JPH0251056A - Detector for ionization of hydrogen flame - Google Patents

Detector for ionization of hydrogen flame

Info

Publication number
JPH0251056A
JPH0251056A JP63200068A JP20006888A JPH0251056A JP H0251056 A JPH0251056 A JP H0251056A JP 63200068 A JP63200068 A JP 63200068A JP 20006888 A JP20006888 A JP 20006888A JP H0251056 A JPH0251056 A JP H0251056A
Authority
JP
Japan
Prior art keywords
sample
hydrogen
hydrogen flame
flame
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63200068A
Other languages
Japanese (ja)
Inventor
Katsutoshi Hirose
勝敏 広瀬
Isao Murase
功 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63200068A priority Critical patent/JPH0251056A/en
Publication of JPH0251056A publication Critical patent/JPH0251056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To reduce a response time to the detection from the taking of a sample by forming a sample introduction path for introducing a hydrogen flame to the sample separately as a whole independent of a hydrogen introduction path to allow the feeding of the sample into the hydrogen flame in a short time. CONSTITUTION:A sample introduction path is formed separately independent of a hydrogen nozzle 3 as a hydrogen introduction path in such a manner that a capillary 17 for introducing a sample to a hydrogen flame 6 is run through a base 1B of detector 1 to be led directly to a position where the hydrogen flame 6 is formed. In operation, the sample is fed to the hydrogen flame 6 in a short time and components to be measured in the sample receives energy of the hydrogen flame instantaneously to be ionized, thereby enabling the recording of a density of the components to be measured on a photo coder 14 through an amplifying section 13. It should be noted that a response time to the detection from the taking of a sample is only as short as 5msec according to this construction.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、水素炎イオン化検出装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a hydrogen flame ionization detection device.

〈従来の技術〉 一般に、気体は常温・常圧のもとでは電気伝導性を持た
ないが、気体分子のイオン化を促すのに充分なエネルギ
ー源が存在すると、帯電した原子或いは分子、自由電子
が生成され、そこに外部から適当な電場をかけると、そ
の気体が電気伝導性を帯びてくる。このような現象を応
用したものが水素炎イオン化検出装置であり、測定対象
成分を定量的に分析することができる。
<Prior art> Generally, gases do not have electrical conductivity at room temperature and pressure, but when a sufficient energy source exists to promote ionization of gas molecules, charged atoms or molecules and free electrons When a suitable electric field is applied from the outside, the gas becomes electrically conductive. A flame ionization detection device is an application of such a phenomenon, and is capable of quantitatively analyzing the component to be measured.

かかる水素炎イオン化検出装置としては、従来、例えば
第8図に示すようなものが知られている。
As such a hydrogen flame ionization detection device, for example, the one shown in FIG. 8 is known.

(昭和51年3月 株式会社 堀場製作所発行rMEX
A−8X20シリーズサービスマニュアル」参照)。
(March 1976 Published by Horiba Ltd. rMEX
(Refer to "A-8X20 Series Service Manual").

即ら、減圧された検出器1内空間に水素供給源2から水
素ノズル3を介して供給された水素は、助燃空気供給源
4から検出器1内空間に供給された空気と混合する。こ
の混合気は点火栓5により点火されて燃焼し、気体分子
のイオン化を促すのに必要なエネルギー源としての水素
炎6が形成される。
That is, the hydrogen supplied from the hydrogen supply source 2 to the depressurized interior space of the detector 1 through the hydrogen nozzle 3 mixes with the air supplied to the detector 1 interior space from the auxiliary combustion air supply source 4. This air-fuel mixture is ignited by a spark plug 5 and combusted, forming a hydrogen flame 6 as an energy source necessary to promote ionization of gas molecules.

一方、定量分析すべき成分を含む採取試料は、試料供給
系としてのサンプルライン15から分岐したキャピラリ
7を介して水素ノズル3に形成された合流点3aで合流
し、水素と混在して、水素ノズル3から水素炎6中に投
入される。その投入量は検出器1と該検出器1上部の排
出口8と試料吸引用の真空ポンプ9の間に配設されてい
る定圧調整装置IOの調整作用によって調整され、定量
化される。
On the other hand, the collected sample containing components to be quantitatively analyzed flows through a capillary 7 branched from a sample line 15 serving as a sample supply system to a confluence point 3a formed in a hydrogen nozzle 3, mixes with hydrogen, and becomes hydrogen. It is thrown into the hydrogen flame 6 from the nozzle 3. The input amount is adjusted and quantified by the adjustment action of a constant pressure adjustment device IO disposed between the detector 1, the discharge port 8 on the upper part of the detector 1, and the vacuum pump 9 for sucking the sample.

水素炎6に投入された試料中の測定対象成分は、水素炎
6中で燃焼してイオン化を起こし、炎6が電気伝導性を
帯びると、炎6を挟んで対向した一対の電極11.12
の間の電場によってイオン化された測定対象成分の濃度
に比例した微小電流が流れる。この微小電流を高抵抗を
配した増幅部13を介して電圧値として検出し、フォト
コーダ14に記録する。電極で捕らえたイオン化量は測
定対象成分の濃度と一定の相関があることから、前述の
電圧値を知ることにより、測定対象成分の未知濃度を定
量分析できるのである。
The component to be measured in the sample put into the hydrogen flame 6 burns in the hydrogen flame 6 and causes ionization, and when the flame 6 becomes electrically conductive, a pair of electrodes 11 and 12 facing each other with the flame 6 in between
A minute current proportional to the concentration of the target component ionized by the electric field between the two flows. This minute current is detected as a voltage value via an amplifying section 13 equipped with a high resistance, and is recorded on a photocoder 14. Since the amount of ionization captured by the electrode has a certain correlation with the concentration of the component to be measured, by knowing the voltage value mentioned above, it is possible to quantitatively analyze the unknown concentration of the component to be measured.

尚、かかる水素炎イオン化検出装置によって定量分析で
きる測定対象成分は炭化水素化合物に限られる。
Note that the components to be measured that can be quantitatively analyzed by such a hydrogen flame ionization detection device are limited to hydrocarbon compounds.

〈発明が解決しようとする課題〉 しかしながら、このような従来の水素炎イオン化検出装
置にあっては、採取試料がサンプルライン15から分岐
したキャピラリ7を介して水素ノズル3の途中に形成さ
れた合流点3aに供給され、該合流点3aで水素と混在
して炎6中に投入される試料供給経路となっていたため
、サンプルライン15の試料採取口15aから試料が採
取されてから上述した電圧値として検出されるまでの時
間は1秒程度かかり、応答時間が遅いという欠点がある
<Problems to be Solved by the Invention> However, in such a conventional hydrogen flame ionization detection device, the collected sample passes through the capillary 7 branched from the sample line 15 to the confluence formed in the middle of the hydrogen nozzle 3. Since the sample was supplied to the point 3a and mixed with hydrogen at the confluence point 3a and thrown into the flame 6, the above-mentioned voltage value after the sample was collected from the sample collection port 15a of the sample line 15 It takes about 1 second to be detected, and there is a drawback that the response time is slow.

このため、例えば、自動車のエンジンから吸入、圧縮、
膨張、排気と短時間でサイクルする各行程時のエンジン
シリンダ内の測定対象成分即ち、炭化水素化合物の濃度
を定量分析しようとすると、上述のように応答時間が遅
いために測定することが極めて困難であった。
For this reason, for example, intake, compression,
If you try to quantitatively analyze the concentration of the component to be measured, that is, the hydrocarbon compound, in the engine cylinder during each stroke, which cycles through expansion and exhaust in a short period of time, it is extremely difficult to measure it due to the slow response time as described above. Met.

そこで、本発明はかかる従来の問題点に鑑み、試料供給
経路構造の改良により、検出時間の短縮化を図り、応答
性の向上を図った水素炎イオン化検出装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In view of these conventional problems, an object of the present invention is to provide a hydrogen flame ionization detection device in which the detection time is shortened and responsiveness is improved by improving the structure of the sample supply path.

〈課題を解決するための手段〉 このため、本発明は、減圧下の水素炎に連続的に投入し
た試料中の測定対象成分のイオン化を検出する水素炎イ
オン化検出装置において、前記試料を水素炎に導く試料
導入通路全体を水素導入通路とは別個独立させて形成し
た。
<Means for Solving the Problems> Therefore, the present invention provides a hydrogen flame ionization detection device that detects the ionization of a component to be measured in a sample continuously introduced into a hydrogen flame under reduced pressure. The entire sample introduction passage leading to hydrogen was formed separately from the hydrogen introduction passage.

〈作用〉 かかる構成では、試料導入通路全体を水素導入通路とは
別個独立させて形成するようにしたから、試料が短時間
で水素炎に投入され、試料中の測定対象成分が瞬時に水
素炎の工♀ルギによってイオン化され、試料採取から検
出までの応答時間が短縮化される。
<Function> In this configuration, since the entire sample introduction passage is formed separately from the hydrogen introduction passage, the sample is thrown into the hydrogen flame in a short time, and the component to be measured in the sample is instantly absorbed into the hydrogen flame. ionization process, shortening the response time from sample collection to detection.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

以下に説明する第1図〜第7図において、第8図と同一
要素のものには同一符号を付して説明を簡単にする。
In FIGS. 1 to 7 described below, the same elements as those in FIG. 8 are given the same reference numerals to simplify the explanation.

図において、検出器1本体は、基台IAと該基台IA上
面に立てられた底面開放の円筒状の室形成部材IBとか
ら構成される。水素供給源2から水素が導かれる水素導
入通路としての水素ノズル3は、前記基台IAの側面か
ら該基台IA内に水平に突入された後上方に直角に折曲
され、基台IA上面から鉛直方向に突出されて、先端供
給口3bが室形成部材IB内空間に開口される。助燃空
気供給源4がら空気が導かれる空気管16は、前記基台
IAの側面から該基台IA内に水平に突入された後、こ
の水平管部の複数位置から垂直管部が上方に延びて基台
IA上面の水素ノズル3周りの位置から先端供給口16
aが室形成部材IB内空間に開口される。定量分析すべ
き成分を含む採取試料が導かれる試料導入通路としての
キャピラリ17は、前記基台IAの底面から該基台IA
内に鉛直方向に延びて内設された保持部材18に突入さ
れ、基台IA上面から垂直方向に突出されて、先端供給
口17aが水素炎6形成位置に開口される。キャピラリ
17の基端試料採取口17bは、基台IA外部において
中空部材19からなる試料室20内に連通接続される。
In the figure, the main body of the detector 1 is composed of a base IA and a cylindrical chamber forming member IB with an open bottom and erected on the top surface of the base IA. The hydrogen nozzle 3, which serves as a hydrogen introduction passage through which hydrogen is introduced from the hydrogen supply source 2, is inserted horizontally into the base IA from the side surface of the base IA, and then bent upward at a right angle, so that the The distal end supply port 3b is projected vertically from the distal end supply port 3b and is opened into the inner space of the chamber forming member IB. The air pipe 16 through which air is guided from the auxiliary combustion air supply source 4 is inserted horizontally into the base IA from the side surface of the base IA, and then vertical pipe parts extend upward from a plurality of positions of the horizontal pipe part. from the position around the hydrogen nozzle 3 on the top surface of the base IA to the tip supply port 16.
a is opened into the inner space of the chamber forming member IB. A capillary 17 serving as a sample introduction passage through which a sample containing a component to be quantitatively analyzed is introduced is connected from the bottom of the base IA to the base IA.
It is inserted into a holding member 18 that extends vertically and is installed inside the base IA, and is projected vertically from the upper surface of the base IA, so that the tip supply port 17a is opened at the hydrogen flame 6 forming position. A proximal sample sampling port 17b of the capillary 17 is connected to a sample chamber 20 made of a hollow member 19 outside the base IA.

この試料室20内には、図示しない試料供給部からの試
料が周部の供衿口19aを介して供給される。
A sample is supplied into the sample chamber 20 from a sample supply section (not shown) through a supply opening 19a on the periphery.

室形成部材IBの上側周部に形成された排出口8にはオ
リフィス21と定圧調整装置22と真空ポンプ9とが介
装された吸引管23が連通接続される。
A suction pipe 23 in which an orifice 21, a constant pressure adjustment device 22, and a vacuum pump 9 are interposed is connected to a discharge port 8 formed on the upper circumference of the chamber forming member IB.

又、室形成部材IB内の上部には点火栓5が配設される
Further, an ignition plug 5 is disposed at the upper part of the chamber forming member IB.

室形成部材IB内には、炎6を挟んで相対向した一対の
電極11.12が配設されている。一方の電極11の端
子は電源24の一端子に接続され、他方の電極12の端
子は増幅部13のOPアンプ25の一方の入力部に接続
される。OPアンプ25の他方の入力部はアースされる
。OPアンプ25の出力部はフォトコーダ14に接続さ
れる。電極12の端子とOPアンプ25の入力部の間の
人力ラインは抵抗26を介してOPアンプ25の出力ラ
インに接続される。前記電源24の十端子は抵抗27を
介してOPアンプ25の出力ラインに接続される。
A pair of electrodes 11 and 12 facing each other with the flame 6 in between is arranged within the chamber forming member IB. A terminal of one electrode 11 is connected to one terminal of a power supply 24 , and a terminal of the other electrode 12 is connected to one input part of an OP amplifier 25 of the amplifying section 13 . The other input section of the OP amplifier 25 is grounded. The output section of the OP amplifier 25 is connected to the photocoder 14. The human power line between the terminal of the electrode 12 and the input of the OP amplifier 25 is connected to the output line of the OP amplifier 25 via a resistor 26 . The terminal of the power supply 24 is connected to the output line of an OP amplifier 25 via a resistor 27.

尚、40は検出器1の室形成部材IB内の圧力を表示す
るメータである。
Note that 40 is a meter that displays the pressure within the chamber forming member IB of the detector 1.

かかる構成において、測定対象成分の未知濃度の定量分
析作用については従来と同様である。
In this configuration, the quantitative analysis function for the unknown concentration of the component to be measured is the same as the conventional one.

試料の導入については、次のように行われる。Introduction of the sample is performed as follows.

試料室20内の試料は、真空ポンプ9の作動により、検
出器1の室形成部材IB内が減圧されることにより試料
採取口17bからキャピラリ17に導入され、該キャピ
ラリ17の先端供給口17aから水素炎6に導かれる。
The sample in the sample chamber 20 is introduced into the capillary 17 from the sample collection port 17b by reducing the pressure in the chamber forming member IB of the detector 1 by the operation of the vacuum pump 9, and is introduced into the capillary 17 from the tip supply port 17a of the capillary 17. Guided by hydrogen flame 6.

試料の投入量は、前記オリフィス21及び定圧調整装置
22の定圧作用により定量化される。
The amount of sample input is quantified by the constant pressure action of the orifice 21 and the constant pressure adjusting device 22.

かかる構成によると、試料を水素炎6に導くキャピラリ
17を検出器lの基台IBを貫通させて、直接的に水素
炎6形成位置に導くようにして、試料導入通路全体を水
素導入通路としての水素ノズル3とは別個独立させて形
成するようにしたから、試料が短時間で水素炎に投入さ
れ、試料中の測定対象成分が瞬時に水素炎のエネルギを
受けてイオン化し増幅部13を介してフォトコーダ14
に測定対象成分濃度を記録することが可能となる。
According to this configuration, the capillary 17 that guides the sample to the hydrogen flame 6 passes through the base IB of the detector l and is guided directly to the hydrogen flame 6 formation position, so that the entire sample introduction passage can be used as a hydrogen introduction passage. Since the hydrogen nozzle 3 is formed separately from the hydrogen nozzle 3, the sample is thrown into the hydrogen flame in a short time, and the components to be measured in the sample instantly receive the energy of the hydrogen flame and are ionized, causing the amplification section 13 to be ionized. via photocoder 14
It becomes possible to record the concentration of the component to be measured.

因みに、上記の構成によれば、試料採取から検出までの
応答時間は約5ms e cという短時間である。
Incidentally, according to the above configuration, the response time from sample collection to detection is as short as about 5 msec.

向、上記フォトコーダ14は短時間の応答に追従して記
録できるものである。
On the other hand, the photocoder 14 is capable of following and recording short-term responses.

従って、例えば、自動車のエンジンから吸入、圧縮、膨
張、排気と短時間でサイクルする各行程時のエンジンシ
リンダ内の測定対象成分即ち、炭化水素化合物の濃度を
定量分析する場合にも、上述のように応答時間が早いた
めに容易にかつ精度良く測定することができるようにな
る。
Therefore, for example, when quantitatively analyzing the concentration of a component to be measured, that is, a hydrocarbon compound, in an engine cylinder during each short cycle of intake, compression, expansion, and exhaust from an automobile engine, the above-mentioned method can be used. Because the response time is fast, measurements can be made easily and with high accuracy.

ここで、上述のように、試料採取から検出までの応答時
間が約5ms e cという短時間であると、検出器1
の室形成部材IB内に加わる圧力(負圧)の変動、つま
り真空ポンプ9の回転によって起こる脈動の影響を受け
る。従って、本実施例においては、検出器1と真空ポン
プ9との間にオリフィス21と定圧調整装置22を介在
させて、検出器1の室形成部材IB内の圧力が一定にな
るように制御可能としている。
Here, as mentioned above, if the response time from sample collection to detection is as short as about 5 msec, the detector 1
It is affected by fluctuations in the pressure (negative pressure) applied within the chamber forming member IB, that is, by pulsations caused by the rotation of the vacuum pump 9. Therefore, in this embodiment, by interposing the orifice 21 and the constant pressure adjusting device 22 between the detector 1 and the vacuum pump 9, it is possible to control the pressure in the chamber forming member IB of the detector 1 to be constant. It is said that

又、上記の水素炎イオン化検出装置によると、装置は大
きく分けて検出部と増幅部と真空ポンプ部とから構成さ
れるので、コンパクトで持ち運びが容易であるという利
点がある。
Further, according to the above-mentioned hydrogen flame ionization detection device, since the device is mainly composed of a detection section, an amplification section, and a vacuum pump section, it has the advantage of being compact and easy to carry.

更に、キャピラリ17の先端供給口17aは狭い場所で
も問題なく設置できる。
Furthermore, the tip supply port 17a of the capillary 17 can be installed without any problem even in a narrow space.

次に、本発明の他の実施例を第2図に示す。Next, another embodiment of the present invention is shown in FIG.

この実施例においては、水素ノズル3とは別個独立させ
て設けたキャピラリ28を、該水素ノズル3内側を通し
て水素炎6へと導くようにしたものである。
In this embodiment, a capillary 28 provided separately from the hydrogen nozzle 3 is guided to the hydrogen flame 6 through the inside of the hydrogen nozzle 3.

即ち、検出器■の基台IAにおける水素ノズル3の鉛直
部を下方に延長して該基台IAの底面に開口する。
That is, the vertical part of the hydrogen nozzle 3 on the base IA of the detector (1) is extended downward to open at the bottom surface of the base IA.

そして、キャピラリ28は、前記基台IA底而面開口さ
れた水素ノズル3の開口部から該ノズル3内に挿通され
、先端供給口28aが水素ノズル3の先端供給口3b位
置に開口される。
The capillary 28 is inserted into the hydrogen nozzle 3 through the opening of the hydrogen nozzle 3 opened at the bottom of the base IA, and the tip supply port 28a is opened at the tip supply port 3b of the hydrogen nozzle 3.

尚、基台IA底面に開口された水素ノズル3の開口部に
はシール部材29を設けて、該ノズル3内の気密性を保
持する。
Note that a sealing member 29 is provided at the opening of the hydrogen nozzle 3 opened at the bottom surface of the base IA to maintain airtightness within the nozzle 3.

かかる構成においても、先の実施例と同様の作用・効果
を奏するのは言うまでもなく、特に、キャピラリ28を
、水素ノズル3内側を利用して水素炎6へと導くように
したから、基台IAにキャピラリー専用の挿通部を別途
設ける必要がなく、構成の簡略化を図れる。
Needless to say, this configuration also provides the same functions and effects as the previous embodiment, and in particular, since the capillary 28 is guided to the hydrogen flame 6 using the inside of the hydrogen nozzle 3, the base IA There is no need to separately provide an insertion section dedicated to the capillary, and the configuration can be simplified.

ここで、上記の各実施例においては、試料採取から検出
までの応答時間を短縮するひとつの方法として、試料採
取口から採取した試料を急速に水素炎6内に投入するべ
(、検出器1の室形成部材IB内を減圧下におくように
構成されている。
In each of the above embodiments, as one method for shortening the response time from sample collection to detection, the sample collected from the sample collection port should be rapidly introduced into the hydrogen flame 6 (the detector 1 The inside of the chamber forming member IB is placed under reduced pressure.

この結果、検出器1の室形成部材IB内における水素炎
6が該室形成部材IB内の圧力減少に従って乱れる現象
が生じる可能性が有り、このため、水素炎6に投入され
た測定対象成分の安定したイオン化が妨げられ、精度良
い測定が困難となる。
As a result, a phenomenon may occur in which the hydrogen flame 6 in the chamber forming member IB of the detector 1 is disturbed as the pressure within the chamber forming member IB decreases, and for this reason, the amount of the component to be measured introduced into the hydrogen flame 6 may be disturbed. Stable ionization is hindered, making accurate measurement difficult.

又、室形成部材IB内の圧力が所定値以下となると、水
素炎6の失火という事態も生じる。
Further, when the pressure inside the chamber forming member IB becomes less than a predetermined value, a situation may occur in which the hydrogen flame 6 misfires.

従って、検出器1の室形成部材IB内の減圧条件下でも
、安定した水素炎6を形成させるため、水素炎6の上方
に水素炎6の安定化部材を設けるのが好ましい。
Therefore, in order to form a stable hydrogen flame 6 even under reduced pressure conditions in the chamber forming member IB of the detector 1, it is preferable to provide a stabilizing member for the hydrogen flame 6 above the hydrogen flame 6.

第3図〜第5図はこの安定化部材の実施例を示すもので
ある。
3 to 5 show examples of this stabilizing member.

即ち、第3図に示した実施例は、室形成部材IB内の上
部に、中央部に円形の絞り口30aを設けた円形板状の
安定化部材30を水平に配設して固定している。かかる
安定化部材30は、肉厚数mm程度で良く、耐熱性、耐
腐食性を有する材質で形成する。又、絞り口30aは室
形成部材IB内径の1/4程度の径にする。
That is, in the embodiment shown in FIG. 3, a circular plate-shaped stabilizing member 30 having a circular throttle opening 30a in the center is horizontally disposed and fixed in the upper part of the chamber forming member IB. There is. The stabilizing member 30 may have a wall thickness of about several mm, and is made of a material having heat resistance and corrosion resistance. Further, the diameter of the throttle opening 30a is approximately 1/4 of the inner diameter of the chamber forming member IB.

第4図に示した実施例は、室形成部材IB内の上部に、
中央部に円形の絞り口31aを有し、下面が略球面状に
形成された安定化部材31を配設して固定している。
In the embodiment shown in FIG. 4, in the upper part of the chamber forming member IB,
A stabilizing member 31 having a circular aperture 31a in the center and a substantially spherical lower surface is disposed and fixed.

第5図に示した実施例は、室形成部材IB内の上部に、
円錐体形状の安定化部材32をその円錐の頂部が水素ノ
ズル3の先端供給口3bの中心線上に位置するように配
設し、取付脚32bでもって室形成部材IB土壁内面に
吊り下げ支持している。
In the embodiment shown in FIG. 5, in the upper part of the chamber forming member IB,
A cone-shaped stabilizing member 32 is arranged so that the top of the cone is located on the center line of the tip supply port 3b of the hydrogen nozzle 3, and is suspended and supported on the inner surface of the earthen wall of the chamber forming member IB using the mounting legs 32b. are doing.

この場合、負圧による空気の吸引経路は、安定化部材3
2の円錐面と室形成部材IB内周面となる。
In this case, the air suction path due to negative pressure is the stabilizing member 3
2 and the inner peripheral surface of the chamber forming member IB.

かかる水素炎の安定化部材30,31.32によると、
水素炎6に負圧が直接加わる面積を減じることができる
ので、水素炎6が持ち上がる等の現象を防止でき、室形
成部材IB内の圧力が例えば−650mmHgとなる減
圧下においても、安定した水素炎6が維持され、水素炎
6に投入された測定対象成分の安定したイオン化が図ら
れ、精度良い測定が可能となる。又、水素炎6の失火と
いう事態が生じるのも阻止できる。
According to such hydrogen flame stabilizing members 30, 31, 32,
Since the area where negative pressure is directly applied to the hydrogen flame 6 can be reduced, phenomena such as lifting of the hydrogen flame 6 can be prevented, and even under reduced pressure where the pressure inside the chamber forming member IB is -650 mmHg, for example, stable hydrogen can be generated. The flame 6 is maintained, stable ionization of the measurement target component introduced into the hydrogen flame 6 is achieved, and accurate measurement is possible. Furthermore, it is possible to prevent the hydrogen flame 6 from misfiring.

又、上記の各実施例においては、試料がキャビラ1J1
7,28を通じて直接水素炎6に投入される構成である
ため、試料室20内の試料圧力の変化が小さい場合は、
精度良い測定が可能となるが、急激かつ大幅に圧力が変
化した場合には、その変化分に応じて試料導入量が変化
するため、精度良い測定ができなくなってしまう。
Furthermore, in each of the above embodiments, the sample is the cabin 1J1.
Since the configuration is such that the sample is directly introduced into the hydrogen flame 6 through 7 and 28, if the change in sample pressure inside the sample chamber 20 is small,
Accurate measurement is possible, but if the pressure changes suddenly and significantly, the amount of sample introduced changes in accordance with the change, making it impossible to perform accurate measurement.

従って、常に一定の試料量が水素炎6に投入されるよう
にした試料定量化装置を設けるのが好ましい。
Therefore, it is preferable to provide a sample quantification device in which a constant amount of sample is always introduced into the hydrogen flame 6.

第6図及び第7図はこの試料定量化装置の実施例を示す
ものである。
FIGS. 6 and 7 show an embodiment of this sample quantification device.

即ち、第6図に示した実施例は、キャピラリ17の試料
室20近傍から分岐する別のキャピラリ33を設け、こ
の分岐キャピラリ33の先端に逆止弁34を設ける。
That is, in the embodiment shown in FIG. 6, another capillary 33 is provided that branches off from the vicinity of the sample chamber 20 of the capillary 17, and a check valve 34 is provided at the tip of this branched capillary 33.

かかる逆止弁34は、試料室20内の圧力が大気圧より
高くなると開放し、低くなると閉塞するように構成され
ている。
The check valve 34 is configured to open when the pressure inside the sample chamber 20 becomes higher than atmospheric pressure, and close when the pressure becomes lower than the atmospheric pressure.

かかる構成によると、試料室20内の圧力が大気圧より
高くなると逆止弁34が開放することで、高い圧力に相
当する量の試料が分岐キャピラリ33を介して大気に放
出される。又、試料室30内の圧力が大気圧より低くな
ると逆止弁34が閉塞し、試料の大気放出は停止する。
According to this configuration, when the pressure in the sample chamber 20 becomes higher than atmospheric pressure, the check valve 34 opens, and an amount of sample corresponding to the high pressure is released to the atmosphere via the branch capillary 33. Further, when the pressure inside the sample chamber 30 becomes lower than atmospheric pressure, the check valve 34 is closed and the release of the sample to the atmosphere is stopped.

第7図に示した実施例は、上述の分岐キャピラリ33の
先端に電磁式の開閉弁35を設ける一方、該分岐キャピ
ラリ33の分岐部における圧力を検出する圧力センサ3
6と、該圧力センサ36から出力される検出信号に基づ
いて電磁式の開閉弁35の開閉を制御する制御回路37
とを設ける。
In the embodiment shown in FIG. 7, an electromagnetic on-off valve 35 is provided at the tip of the branch capillary 33, and a pressure sensor 3 is provided to detect the pressure at the branch part of the branch capillary 33.
6, and a control circuit 37 that controls opening and closing of the electromagnetic on-off valve 35 based on the detection signal output from the pressure sensor 36.
and

かかる構成によると、試料室20内の圧力が大気圧より
高い状態では、圧力センサ36から出力される検出信号
に基づいて電磁式の開閉弁35が開放制御され、高い圧
力に相当する量の試料が分岐キャピラリ33を介して大
気に放出される。又、試料室20内の圧力が大気圧より
低い状態では、圧力センサ36から出力される検出信号
に基づいて電磁式の開閉弁35が閉塞制御される。
According to this configuration, when the pressure inside the sample chamber 20 is higher than atmospheric pressure, the electromagnetic on-off valve 35 is controlled to open based on the detection signal output from the pressure sensor 36, and the amount of sample corresponding to the high pressure is controlled to open. is released into the atmosphere via the branch capillary 33. Further, when the pressure inside the sample chamber 20 is lower than atmospheric pressure, the electromagnetic on-off valve 35 is controlled to be closed based on the detection signal output from the pressure sensor 36.

以上のように、試料室20内の試料圧力の変化が急激か
つ大幅に圧力が変化した場合に、その変化分に応じて試
料を大気に放出するようにしたから、試料の導入量の変
化を抑えることができ、測定すべき試料が高速で流れ、
急激に圧力変化を起こすような条件下でも、精度良い測
定が可能となる。
As described above, when the sample pressure in the sample chamber 20 suddenly and significantly changes, the sample is released into the atmosphere according to the change, so the change in the amount of sample introduced can be avoided. The sample to be measured flows at high speed.
Accurate measurement is possible even under conditions where pressure changes occur rapidly.

従って、例えば、自動車用エンジンの吸入、圧縮、膨張
、排気とサイクルする各行程のうち圧力が上昇する圧縮
、排気時の測定対象成分である炭化水素化合物も容易に
定量分析できる。
Therefore, for example, it is possible to easily quantitatively analyze hydrocarbon compounds, which are components to be measured during the compression and exhaust cycles in which the pressure increases during each cycle of suction, compression, expansion, and exhaust in an automobile engine.

〈発明の効果〉 以上説明したように、本発明の水素炎イオン化検出装置
によれば、試料導入通路全体を水素導入通路とは別個独
立させて形成するようにしたから、試料を短時間で水素
炎に投入でき、試料中の測定対象成分を瞬時に水素炎の
エネルギによってイオン化できるので、試料採取から検
出までの応答時間の短縮化を図れる。
<Effects of the Invention> As explained above, according to the hydrogen flame ionization detection device of the present invention, the entire sample introduction passage is formed separately and independently from the hydrogen introduction passage, so that the sample can be exposed to hydrogen in a short time. It can be put into a flame and the components to be measured in the sample can be instantaneously ionized by the energy of the hydrogen flame, so the response time from sample collection to detection can be shortened.

この結果、例えば、自動車のエンジンから吸入、圧縮、
膨張、排気と短時間でサイクルする各行程時のエンジン
シリンダ内の測定対象成分即ち、炭化水素化合物の濃度
を定量分析する場合にも、上述のように応答時間が早い
ために容易にかつ精度良く測定することができるように
なる。
As a result, for example, the suction, compression,
The quick response time mentioned above makes it easy and accurate to quantitatively analyze the concentration of hydrocarbon compounds, which are the components to be measured within the engine cylinder during each stroke, which cycles through expansion and exhaust in a short period of time. Be able to measure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水素炎イオン化検出装置の一実施
例を示す系統図、第2図は他の実施例を示す系統図、第
3図〜第5図は夫々同上の水素炎イオン化検出装置に水
素炎の安定化部材を設けた例を示す系統図、第6図及び
第7図は夫々同上の水素炎イオン化検出装置に試料定量
化装置を設けた例を示す系統図、第8図は従来の水素炎
イオン化検出装置の系統図である。 1・・・検出器  3・・・水素ノズル6・・・水素炎
  9・・・真空ポンプ電極  13・・・増幅部  
17,2リ  17a、28a・・・先端供給口試料採
取口  23・・・吸引管  228a・・・先端供給
口 5・・・点火栓 11.12・・・ 8・・・キャピラ 17b・・・ 4・・・電源 特許出願人      日産自動車株式会社代 理 人
   弁理士 笹 島  富二雄第3図
Fig. 1 is a system diagram showing one embodiment of the hydrogen flame ionization detection device according to the present invention, Fig. 2 is a system diagram showing another embodiment, and Figs. 3 to 5 are the same hydrogen flame ionization detection device as above. A system diagram showing an example in which a hydrogen flame stabilizing member is provided in the device; FIGS. 6 and 7 are a system diagram showing an example in which a sample quantification device is provided in the hydrogen flame ionization detection device described above, and FIG. is a system diagram of a conventional hydrogen flame ionization detection device. 1...Detector 3...Hydrogen nozzle 6...Hydrogen flame 9...Vacuum pump electrode 13...Amplification section
17, 2 Li 17a, 28a...Tip supply port sample collection port 23...Suction tube 228a...Tip supply port 5...Ignition plug 11.12...8...Capillar 17b... 4... Power supply patent applicant Nissan Motor Co., Ltd. Representative Patent attorney Fujio Sasashima Figure 3

Claims (1)

【特許請求の範囲】[Claims] 減圧下の水素炎に連続的に投入した試料中の測定対象成
分のイオン化を検出する水素炎イオン化検出装置におい
て、前記試料を水素炎に導く試料導入通路全体を水素導
入通路とは別個独立させて形成したことを特徴とする水
素炎イオン化検出装置。
In a hydrogen flame ionization detection device that detects the ionization of a component to be measured in a sample continuously introduced into a hydrogen flame under reduced pressure, the entire sample introduction passage leading the sample to the hydrogen flame is made separate and independent from the hydrogen introduction passage. A hydrogen flame ionization detection device characterized by the following:
JP63200068A 1988-08-12 1988-08-12 Detector for ionization of hydrogen flame Pending JPH0251056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200068A JPH0251056A (en) 1988-08-12 1988-08-12 Detector for ionization of hydrogen flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200068A JPH0251056A (en) 1988-08-12 1988-08-12 Detector for ionization of hydrogen flame

Publications (1)

Publication Number Publication Date
JPH0251056A true JPH0251056A (en) 1990-02-21

Family

ID=16418310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200068A Pending JPH0251056A (en) 1988-08-12 1988-08-12 Detector for ionization of hydrogen flame

Country Status (1)

Country Link
JP (1) JPH0251056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190942A (en) * 2007-02-02 2008-08-21 Hitachi High-Tech Science Systems Corp Gas chromatograph system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391798A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Hydrogen flame ionization detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391798A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Hydrogen flame ionization detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190942A (en) * 2007-02-02 2008-08-21 Hitachi High-Tech Science Systems Corp Gas chromatograph system

Similar Documents

Publication Publication Date Title
US5073753A (en) Hydrocarbon flame ionization detector
CA1063382A (en) Sampling system for engine exhaust gas analysis apparatus
US5394091A (en) System for detecting compounds in a gaseous sample by measuring photoionization and electron capture induced by spark excitation of helium
US3869370A (en) Method and apparatus for continuously sensing the condition of a gas stream
US3086848A (en) Gas analyzer
GB2312961A (en) Electrochemical gas sensor incorporating heater
US6401522B1 (en) Gas analyzer and method of calibrating the same
US20100084287A1 (en) Anomaly diagnosing apparatus and anomaly diagnosing method for gas sensor
JPH0251056A (en) Detector for ionization of hydrogen flame
US20010052256A1 (en) Gas sensor arrangement
CA2213975A1 (en) Improved system for detecting compounds in a gaseous sample using induced photoionization for electron capture detection
CA2389938A1 (en) Apparatus for the detection and measurement of particulates in molten metal
CN207636494U (en) A kind of hydrogen flame ionization detector
JP2003510589A (en) Method of operating a mixed potential exhaust gas probe and apparatus for performing the method
WO1996006349A1 (en) Improved flame ionization detector
JPH07325020A (en) Sample introducing apparatus for ion analytical instrument
JPH0247547A (en) Detecting apparatus of ionization of hydrogen flame
Pereira et al. On the use of the open photoacoustic cell technique for studying photosynthetic O2 evolution of undetached leaves: Comparison with Clark‐type O2 electrode
US4370060A (en) Flame photometric detector analyzer
JPH05264501A (en) Measuring apparatus of hydrocarbon concentration
CN113376242B (en) Hydrocarbon ion detector
US6107805A (en) Extended detection zone in an ionization detector
CN210199038U (en) Device for detecting sample gas
JPH0412420B2 (en)
CN211627362U (en) Device suitable for spectrum normal position sign