JPH0247547A - Detecting apparatus of ionization of hydrogen flame - Google Patents

Detecting apparatus of ionization of hydrogen flame

Info

Publication number
JPH0247547A
JPH0247547A JP63198088A JP19808888A JPH0247547A JP H0247547 A JPH0247547 A JP H0247547A JP 63198088 A JP63198088 A JP 63198088A JP 19808888 A JP19808888 A JP 19808888A JP H0247547 A JPH0247547 A JP H0247547A
Authority
JP
Japan
Prior art keywords
hydrocarbons
hydrogen flame
detected
sample
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63198088A
Other languages
Japanese (ja)
Other versions
JP2705129B2 (en
Inventor
Isao Murase
功 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63198088A priority Critical patent/JP2705129B2/en
Publication of JPH0247547A publication Critical patent/JPH0247547A/en
Application granted granted Critical
Publication of JP2705129B2 publication Critical patent/JP2705129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To execute a quantitative analysis of various hydrocarbons in a sample as well as all the hydrocarbons by one detecting apparatus, by providing a plurality of detection electrodes. CONSTITUTION:A component to be measured in a sample charged in a hydrogen flame 6 is burnt and ionized and a minute current being proportional to concentration is made to flow by electric fields between the opposite electrodes 11 and 12, and 11 and 28. This minute current is detected as a voltage value through amplifying elements 13 and 29 and outputted to a differential amplifier 31 directly and through a photocoder 14 respectively. An ionization energy of hydrocarbon is lower as a molecule thereof turns higher, in general, and the ionization of methane, for instance, proceeds in a high-temperature part of the hydrogen flame. Therefore, hydrocarbons other than the methane are detected by the detecting electrode 28 being smaller in length than the detecting electrode 12. Accordingly, all the hydrocarbons are detected from the amplifying element 13, while the hydrocarbons other than the methane are detected from the amplifying element 29.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、水素炎イオン化検出装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a hydrogen flame ionization detection device.

〈従来の技術〉 一般に、気体は常温・常圧のもとでは電気伝導性を持た
ないが、気体分子のイオン化を促すのに充分なエネルギ
ー源が存在すると、帯電した原子或いは分子、自由電子
が生成され、そこに外部から適当な電場をかけると、そ
の気体が電気伝導性を帯びてくる。このような現象を応
用したものが水素炎イオン化検出装置であり、測定対象
成分を定量的に分析することができる。
<Prior art> Generally, gases do not have electrical conductivity at room temperature and pressure, but when a sufficient energy source exists to promote ionization of gas molecules, charged atoms or molecules and free electrons When a suitable electric field is applied from the outside, the gas becomes electrically conductive. A flame ionization detection device is an application of such a phenomenon, and is capable of quantitatively analyzing the component to be measured.

かかる水素炎イオン化検出装置としては、従来、例えば
第2図に示すようなものが知られている(昭和51年3
月 株式会社 堀場製作所発行rMEXA−8X20シ
リーズサービスマニユアル」参照)。
As such a hydrogen flame ionization detection device, for example, the one shown in FIG.
(Refer to ``MEXA-8X20 Series Service Manual'' published by Horiba, Ltd.).

即ち、減圧された検出器1内空間に水素供給源2から水
素ノズル3を介して供給された水素は、助燃空気供給源
4から検出器l内空間に供給された空気と混合する。こ
の混合気は点火栓5により点火されて燃焼し、気体分子
のイオン化を促すのに必要なエネルギー源としての水素
炎6が形成される。
That is, hydrogen supplied from the hydrogen supply source 2 to the depressurized interior space of the detector 1 through the hydrogen nozzle 3 mixes with air supplied from the auxiliary combustion air supply source 4 to the interior space of the detector 1. This air-fuel mixture is ignited by a spark plug 5 and combusted, forming a hydrogen flame 6 as an energy source necessary to promote ionization of gas molecules.

一方、定量分析すべき成分を含む採取試料は、試料供給
系としてのサンプルライン15がら分岐したキャピラリ
7を介して水素ノズル3に形成された合流点3aで合流
し、水素と混在して、水素ノズル3から水素炎6中に投
入される。その投入量は検出器1と該検出器1上部の排
出口8と試料吸引用の真空ポンプ9の間に配設されてい
る定圧調整装置10の調整作用によって調整され、定量
化される。
On the other hand, the collected sample containing the components to be quantitatively analyzed flows through a capillary 7 branched from a sample line 15 serving as a sample supply system, merges at a confluence point 3a formed in the hydrogen nozzle 3, and mixes with hydrogen. It is thrown into the hydrogen flame 6 from the nozzle 3. The input amount is adjusted and quantified by the adjustment action of a constant pressure adjustment device 10 disposed between the detector 1, the outlet 8 at the top of the detector 1, and the vacuum pump 9 for sucking the sample.

水素炎6に投入された試料中の測定対象成分は、水素炎
6中で燃焼してイオン化を起こし、炎6が電気伝導性を
帯びると、炎6を挟んで対向した一対の電極11.12
の間の電場によって前記イオン化された測定対象成分の
濃度に比例した微小電流が流れる。この微小電流を高抵
抗を配した増幅部13を介して電圧値として検出し、フ
ォトコーダ14に記録する。電極で捕らえたイオン化量
は測定対象成分の濃度と一定の相関があることから、前
述の電圧値を知ることにより、測定対象成分の未知濃度
を定量分析できるのである。
The component to be measured in the sample put into the hydrogen flame 6 burns in the hydrogen flame 6 and causes ionization, and when the flame 6 becomes electrically conductive, a pair of electrodes 11 and 12 facing each other with the flame 6 in between
A minute current proportional to the concentration of the ionized component to be measured flows due to the electric field between the two. This minute current is detected as a voltage value via an amplifying section 13 equipped with a high resistance, and is recorded on a photocoder 14. Since the amount of ionization captured by the electrode has a certain correlation with the concentration of the component to be measured, by knowing the voltage value mentioned above, it is possible to quantitatively analyze the unknown concentration of the component to be measured.

尚、かかる水素炎イオン化検出装置によって測定できる
測定対象成分は炭化水素化合物に限られる。
Note that the components to be measured that can be measured by such a hydrogen flame ionization detection device are limited to hydrocarbon compounds.

以上の水素炎イオン化検出装置は、例えば、自動車のエ
ンジンから吸入、圧縮、膨張、排気と短時間でサイクル
する各行程時のエンジンシリンダ内の測定対象成分即ち
、炭化水素化合物の濃度を定量分析するのに有効である
The above-mentioned hydrogen flame ionization detection device quantitatively analyzes the concentration of a component to be measured, that is, a hydrocarbon compound, in an engine cylinder during each stroke of an automobile engine that cycles through intake, compression, expansion, and exhaust in a short period of time, for example. It is effective for

〈発明が解決しようとする課題〉 しかしながら、このような従来の水素炎イオン化検出装
置にあっては、一対の電極11.12を一組設けた構成
であり、検出電極12は一つであるから、試料中の全炭
化水素濃度に比例した出力を得ることができ、この全炭
化水素の定量分析は可能であるが、試料中の各種の炭化
水素を定量分析することはできず、試料の同定分析は不
可能であった。
<Problem to be Solved by the Invention> However, such a conventional hydrogen flame ionization detection device has a configuration in which a pair of electrodes 11 and 12 are provided, and there is only one detection electrode 12. , it is possible to obtain an output proportional to the total hydrocarbon concentration in the sample, and quantitative analysis of all hydrocarbons is possible, but it is not possible to quantitatively analyze various hydrocarbons in the sample, and it is difficult to identify the sample. Analysis was not possible.

そこで、本発明はかかる従来の問題点に鑑み、試料中の
全炭化水素の定量分析のみならず、試料中の各種の炭化
水素を定量分析することのできる水素炎イオン化検出装
置を提供することを目的とする。
In view of these conventional problems, the present invention aims to provide a hydrogen flame ionization detection device that can not only quantitatively analyze all hydrocarbons in a sample, but also quantitatively analyze various hydrocarbons in a sample. purpose.

く課題を解決するための手段〉 このため、本発明は、試料中の測定対象成分を水素炎に
投入してイオン化し、前記水素炎を挟んで対向した電極
間の電場によって前記イオン化された測定対象成分の濃
度に比例した微小電流を得え、該電流に基づいて測定対
象成分を定量的に分析するように構成された水素炎イオ
ン化検出装置において、前記電極のうち検出電極を複数
設けた構成とする。
Means for Solving the Problems> For this reason, the present invention ionizes a component to be measured in a sample into a hydrogen flame, and ionizes the ionized component by an electric field between electrodes facing each other with the hydrogen flame in between. A hydrogen flame ionization detection device configured to obtain a minute current proportional to the concentration of a target component and quantitatively analyze the target component based on the current, wherein a plurality of detection electrodes are provided among the electrodes. shall be.

〈作用〉 かかる構成では、検出電極が複数設けられているので、
−台の検出装置で、例えば試料中の全炭化水素の定量分
析のみならず、試料中の各種の炭化水素を定量分析する
ことが可能となる。
<Operation> In this configuration, since a plurality of detection electrodes are provided,
For example, it is possible to quantitatively analyze not only all the hydrocarbons in a sample, but also various types of hydrocarbons in the sample, using the same detection device.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

本発明の一実施例を示す第1図において、第2図と同一
要素のものには同一符号を付して説明を簡単にする。
In FIG. 1 showing an embodiment of the present invention, the same elements as those in FIG. 2 are given the same reference numerals to simplify the explanation.

図において、検出器1本体は、基台IAと該基台IA上
面に立てられた底面開放の円筒状の室形成部材IBとか
ら構成される。水素供給源2から水素が導かれる水素導
入通路としての水素ノズル3は、前記基台IAの側面か
ら該基台IA内に水平に突入された後上方に直角に折曲
され、基台IA上面から鉛直方向に突出されて、先端供
給口3bが室形成部材IB内空間に開口される。尚、水
素ノズル3の鉛直部分は下方に延長され、前記基台IA
の底面に開口される。
In the figure, the main body of the detector 1 is composed of a base IA and a cylindrical chamber forming member IB with an open bottom and erected on the top surface of the base IA. The hydrogen nozzle 3, which serves as a hydrogen introduction passage through which hydrogen is introduced from the hydrogen supply source 2, is inserted horizontally into the base IA from the side surface of the base IA, and then bent upward at a right angle, so that the The distal end supply port 3b is projected vertically from the distal end supply port 3b and is opened into the inner space of the chamber forming member IB. Note that the vertical part of the hydrogen nozzle 3 is extended downward, and the vertical part of the hydrogen nozzle 3 is
It is opened at the bottom of the.

助燃空気供給#4がら空気が導かれる空気管16は、前
記基台IAの側面から該基台IA内に水平に突入された
後、この水平管部の複数位置から垂直管部が上方に延び
て基台IA上面の水素ノズル3周りの位置から先端供給
口16aが室形成部材IB内空間に開口される。定量分
析すべき成分を含む採取試料が導かれる試料導入通路と
してのキャピラリ17は、サンプルライン15の途中か
ら分岐して、前記水素ノズル3の基台IAの底面の開口
部に連通される。室形成部材IB内の上部には点火栓5
が配設される。
The air pipe 16 through which air is guided from the auxiliary combustion air supply #4 is inserted horizontally into the base IA from the side surface of the base IA, and then vertical pipe parts extend upward from multiple positions of this horizontal pipe part. The tip supply port 16a is opened into the inner space of the chamber forming member IB from a position around the hydrogen nozzle 3 on the upper surface of the base IA. A capillary 17 serving as a sample introduction path through which a sample containing a component to be quantitatively analyzed is introduced is branched from the middle of the sample line 15 and communicated with an opening in the bottom surface of the base IA of the hydrogen nozzle 3. A spark plug 5 is installed in the upper part of the chamber forming member IB.
will be placed.

室形成部材IB内には、炎6を挟んで相対向した一対の
電極11.12が配設されている。この電極11.12
は、所定の円上位置に配設される。一方の電極11の端
子は電#24の一端子に接続され、他方の電極12は第
1の検出電極として作用し、その端子は第1の増幅部1
3のOPアンプ25の一方の人力部に接続される。OP
アンプ25の他方の入力部はアースされる。OPアンプ
25の出力部はフォトコーダ14に接続される。電極1
2の端子とOPアンプ25の入力部の間の入力ラインは
抵抗26を介してOPアンプ25の出力ラインに接続さ
れる。前記電源24の子端子は抵抗27を介してOPア
ンプ25の出力ラインに接続される。
A pair of electrodes 11 and 12 facing each other with the flame 6 in between is arranged within the chamber forming member IB. This electrode 11.12
is arranged at a predetermined position on a circle. The terminal of one electrode 11 is connected to one terminal of the electrode #24, the other electrode 12 acts as a first detection electrode, and the terminal is connected to the first amplifying section 1.
It is connected to one of the human power sections of the OP amplifiers 25 of No. 3. OP
The other input of amplifier 25 is grounded. The output section of the OP amplifier 25 is connected to the photocoder 14. Electrode 1
The input line between the terminal of OP AMP 2 and the input of OP AMP 25 is connected to the output line of OP AMP 25 via a resistor 26. A child terminal of the power source 24 is connected to an output line of an OP amplifier 25 via a resistor 27.

そして、前記電極11.12が位置する円上であって、
第1の検出電極12の近傍に第2の検出電極28が配設
される。この第2の検出電極28は、第1の検出電極1
2よりも短い長さに形成される。かかる第2の検出電極
28の端子は第2の増幅部29のOPアンプ30の一方
の入力部に接続される。OPアンプ30の他方の入力部
はアースされる。OPアンプ25の出力部は差動増幅器
31の一方の入力部に接続され、該差動増幅器31の出
力部は前記フォトコーダ14に接続される。
and on the circle on which the electrodes 11.12 are located,
A second detection electrode 28 is arranged near the first detection electrode 12 . This second detection electrode 28 is similar to the first detection electrode 1.
It is formed to a length shorter than 2. A terminal of the second detection electrode 28 is connected to one input section of an OP amplifier 30 of the second amplification section 29. The other input of the OP amplifier 30 is grounded. The output section of the OP amplifier 25 is connected to one input section of a differential amplifier 31, and the output section of the differential amplifier 31 is connected to the photocoder 14.

電極28の端子とOPアンプ30の入力部の間の入力ラ
インは抵抗32を介してOPアンプ32の出力ラインに
接続される。前記電源24の子端子は抵抗33を介して
OPアンプ30の出力ラインに接続される。
The input line between the terminal of the electrode 28 and the input of the operational amplifier 30 is connected via a resistor 32 to the output line of the operational amplifier 32. A child terminal of the power source 24 is connected to an output line of an OP amplifier 30 via a resistor 33.

又、前記第1の増幅部13におけるOPアンプ25の出
力ラインは、前記差動増幅器31の他方の入力部に接続
される。
Further, the output line of the OP amplifier 25 in the first amplification section 13 is connected to the other input section of the differential amplifier 31.

次に、かかる構成の作用について説明する。Next, the operation of this configuration will be explained.

水素炎6に投入された試料中の測定対象成分は、水素炎
6中で燃焼してイオン化を起こし、炎6が電気伝導性を
帯びると、炎6を挟んで対向した電i11.12の間及
び電極11.28の間の電場によって前記イオン化され
た測定対象成分の濃度に比例した微小電流が流れる。こ
の微小電流は高抵抗を配した第1の増幅部13及び第2
の増幅部29を介して電圧値として検出される。そして
、第1の増幅部13からの電圧値はフォトコーダ14に
出力されると共に差動増幅器31に出力される。
The component to be measured in the sample put into the hydrogen flame 6 burns in the hydrogen flame 6 and causes ionization, and when the flame 6 becomes electrically conductive, the components that are to be measured in the sample placed in the hydrogen flame 6 burn and become ionized. A minute current proportional to the concentration of the ionized component to be measured flows due to the electric field between the electrodes 11 and 11.28. This minute current flows through the first amplifying section 13 and the second amplifying section 13 which are equipped with high resistance.
It is detected as a voltage value via the amplifying section 29. The voltage value from the first amplifying section 13 is output to the photocoder 14 and also to the differential amplifier 31.

一方、第2の増幅部29からの電圧値は差動増幅器31
に出力される。
On the other hand, the voltage value from the second amplifier section 29 is
is output to.

ここで、一般に、炭化水素のイオン化エネルギは高分子
はど低い。例えば、メタン(CH,)はイオン化エネル
ギが高いので、水素炎の高温部でイオン化が進行するの
で、第1の検出電極12よりも短い長さを有する第2の
検出電極28によってこのメタン以外の炭化水素が検出
される。
Generally, the ionization energy of hydrocarbons is much lower than that of polymers. For example, since methane (CH,) has a high ionization energy, ionization progresses in the high temperature part of the hydrogen flame. Hydrocarbons are detected.

従って、例えば第1の増幅部13からの出力によって全
炭化水素が検出され、第2の増幅部29からの出力によ
ってメタン以外の炭化水素が検出され、このメタン以外
の炭化水素の検出値を全炭化水素の検出値との比率を差
動増幅器からの出力で検出することで、メタン以外の炭
化水素を全炭化水素の中から定量できる。
Therefore, for example, all hydrocarbons are detected by the output from the first amplifying section 13, hydrocarbons other than methane are detected by the output from the second amplifying section 29, and the detected values of the hydrocarbons other than methane are Hydrocarbons other than methane can be quantified from all hydrocarbons by detecting the ratio with the detected value of hydrocarbons using the output from the differential amplifier.

以上のようにして、ある種の炭化水素を全炭化水素の中
から定量することができ、試料の同定を行うことができ
る。
In the manner described above, certain types of hydrocarbons can be quantified from among all hydrocarbons, and samples can be identified.

尚、検出器1の構造、水素炎6形成状態等により、特定
の炭化水素を検出できる電極位置が変化するので、予め
、既知の検出したい炭化水素成分のガスを含む混合炭化
水素ガスに応じて第2の検出電極28位置を移動できる
ようになっている。
Note that the electrode position at which a specific hydrocarbon can be detected changes depending on the structure of the detector 1, the formation state of the hydrogen flame 6, etc. The position of the second detection electrode 28 can be moved.

尚、本実施例においては、検出電極を2つ設けるように
したが、3つ、4つ・・・と複数設け、複数種の炭化水
素が同時に検出できるようにしても良い。
In this embodiment, two detection electrodes are provided, but a plurality of detection electrodes, such as three, four, etc., may be provided so that a plurality of types of hydrocarbons can be detected simultaneously.

〈発明の効果〉 以上説明したように、本発明の水素炎イオン化検出装置
によれば、水素炎を挟んで対向した電極間の電場によっ
て前記イオン化された測定対象成分の濃度に比例した微
小電流を得え、該電流に基づいて測定対象成分を定量的
に分析するように構成されたものにおいて、電極のうち
検出電極を複数設けた構成としたから、試料中の全炭化
水素の定量分析のみならず、試料中の各種の炭化水素を
定量分析することができ、利用性の向上を図れる。
<Effects of the Invention> As explained above, according to the hydrogen flame ionization detection device of the present invention, a minute current proportional to the concentration of the ionized component to be measured is generated by an electric field between electrodes facing each other with a hydrogen flame in between. In a device configured to quantitatively analyze the component to be measured based on the current, it is configured with multiple detection electrodes among the electrodes, so it can only be used for quantitative analysis of all hydrocarbons in the sample. First, various hydrocarbons in a sample can be quantitatively analyzed, which improves the usability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水素炎イオン化検出装置の一実施
例を示す図で、(a)は系統図、(b)は(a)中AA
矢視断面図、第2図は従来の水素炎イオン化検出装置の
系統図である。 1・・・検出器  3・・・水素ノズル  5・・・点
火栓6・・・水素炎  11・・・電極  12・・・
第1の検出電極  13・・・第1の増幅部  17・
・・キャピラリ  24・・・電源  28・・・第2
の検出電極29・・・第2の増幅部
FIG. 1 is a diagram showing an embodiment of the hydrogen flame ionization detection device according to the present invention, in which (a) is a system diagram and (b) is an AA in (a)
A sectional view taken in the direction of arrows, and FIG. 2 is a system diagram of a conventional hydrogen flame ionization detection device. 1...Detector 3...Hydrogen nozzle 5...Ignition plug 6...Hydrogen flame 11...Electrode 12...
First detection electrode 13...first amplification section 17.
...Capillary 24...Power supply 28...Second
Detection electrode 29...second amplification section

Claims (1)

【特許請求の範囲】[Claims] 試料中の測定対象成分を水素炎に投入して、イオン化し
、前記水素炎を挟んで対向した電極間の電場によって前
記イオン化された測定対象成分の濃度に比例した微小電
流を得え、該電流に基づいて測定対象成分を定量的に分
析するように構成された水素炎イオン化検出装置におい
て、前記電極のうち検出電極を複数設けたことを特徴と
する水素炎イオン化検出装置。
A component to be measured in a sample is introduced into a hydrogen flame and ionized, and a minute current proportional to the concentration of the ionized component to be measured can be obtained by an electric field between electrodes facing each other across the hydrogen flame, and the current What is claimed is: 1. A flame ionization detection device configured to quantitatively analyze a component to be measured based on the hydrogen flame ionization detection device, characterized in that a plurality of detection electrodes are provided among the electrodes.
JP63198088A 1988-08-10 1988-08-10 Flame ionization detector Expired - Lifetime JP2705129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198088A JP2705129B2 (en) 1988-08-10 1988-08-10 Flame ionization detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198088A JP2705129B2 (en) 1988-08-10 1988-08-10 Flame ionization detector

Publications (2)

Publication Number Publication Date
JPH0247547A true JPH0247547A (en) 1990-02-16
JP2705129B2 JP2705129B2 (en) 1998-01-26

Family

ID=16385303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198088A Expired - Lifetime JP2705129B2 (en) 1988-08-10 1988-08-10 Flame ionization detector

Country Status (1)

Country Link
JP (1) JP2705129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429020B1 (en) * 2000-06-02 2002-08-06 The United States Of America As Represented By The United States Department Of Energy Flashback detection sensor for lean premix fuel nozzles
JP2008268223A (en) * 2008-05-26 2008-11-06 Canon Inc Sheet material discrimination device and image forming device having this device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391798A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Hydrogen flame ionization detector
JPS57146154A (en) * 1981-03-05 1982-09-09 Yokogawa Hokushin Electric Corp Detector for hydrogen flame ionization
JPS57146151A (en) * 1981-03-04 1982-09-09 Hitachi Ltd Ionization detector for chromatograph

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391798A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Hydrogen flame ionization detector
JPS57146151A (en) * 1981-03-04 1982-09-09 Hitachi Ltd Ionization detector for chromatograph
JPS57146154A (en) * 1981-03-05 1982-09-09 Yokogawa Hokushin Electric Corp Detector for hydrogen flame ionization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429020B1 (en) * 2000-06-02 2002-08-06 The United States Of America As Represented By The United States Department Of Energy Flashback detection sensor for lean premix fuel nozzles
JP2008268223A (en) * 2008-05-26 2008-11-06 Canon Inc Sheet material discrimination device and image forming device having this device

Also Published As

Publication number Publication date
JP2705129B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US5073753A (en) Hydrocarbon flame ionization detector
US4739731A (en) Method for measuring and controlling of operating data of internal combustion engines
US20040136872A1 (en) NOx monitor using differential mobility spectrometry
RU2016121637A (en) CONCENTRIC SOURCE OF IONIZATION OF SURFACES OF IONIZATION FOR CARRYING OUT CHEMICAL IONIZATION AT ATMOSPHERIC PRESSURE (CHIAD), ION WIRE AND METHOD OF APPLICATION
EP0262223A1 (en) Detector for gas chromatograph
CA2076507A1 (en) Simple compact ion mobility spectrometer
JPH0247547A (en) Detecting apparatus of ionization of hydrogen flame
US5576626A (en) Compact and low fuel consumption flame ionization detector with flame tip on diffuser
CA2213975A1 (en) Improved system for detecting compounds in a gaseous sample using induced photoionization for electron capture detection
RU196334U1 (en) IONIZATION THERMOCHEMICAL GAS DETECTOR
US5969617A (en) Flame ionization detector
WO1996006349A1 (en) Improved flame ionization detector
JPH07325020A (en) Sample introducing apparatus for ion analytical instrument
JPH0251056A (en) Detector for ionization of hydrogen flame
IL131968A (en) Apparatus combining spectrophotometry and flame ionisation detection for analysing a gas composition
US20240230591A1 (en) Flame ionization detector ignition aid
CN113376242B (en) Hydrocarbon ion detector
US6107805A (en) Extended detection zone in an ionization detector
SU1516939A1 (en) Flame-ionization detector
JPH0619092Y2 (en) FID detector for gas chromatograph
SU1659839A2 (en) Flame-ionization detector
SU1608576A1 (en) Flame-ionization detector
SU1368777A1 (en) Detector for gas chromatography
SU1075141A1 (en) Flame-ionization gas analyzer
RU2146048C1 (en) Plasma-ionization gas analyzer