for Solving the Problem] The present invention is one in which an antenna unit is composed of a patch antenna, and a geomagnetic sensor is arranged between the radiator and the ground plate.

更に詳しくはアンテナ部に付属する回路部を収納する
筐体の一部でアース板を構成し、且つ筐体を磁性体板で
構成して、前記回路部の磁気シールドを施して成る。
More specifically, a part of a housing for accommodating a circuit part attached to the antenna part constitutes a ground plate, and the case is composed of a magnetic plate to magnetically shield the circuit part.

また地磁気センサの検出信号処理手段の出力信号を高
周波信号に変換してアンテナ部の出力用同軸ケーブルに
重畳する手段を備えるとともに、この重畳する手段をア
ンテナ部に付属する回路部と同一の筐体に収納する。
Further, it is provided with means for converting the output signal of the detection signal processing means of the geomagnetic sensor into a high frequency signal and superimposing it on the output coaxial cable of the antenna section, and this superimposing means is the same casing as the circuit section attached to the antenna section. To store.

更にまた放射体を非磁性体導電板で構成する。 Furthermore, the radiator is composed of a non-magnetic conductive plate.

[作用] しかしてパッチ部とアース板との間に地磁気センサを
配置したものであるから、パッチアンテナの周辺開口部
から地磁気センサを遠ざけることができ、アンテナの輻
射効率、輻射指向性への影響を少なくして地磁気センサ
を組込むことができのである。
[Operation] However, since the geomagnetic sensor is arranged between the patch portion and the ground plate, the geomagnetic sensor can be moved away from the peripheral opening of the patch antenna, which affects the radiation efficiency and radiation directivity of the antenna. It is possible to incorporate a geomagnetic sensor with less.

またアンテナ部に付属する回路部を収納する回路収納
部の筐体の一部でアース板を構成し、且つ筐体を磁性体
板で構成して前記回路部の磁気シールドを施すことによ
り回路部から発生する直流磁界を遮蔽して地磁気センサ
への影響を少なくするのである。
In addition, a part of the housing of the circuit accommodating part for accommodating the circuit part attached to the antenna part constitutes a ground plate, and the case is composed of a magnetic plate to magnetically shield the circuit part. The direct current magnetic field generated from is shielded to reduce the influence on the geomagnetic sensor.

更に地磁気センサの検出信号処理手段の出力信号を高
周波信号に変換してアンテナ部の出力用同軸ケーブルに
重畳かる手段を備えるとともに、この重畳する手段をア
ンテナ部に付属する回路部と同一の筐体に収納するの
で、同軸ケーブルを筐体より一本外部に導出するだけで
アンテナ部に付属する回路部及び地磁気センサの回路へ
の電源供給及びGPS受信信号及び地磁気センサの検出信
号の取り出しが行なえる。
Furthermore, a means for converting the output signal of the detection signal processing means of the geomagnetic sensor into a high frequency signal and superimposing it on the output coaxial cable of the antenna part is provided, and this superimposing means is the same housing as the circuit part attached to the antenna part. Since it is housed in the antenna, power can be supplied to the circuit part attached to the antenna part and the circuit of the geomagnetic sensor and the GPS reception signal and the detection signal of the geomagnetic sensor can be taken out by simply pulling out one coaxial cable from the case. .

更にアンテナ部を非磁性体導電板で構成することによ
りアンテナ部が地磁気センサに影響を及ぼすのを防げる
のである。
Further, by constructing the antenna section with a non-magnetic conductive plate, it is possible to prevent the antenna section from affecting the geomagnetic sensor.

[実施例] 第1図(a),(b)は本発明の実施例を示してお
り、レドーム1内にはブースタ、コンバータなどアンテ
ナ部に付属する回路部などの回路を収納した磁性体製の
筐体2と、この筐体2の天井面をアース板とするアンテ
ナ部と、地磁気センサ3を配設してある。アンテナ部は
アース板上方に配置する矩形パッチを形成した放射体4
の対角線上に給電ピン5を接続して円偏波を受信するよ
うになっているものであり、地磁気センサ3はアース板
である筐体2の天井面と放射体4との間に配設される。
筐体2は先端に同軸コネクタ7を設けたアンテナ部の出
力用同軸ケーブル6を導出している。
[Embodiment] FIGS. 1 (a) and 1 (b) show an embodiment of the present invention, in which a radome 1 is made of a magnetic material in which circuits such as a booster and a circuit attached to an antenna such as a converter are housed. The housing 2, the antenna portion having the ceiling surface of the housing 2 as a ground plate, and the geomagnetic sensor 3 are provided. The antenna part is a radiator 4 having a rectangular patch arranged above the ground plate.
A circularly polarized wave is received by connecting a power feed pin 5 on a diagonal line of the geomagnetic sensor 3. The geomagnetic sensor 3 is arranged between the ceiling surface of the housing 2 which is a ground plate and the radiator 4. To be done.
The housing 2 leads out the output coaxial cable 6 of the antenna part having a coaxial connector 7 at the tip.

尚放射体4のパッチとしては円形パッチ或いは他の形
状のパッチを利用しても円偏波受信は可能である。ここ
でパッチアンテナの輻射効率は放射体4及び放射体4と
対向するアース板の導電率及び特に放射体4の周囲の開
口部附近に存在する誘電体或いは磁性体に依る高周波損
失に支配される。またパッチアンテナの輻射指向性もパ
ッチ周囲の開口部附近に存在する磁性体、誘電体、導電
体の影響を受けやすい。
Circular polarized wave reception is possible even if a circular patch or a patch having another shape is used as the patch of the radiator 4. Here, the radiation efficiency of the patch antenna is governed by the conductivity of the radiator 4 and the ground plate facing the radiator 4, and particularly the high frequency loss due to the dielectric or magnetic substance existing near the opening around the radiator 4. . In addition, the radiation directivity of the patch antenna is also easily affected by the magnetic material, dielectric material, and conductor existing near the opening around the patch.

地磁気センサ3は第2図に示すようなフラックスゲー
ト型センサを用いており、パーマロイ等の磁性体による
環状コア8に地磁気センス出力巻線9,10を直交するよう
に巻回し、更に励磁用巻線11を巻回して構成されてい
る。尚端子12,13は出力端子、端子14は励磁入力端子で
ある。
The geomagnetic sensor 3 uses a fluxgate type sensor as shown in FIG. 2, in which the geomagnetic sense output windings 9 and 10 are wound around the annular core 8 made of a magnetic material such as permalloy so as to be orthogonal to each other. It is constructed by winding the wire 11. The terminals 12 and 13 are output terminals, and the terminal 14 is an excitation input terminal.

この地磁気センサ3は次のような原理により動作す
る。つまり励磁用巻線11に周波数Fの励磁信号を印加
し、環状コア8が励磁信号の尖頭値附近で飽和するよう
に信号レベルを調整すると、環状コア8中に周波数2Fの
成分を含む歪磁束が発生する。この歪成分は磁性体の飽
和特性曲線の飽和部附近での非直線性が大きい程多く発
生し、且つ外部から地磁気などによる直流磁界が印加さ
れた場合の環状コア8中の磁束の微小な変化に対しても
より高感度に変化する。従って直交して巻回した出力巻
線9,10より周波数2F成分の信号のみ取り出せば高感度の
地磁気センサと使用できるのである。即ち出力巻線9を
南北方向センス巻線、出力巻線10を東西方向センス巻線
として用いれば、出力巻線10の巻線方向と角度θで鎖交
する地磁気が存在したとき、東西方向センス巻線である
出力巻線10の出力はsinθに比例し、南北方向センス巻
線である出力巻線9の出力はcosθに比例するので、夫
々の出力巻線9,10から逆演算して地磁気等外部磁界の方
向を知ることができる。この種の地磁気センサは周囲に
直流磁界を発生する電気回路が存在すると誤差が大きく
なる。従って、パッチアンテナ下部に配置したアンテナ
部に付属する回路部の影響を最小にする工夫が必要とな
る。
The geomagnetic sensor 3 operates according to the following principle. That is, when an excitation signal of frequency F is applied to the excitation winding 11 and the signal level is adjusted so that the annular core 8 is saturated near the peak value of the excitation signal, the distortion including the frequency 2F component in the annular core 8 is generated. Magnetic flux is generated. This distortion component is generated more as the non-linearity near the saturation portion of the saturation characteristic curve of the magnetic material is larger, and a minute change in the magnetic flux in the annular core 8 when a DC magnetic field due to the earth's magnetism or the like is applied from the outside. Changes to higher sensitivity. Therefore, if only the signal of the frequency 2F component is taken out from the output windings 9 and 10 wound orthogonally, it can be used as a highly sensitive geomagnetic sensor. That is, if the output winding 9 is used as the north-south direction sense winding and the output winding 10 is used as the east-west direction sense winding, the east-west direction sense is generated when there is a geomagnetism that intersects with the winding direction of the output winding 10 at an angle θ. The output of the output winding 10, which is the winding, is proportional to sin θ, and the output of the output winding 9, which is the north-south direction sense winding, is proportional to cos θ. It is possible to know the direction of the external magnetic field. This type of geomagnetic sensor has a large error if there is an electric circuit that generates a DC magnetic field in the surroundings. Therefore, it is necessary to devise to minimize the influence of the circuit section attached to the antenna section arranged below the patch antenna.

本発明では上述の様なパッチアンテナの輻射効率、輻
射指向性に地磁気センサ3が悪影響を及ぼさぬよう第1
図に示すように放射体4の中央附近のパッチと回路収納
部2の天井面であるアース板との間に地磁気センサ3を
配設してある。この場合地磁気センサ3の存在はパッチ
アンテナのインピーダンス特性に悪影響を与えるのみで
あり、アンテナの輻射特性への影響は少ない。
In the present invention, the geomagnetic sensor 3 does not adversely affect the radiation efficiency and radiation directivity of the patch antenna as described above.
As shown in the figure, the geomagnetic sensor 3 is arranged between the patch near the center of the radiator 4 and the ground plate which is the ceiling surface of the circuit housing 2. In this case, the presence of the geomagnetic sensor 3 only adversely affects the impedance characteristic of the patch antenna, and has little influence on the radiation characteristic of the antenna.

一方、地磁気センサ3の特性に対してパッチアンテナ
及び回路部が悪影響を及ぼさないようにする為に回路部
は磁性体板で形成した筐体2内に収納して磁気シールド
を施し、放射体4は非磁性体板で構成している。この場
合筐体2を構成する磁性体板がアース板としての導電率
を良好にする必要もあるので錫鍍金鋼板等の導電鍍金処
理をした磁性体板を使用する。また上記放射体4を形成
する非磁性体板もパッチアンテナ特性を良好にする為に
導電率の良好な銅板、アルミニュウム板等を用いてい
る。
On the other hand, in order to prevent the patch antenna and the circuit section from adversely affecting the characteristics of the geomagnetic sensor 3, the circuit section is housed in a housing 2 formed of a magnetic material plate, magnetically shielded, and the radiator 4 is provided. Is composed of a non-magnetic plate. In this case, it is necessary that the magnetic material plate constituting the housing 2 has good conductivity as an earth plate, and therefore a magnetic material plate such as a tin-plated steel plate which has been subjected to conductive plating is used. Further, as the non-magnetic material plate forming the radiator 4, a copper plate, an aluminum plate or the like having good conductivity is used in order to improve the patch antenna characteristics.

第3図は上記の構成でGPS受信用アンテナに地磁気セ
ンサ3を組込んだ場合の回路を示しており、地磁気セン
サ3の励磁巻線11には励磁信号発振器15から出力され、
励磁信号増幅器16で増幅された40KHzの正弦波が印加さ
れるようになっている。
FIG. 3 shows a circuit in the case where the geomagnetic sensor 3 is incorporated in the GPS receiving antenna with the above configuration, and the excitation winding 11 of the geomagnetic sensor 3 outputs the signal from the excitation signal oscillator 15.
The 40 KHz sine wave amplified by the excitation signal amplifier 16 is applied.

また環状コア8が励磁信号により飽和レベル迄励磁さ
れた結果生じた2倍の周波数成分(例えば80KHz)信号
が直交した出力巻線9,10によって地磁気の影響を受けな
がら検出されるので帯域通過フイルタ17,18により選択
するようになっている。
Further, since the double frequency component (for example, 80 KHz) signal generated as a result of the annular core 8 being excited to the saturation level by the excitation signal is detected by the orthogonal output windings 9 and 10 while being influenced by the geomagnetism, the band pass filter is detected. It is designed to be selected by 17,18.

帯域通過フイルタ17,18を通過した信号は増幅器19,20
で夫々増幅され、更に振幅検波器21,22で検波され、直
流増幅器23,24で直流増幅される。
The signals passed through the band pass filters 17 and 18 are amplifiers 19 and 20.
Respectively, are detected by the amplitude detectors 21 and 22, and are DC-amplified by the DC amplifiers 23 and 24.

この直流増幅された地磁気の影響含む信号成分から地
磁気磁束の出力巻線9,10との鎖交角度が逆演算回路25で
求められる。例えば上記励磁信号のレベルを環状コア8
の飽和レベル直前のレベルに設定し、地磁気の静磁界に
より環状コア8が飽和するようにすれば地磁気と、一方
の出力巻線9又は10との鎖交角をθとしたとき、一方の
出力巻線9又は10からの2倍歪波検出レベルはsinθに
比例し、他方の出力巻線10又は9からの2倍歪検出レベ
ルはCOSθに比例するので各出力巻線9,10からの出力の
比を取り、逆正接を求めれば鎖交角θを検出できること
になる。このような逆演算回路25はダイオードと演算増
幅器を用いて容易に構成できる。
From the DC-amplified signal component including the influence of the geomagnetism, the interlocking angle of the geomagnetic flux with the output windings 9 and 10 is obtained by the inverse calculation circuit 25. For example, the level of the excitation signal is set to the annular core 8
Is set to a level immediately before the saturation level, and the annular core 8 is saturated by the static magnetic field of the earth's magnetism. When the interlinkage angle between the earth's magnetism and one of the output windings 9 or 10 is θ, one output winding is The double distortion wave detection level from line 9 or 10 is proportional to sin θ, and the double distortion detection level from the other output winding 10 or 9 is proportional to COS θ, so the output from each output winding 9 and 10 If the ratio is calculated and the arctangent is calculated, the interlinkage angle θ can be detected. Such an inverse operation circuit 25 can be easily constructed by using a diode and an operational amplifier.

逆演算回路25により検出された地磁気と出力巻線9,10
の鎖交角度信号は、FM変調器26を介して高周波信号(例
えば100KHzのFM信号)に変換され、更にコンデンサ27、
コイル28よりなる直列共振回路(この場合は共振周波数
100KHz)で同軸ケーブル6に供給される。
Geomagnetism detected by the inverse operation circuit 25 and output winding 9,10
The interlinking angle signal of is converted into a high frequency signal (for example, an FM signal of 100 KHz) via the FM modulator 26, and further, a capacitor 27,
Series resonance circuit consisting of coil 28 (resonance frequency in this case)
It is supplied to the coaxial cable 6 at 100 KHz.

一方GPS受信用アンテナAで受信された1.5GHz帯の信
号は帯域通過フイルタ29、高質幅器30、結合コンデンサ
31を介して同軸ケーブル6に供給される。
On the other hand, the 1.5 GHz band signal received by the GPS receiving antenna A is a band pass filter 29, a high quality amplifier 30, a coupling capacitor.
It is supplied to the coaxial cable 6 via 31.

この同軸ケーブル6の一点鎖線で区分した左側の部分
は移動体内部に搭載された信号処理回路(図示せず)の
一部であり、端子32より高周波チョークコイル33を介し
て直流電源が供給され、同軸ケーブル6のアンテナ部
(図中一点鎖線の右側に部分)側で高周波チョークコイ
ル34により直流成分が分離され、端子35よりアンテナ部
の直流電源を得るよう構成されている。
The left-hand side section of the coaxial cable 6 sectioned by the alternate long and short dash line is a part of a signal processing circuit (not shown) mounted inside the moving body, and DC power is supplied from the terminal 32 through the high frequency choke coil 33. The DC component is separated by the high frequency choke coil 34 on the side of the antenna portion of the coaxial cable 6 (the portion on the right side of the alternate long and short dash line in the figure), and a DC power source for the antenna portion is obtained from the terminal 35.

尚コンデンサ36は結合コンデンサ、端子37はGPS受信
信号取り出し端子、コイル38、コンデンサ39は直列共振
回路(この場合の共振周波数は100KHz)であり、端子40
は地磁気角度信号取り出し端子である。
The capacitor 36 is a coupling capacitor, the terminal 37 is a GPS reception signal extraction terminal, the coil 38 and the capacitor 39 are a series resonance circuit (resonance frequency in this case is 100 KHz), and the terminal 40
Is a geomagnetic angle signal extraction terminal.

上記同軸ケーブル6には1.5GHz帯のGPS受信信号の他
に、角度検出信号(本実施例では100KHz)と直流電源が
重畳されるので、コンデンサ31,36のリアクタンスは角
度検出信号周波に対しては充分大きくなるように、また
直列共振回路を構成するコイル28、コンデンサ27及びコ
イル38、コンデンサ39のインピーダンスはGPS受信信号
周波に対して充分大きくなるように選択される。更に高
周波チョークコイル34,33のリアクタンスは角度検出信
号周波、GPS受信信号周波のいずれに対しても充分大き
くなるように選ぶ。
In addition to the GPS reception signal in the 1.5 GHz band, the coaxial cable 6 is superposed with the angle detection signal (100 KHz in this embodiment) and the DC power source, so that the reactances of the capacitors 31 and 36 with respect to the angle detection signal frequency. Is sufficiently large, and the impedances of the coil 28, the capacitor 27 and the coil 38, and the capacitor 39 which form the series resonance circuit are selected to be sufficiently large with respect to the GPS reception signal frequency. Further, the reactances of the high frequency choke coils 34 and 33 are selected to be sufficiently large for both the angle detection signal frequency and the GPS reception signal frequency.

[発明の効果] 本発明は放射体とアース板との間に地磁気センサを配
置したものであるから、パッチアンテナの開口部から地
磁気センサを遠ざけることができ、その為アンテナの輻
射効率、輻射指向性への影響を少なくして地磁気センサ
を組込むことができるという効果が有る。
EFFECTS OF THE INVENTION Since the present invention has the geomagnetic sensor arranged between the radiator and the ground plate, the geomagnetic sensor can be moved away from the opening of the patch antenna, and therefore the radiation efficiency and radiation directivity of the antenna can be increased. There is an effect that a geomagnetic sensor can be incorporated with less influence on the sex.

またアンテナ部に付属する回路部を収納する筐体の一
部でアース板を構成し、且つ上記筐体を磁性体板で構成
して前記回路部の磁気シールドを施すことにより地磁気
センサに対する上記回路部から発生する直流磁界の影響
を少なくできる。
Further, the earth plate is formed by a part of the housing for accommodating the circuit part attached to the antenna part, and the housing is made of a magnetic material plate to magnetically shield the circuit part. The influence of the DC magnetic field generated from the part can be reduced.

更に地磁気センサの検出信号処理手段の出力信号を高
周波信号に変換してアンテナ部の出力用同軸ケーブルに
重畳する手段を備えるとともに、この重畳する手段をア
ンテナ部に付属する回路部と同一の筐体に収納するの
で、同軸ケーブルを筐体より一本外部に導出するだけで
回路部の地磁気センサの回路部への電源供給及びGPS受
信信号及び地磁気センサの検出信号の取り出しが行な
え、その結果配線本数が少なく済みシステムの信頼性を
高めることができるという効果が有る。
Furthermore, a means for converting the output signal of the detection signal processing means of the geomagnetic sensor into a high frequency signal and superimposing it on the output coaxial cable of the antenna section is provided, and this superimposing means is the same casing as the circuit section attached to the antenna section. Since it is housed in the housing, power can be supplied to the circuit part of the geomagnetic sensor of the circuit part and the GPS reception signal and the detection signal of the geomagnetic sensor can be taken out only by pulling out one coaxial cable from the housing. There is an effect that the reliability of the system can be improved by reducing the number of problems.

更にまた放射体を非磁性体導電板で構成することによ
り地磁気センサにアンテナ部の影響を少なくすることが
できるという効果が有る。
Furthermore, by constructing the radiator with a non-magnetic conductive plate, the effect of the antenna section on the geomagnetic sensor can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明の実施例の断面図、第1図(b)
は同上の一部破断せる上面図、第2図は同上の地磁気セ
ンサの拡大斜視図、第3図は同上の回路図である。 2は筐体、3は地磁気センサ、4は放射体、6は同軸ケ
ーブルである。
FIG. 1 (a) is a sectional view of an embodiment of the present invention, and FIG. 1 (b).
Is a partially cutaway top view of the above, FIG. 2 is an enlarged perspective view of the geomagnetic sensor of the above, and FIG. 3 is a circuit diagram of the same. Reference numeral 2 is a housing, 3 is a geomagnetic sensor, 4 is a radiator, and 6 is a coaxial cable.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パッチアンテナを構成するアンテナ部の放
射体とアース体との間に地磁気センサを配置したことを
特徴とするGPS受信用アンテナ。
1. A GPS receiving antenna characterized in that a geomagnetic sensor is arranged between a radiator and a grounding body of an antenna section constituting a patch antenna.
【請求項2】アンテアン部に付属する回路部を収納する
筐体の一部でアース板を構成し、且つ上記筐体を磁性体
板で構成して、前記回路部の磁気シールドを施して成る
ことを特徴とする請求項1記載のGPS受信用アンテナ。
2. A grounding plate is formed by a part of a housing for accommodating a circuit part attached to the antenna part, and the housing is made of a magnetic material plate so that the circuit part is magnetically shielded. The GPS receiving antenna according to claim 1, wherein:
【請求項3】地磁気センサの検出信号処理手段の出力信
号を高周波信号に変換してアンテナ部の出力用同軸ケー
ブルに重畳する手段を備えるとともに、この重畳する手
段をアンテナ部に付属する回路部と同一の筐体に収納し
て成ることを特徴とする請求項2記載のGPS受信用アン
テナ。
3. A means for converting the output signal of the detection signal processing means of the geomagnetic sensor into a high frequency signal and superimposing it on the output coaxial cable of the antenna section, and a circuit section attached to the antenna section. The GPS receiving antenna according to claim 2, wherein the GPS receiving antenna is housed in the same housing.
【請求項4】放射体を非磁性体導電板で構成して成るこ
とを特徴とする請求項1記載のGPS受信用アンテナ。
4. The GPS receiving antenna according to claim 1, wherein the radiator is composed of a non-magnetic conductive plate.
JP63202309A 1988-08-12 1988-08-12 GPS receiving antenna Expired - Lifetime JP2566295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202309A JP2566295B2 (en) 1988-08-12 1988-08-12 GPS receiving antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202309A JP2566295B2 (en) 1988-08-12 1988-08-12 GPS receiving antenna

Publications (2)

Publication Number Publication Date
JPH0251083A JPH0251083A (en) 1990-02-21
JP2566295B2 true JP2566295B2 (en) 1996-12-25

Family

ID=16455412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202309A Expired - Lifetime JP2566295B2 (en) 1988-08-12 1988-08-12 GPS receiving antenna

Country Status (1)

Country Link
JP (1) JP2566295B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253060A (en) * 2004-02-04 2005-09-15 Yokoba Kogyo Kk Monitoring camera apparatus and monitoring camera system
US9314921B2 (en) 2011-03-17 2016-04-19 Sarcos Lc Robotic lift device with human interface operation
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
US8942846B2 (en) 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US8977388B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Platform perturbation compensation
US8977398B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Multi-degree of freedom torso support for a robotic agile lift system
KR101804579B1 (en) * 2011-07-11 2017-12-05 삼성전자주식회사 Inputting device
WO2013009071A2 (en) 2011-07-11 2013-01-17 Samsung Electronics Co., Ltd. Input device
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
JP6408265B2 (en) * 2014-06-26 2018-10-17 株式会社クボタ Paddy field machine

Also Published As

Publication number Publication date
JPH0251083A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
US3495264A (en) Loop antenna comprising plural helical coils on closed magnetic core
US6040806A (en) Circular-polarization antenna
US5568162A (en) GPS navigation and differential-correction beacon antenna combination
US4682125A (en) RF coil coupling for MRI with tuned RF rejection circuit using coax shield choke
JP2566295B2 (en) GPS receiving antenna
US11307273B2 (en) Line with sensor for detecting line-conducted interference in a magnetic resonance tomography apparatus
JPH0530289B2 (en)
JPH03106337A (en) Nuclear magnetic resonance tomograph
US3898565A (en) Magnetic wave communication system
US4717921A (en) Automobile antenna system
US20110291904A1 (en) Extended magnetic core antenna
JP3927727B2 (en) Antenna device
JP4537260B2 (en) Antenna device
US4804966A (en) Automobile antenna system
JP2541080B2 (en) Orthogonal antenna device for MRI device
JP2000082914A (en) Microstrip antenna, antenna device using the antenna and radio device
US9065169B2 (en) High frequency magnetic field antenna
EP0183522B1 (en) Automobile antenna device
JPH066586Y2 (en) External auxiliary antenna
JP2009033707A (en) Antenna element and antenna unit
USH1217H (en) Easily tunable detector for covering discontinuities in buried energized antenna ground wipes
US20210408690A1 (en) Compact integrated gnss-uhf antenna system
JP3434219B2 (en) antenna
JPH1051225A (en) Antenna device
CN216288950U (en) Antenna, information processing device, and composite antenna device