JPH0250914A - Production of low ally high tension seamless steel pipe having fine grained structure - Google Patents

Production of low ally high tension seamless steel pipe having fine grained structure

Info

Publication number
JPH0250914A
JPH0250914A JP19882688A JP19882688A JPH0250914A JP H0250914 A JPH0250914 A JP H0250914A JP 19882688 A JP19882688 A JP 19882688A JP 19882688 A JP19882688 A JP 19882688A JP H0250914 A JPH0250914 A JP H0250914A
Authority
JP
Japan
Prior art keywords
temperature
point
steel pipe
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19882688A
Other languages
Japanese (ja)
Inventor
Akira Yagi
明 八木
Hitoshi Asahi
均 朝日
Masakatsu Ueno
正勝 上野
Tomio Terasawa
寺沢 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19882688A priority Critical patent/JPH0250914A/en
Publication of JPH0250914A publication Critical patent/JPH0250914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tension seamless steel pipe having fine grained structure and excellent sulfide stress cracking resistance and low temp. toughness by controlling the steel components and hot rolling condition at the time of producing the seamless steel pipe with low alloy steel. CONSTITUTION:The low alloy steel billet of compositions containing 0.05-0.35wt.% C, 0.01-0.5% Si, 0.15-1. 5% Mn, <0.01% S, <0.02% P, 0.05-0.4% Mo and 0.005-0.1, Al or further, one or more kinds of the specific contents among Cr, Ni, V, Ti and B and singly or complexly containing one or more kinds among rare earth element, Ca, Co and Cu in >=1200 deg.C is hot-piercing- continuous-rolled and finishing-rolled at the temp. of >=Ar3 point and the obtd. hollow raw pipe is heated at 900-1100 deg.C. The hot-finishing-rolling is executed to this raw pipe at the temp. of >=Ar3 point + 50 deg.C to the last finishing temp. and after finishing-working to the seamless steel pipe, quenching is executed from the temp. of >=Ar3 point and after that, tempering treatment is executed at the temp. of <=Ac1 point, to produce the high tension seamless steel pipe having fine grained structure and excellent various characteristic.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、細粒化組織の低合金高張力シームレス鋼管の
製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a low-alloy high-strength seamless steel pipe with a fine-grained structure.

[従来の技術] 熱延シームレス鋼管で細粒化組織の低合金高張力シーム
レス鋼管を得るには、例えば特開昭5277813号公
報のように熱間粗圧延した中空素管を強制的に一旦鋼の
温度をAr1点以下に下げて再度オーステナイト化温度
に加熱し、引続き行う仕上圧延を終了後直ちに急冷焼入
し一焼戻するか、或いは通常の仕上圧延終了後再加熱焼
入−焼戻する方法かあった。
[Prior Art] In order to obtain a low-alloy high-strength seamless steel pipe with a fine-grained structure using a hot-rolled seamless steel pipe, for example, as disclosed in Japanese Patent Application Laid-open No. 5277813, a hot rough-rolled hollow shell pipe is forcibly heated once. The temperature is lowered to below Ar1 point and heated again to the austenitizing temperature, followed by rapid cooling quenching and tempering immediately after the finish rolling, or reheating quenching and tempering after the completion of normal finish rolling. There was a way.

[発明が解決しようとする3題] しかしなから、上記のような工程はいずれも熱効率」二
の問題のばかに製造工程が煩雑となる欠点があった。一
方、これまての熱延シームレス圧延後の直接焼入処理で
はオーステナイト結晶粒度がASTM No、 1〜6
と粗粒であり、且つバラツキが大きいため細粒化組織の
低合金高張力シームレス鋼雀・が得られない問題があっ
た。
[Three Problems to be Solved by the Invention] However, all of the above-mentioned processes have the disadvantage of complicating the manufacturing process in addition to the problem of thermal efficiency. On the other hand, in the conventional direct quenching treatment after seamless hot rolling, the austenite grain size is ASTM No. 1 to 6.
Since the grains are coarse and the variation is large, there is a problem that it is not possible to obtain a low-alloy, high-strength, seamless steel with a fine-grained structure.

[課題を解決するための手段] 本発明渚らは、細粒化組織の低合金高張力シームレス鋼
管さらには硫化物応力割れ(以下、SSCと記す。)性
の優れたSMI、(シームレス)鋼管を製造することを
目的に多くの実験を行い検討した結果、鋼成分、熱間圧
延条件を制御することによりて細粒化組織の低合金高張
力シームレス鋼管が製造されることを知見した。
[Means for Solving the Problems] The present invention, Nagisa et al., has developed a low-alloy high-strength seamless steel pipe with a fine-grained structure, as well as an SMI (seamless) steel pipe with excellent sulfide stress cracking (hereinafter referred to as SSC) resistance. As a result of many experiments and studies aimed at manufacturing steel pipes, we found that by controlling the steel composition and hot rolling conditions, it is possible to produce low-alloy, high-strength seamless steel pipes with a fine-grained structure.

本発明は、この知見に基づいて構成したものて、その要
旨は、 温度1200℃以上に加熱された 0005〜035%、 sl: 0.01〜0.5%、 Mn : 0.15〜1.5%、 S : 0.01%以下、 P : 0.02%以下、 Mo : 0.05〜0.4%、 ΔI : 0.005〜01% を含有し、さらに必要によっては Cr : 0.1〜1.5%、Ni : 0.1〜2.
0%、■001〜0.1 %、Ti:0.01〜01%
、B・0.0003〜0.003%の1種または2種以
上と 希土類元素: 0.001〜0.05%、Ca : 0
.001〜0.02%、Co : 0.05〜0.5%
、Cu: 0.1〜0.5%の1種または2種以上を含
有し残部が実質的にFeからなる鋼片を熱間穿孔連続圧
延の仕上温度かAr3点以」二の中空素管を製管しかつ
該素管の該温度よりも高い温度900〜1000℃に加
熱して最終仕上温度かAr3点+50℃以上の熱間仕上
圧延を施して得られた仕上鋼管をAr3点以上の温度か
ら急冷する焼入処理を施し、続いてAC1点以下の温度
に加熱して冷却する焼戻処理を旅す細粒化組織の低合金
高張力シームレス鋼管の製造法である。
The present invention was constructed based on this knowledge, and the gist thereof is as follows: 0005-035% heated to a temperature of 1200°C or higher, sl: 0.01-0.5%, Mn: 0.15-1. 5%, S: 0.01% or less, P: 0.02% or less, Mo: 0.05-0.4%, ΔI: 0.005-01%, and further contains Cr: 0.01% if necessary. 1-1.5%, Ni: 0.1-2.
0%, ■001~0.1%, Ti:0.01~01%
, B・0.0003~0.003% of one or more types and rare earth elements: 0.001~0.05%, Ca: 0
.. 001-0.02%, Co: 0.05-0.5%
, Cu: A steel piece containing 0.1 to 0.5% of one kind or two or more kinds, the remainder being substantially Fe, is hot-pierced and continuously rolled at a finishing temperature of 3 or more points Ar. The finished steel pipe obtained by making a pipe and heating it to a temperature of 900 to 1000°C higher than the temperature of the raw pipe and hot finish rolling at the final finishing temperature or Ar3 points + 50°C or more is This is a method for producing a low-alloy, high-strength seamless steel pipe with a fine grained structure, which undergoes a quenching process in which it is rapidly cooled from a temperature, followed by a tempering process in which it is heated to a temperature below AC1 point and then cooled.

「作用] 以下本発明の製造方法について詳細に説明する。“Effect” The manufacturing method of the present invention will be explained in detail below.

先ず、本発明において上記の様な鋼成分に限定した理由
について説明する。
First, the reason why the present invention is limited to the above-mentioned steel components will be explained.

CおよびMnは、焼入効果を増して強度を高め降伏点6
0〜80kgf/mm2の高張力鋼を安定して得るため
および細粒化を図るため重要である。少な過ぎるとその
効果がなく、多過ぎると焼割れを銹発する原因となるた
め、それぞれ005〜0.35%、0.15〜1.5%
とした。
C and Mn increase the hardening effect and increase the strength, yielding point 6
This is important in order to stably obtain high tensile strength steel of 0 to 80 kgf/mm2 and to achieve grain refinement. Too little will have no effect, and too much will cause quench cracking, so 0.05% to 0.35% and 0.15% to 1.5%, respectively.
And so.

Siは、脱酸剤が残存したもので強度を高める有効な成
分である。少な過ぎるとその効果がなく、多過ぎると介
在物を増加して鋼の性質を脆化するため0,01〜0.
5%とした。
Si is a residual deoxidizer and is an effective component for increasing strength. If it is too small, there will be no effect, and if it is too large, inclusions will increase and the properties of the steel will become brittle.
It was set at 5%.

Pは、粒界偏析を起こして加工の際き裂を生じ易く有害
な成分としてその含有量を002%以下とした。
P is a harmful component that causes grain boundary segregation and tends to cause cracks during processing, so its content was set to 0.02% or less.

SはMnS系介在物を形成して熱間圧延で延伸し低温靭
性に有害な成分としてその含有■を002%以下とした
S is a component harmful to low temperature toughness by forming MnS-based inclusions and stretching by hot rolling, and its content (2) was made to be 0.02% or less.

Moは、強度の上昇、靭性の改善等に有効である。少な
過ぎるとその効果がなく、多過ぎてもその効果が飽和し
、しかも非常に高価であるため0.05〜0.4*とじ
た。
Mo is effective in increasing strength, improving toughness, etc. If it is too small, the effect will not be achieved, and if it is too large, the effect will be saturated, and it is very expensive.

層は、Siと同様脱酸剤が残存したもので、鋼中の不純
物成分として含まれるNと結合して結晶粒の成長を抑え
て鋼の遷移温度を低下させて低温靭性を改善する。少な
過ぎるとその効果がなく、多過ぎると介在物を増加して
鋼の性質を脆化するため0.005〜01*とじた。
The layer contains a residual deoxidizing agent similar to Si, which combines with N contained as an impurity component in the steel to suppress the growth of crystal grains, lower the transition temperature of the steel, and improve low-temperature toughness. If it is too small, there will be no effect, and if it is too large, inclusions will increase and the properties of the steel will become brittle, so the range was set at 0.005-01*.

上記の成分組成の鋼でさらに鋼の強度を高める場合C「
等の成分を必要に応じて選択的に添加する。Cr、Ni
、Vは、鋼の焼入性を増して、強度を高めるために添加
するものである。少な過ぎるとその効果がなく、多過ぎ
てもその効果が飽和し、しかも非常に高価であるためそ
れぞれ0.01〜1.5%、0,1〜2.0%、0.0
1〜0.1%とした。
When further increasing the strength of steel with the above composition C
Selective addition of other components as necessary. Cr, Ni
, V are added to increase the hardenability of the steel and increase its strength. If it is too small, it will not have the effect, and if it is too large, the effect will be saturated, and it is very expensive, so 0.01-1.5%, 0.1-2.0%, 0.0
The content was set at 1% to 0.1%.

T1は、鋼中の不純物成分として含まれるNと結合して
結晶粒の成長を抑えて強度を高めると共に、脱酸、脱窒
の作用からBによる焼入性を発揮させる。少な過ぎると
その効果がなく、多過ぎるとTicを析出して鋼を脆化
し、また介在物を増加し鋼の性質を脆化するため0.0
1〜0.1%とした。
T1 combines with N contained as an impurity component in the steel to suppress the growth of crystal grains and increase strength, and also exhibits the hardenability of B due to its deoxidizing and denitrifying effects. If it is too small, there is no effect, and if it is too large, Tic will precipitate and the steel will become brittle, and inclusions will increase and the properties of the steel will become brittle, so 0.0
The content was set at 1% to 0.1%.

Bは、焼入性を著しく向上せしめて強度を高める。少な
過ぎるとその効果がなく、多過ぎても効果は変わらず、
靭性や熱間加工性を劣化させるのて0.0003〜0.
003%とした。
B significantly improves hardenability and increases strength. If there is too little, there is no effect, and if there is too much, the effect remains the same.
0.0003 to 0.0.
003%.

さらに本発明は、近年のシームレス鋼管の使用環境を鑑
み上記の成分組成で構成される鋼のSSCを改善するた
めに希土類元素等の成分を必要に応して選択的に添加す
る。
Furthermore, in view of the usage environment of seamless steel pipes in recent years, the present invention selectively adds components such as rare earth elements as necessary to improve the SSC of steel having the above-mentioned composition.

希土類元素、Caは、介在物の形態を球状化させて無害
化する有効な成分である。少な過ぎるとその効果がなく
、多過ぎると介在物を増加して耐SSC性を低下させる
のて、それぞれ0.001〜0.05%、0.001〜
0.02%とした。
The rare earth element, Ca, is an effective component that makes inclusions spherical and harmless. If it is too small, there will be no effect, and if it is too large, inclusions will increase and the SSC resistance will decrease.
It was set to 0.02%.

Co、 Cuは、鋼中への水素侵入抑制効果かあり耐S
SC性に有効に働く。少な過きるとその効果がなく、多
過ぎるとその効果が飽和するためそれぞれ0.05〜0
.5%、0.1〜05%とした。
Co and Cu have the effect of suppressing hydrogen intrusion into steel and have S resistance.
Works effectively on SC characteristics. If the amount is too low, there will be no effect, and if it is too high, the effect will be saturated, so 0.05 to 0, respectively.
.. 5% and 0.1 to 0.5%.

次に熱間穿孔連続圧延の最終過程の圧延条件を上記のよ
うに限定した理由について説明する。
Next, the reason why the rolling conditions in the final process of hot continuous continuous rolling are limited as described above will be explained.

上記の様な成分組成の鋼は転炉、電気炉等の溶解炉であ
るいはさらに真空脱カス処理を経て溶製され、連続鋳造
法または造塊分塊法で鋼片を製造する。鋼片は、直ちに
あるいは一旦冷却された後1200℃以上の温度に加熱
する。加熱温度は、熱間穿孔連続圧延の前にほとんどの
C,Cr、■、Ti等を固溶させておくために十分高く
しておかねばならない。この温度は本発明の成分範囲内
であれば1200℃以上の温度で全て固溶し、また熱間
成形加工能率上なんら支障を生じないのてその加熱温度
は1200℃以上とした。
Steel having the above-mentioned composition is melted in a melting furnace such as a converter or an electric furnace, or further subjected to vacuum descaling treatment, and steel slabs are manufactured by a continuous casting method or an ingot-blowing method. The steel billet is heated to a temperature of 1200° C. or higher, either immediately or after being cooled once. The heating temperature must be high enough to dissolve most of the C, Cr, ■, Ti, etc. into solid solution before hot piercing and continuous rolling. The heating temperature was set at 1200° C. or higher, as long as the temperature was within the range of the components specified in the present invention, all of the components would form a solid solution at a temperature of 1200° C. or higher, and there would be no problem in terms of hot forming efficiency.

高温度に加熱された鋼片は熱間穿孔連続圧延機に搬送さ
れ、目標の外径、肉厚に圧延されて中空素管に粗成形す
る。この圧延は製造された鋼管の材質に大きな影響を及
ぼずもので、図は直接焼入処理後のオーステナイト(以
下、γと記す。)粒度に及ぼす熱間穿孔連続圧延の仕上
温度850°Cにおける熱間最終仕上温度前の再加熱炉
挿入温度の影響を示したものである。直接焼入処理後の
γ粒度は、熱間穿孔連続圧延の仕上温度かAr3〜Ar
The heated steel billet is transferred to a hot continuous rolling mill, where it is rolled to a target outer diameter and wall thickness, and roughly formed into a hollow tube. This rolling does not have a major effect on the material quality of the manufactured steel pipe, and the figure shows the effect of hot continuous rolling on austenite (hereinafter referred to as γ) grain size after direct quenching at a finishing temperature of 850°C. This figure shows the influence of the reheating furnace insertion temperature before the hot final finishing temperature. The γ grain size after direct quenching is determined by the finishing temperature of hot piercing continuous rolling or Ar3~Ar.
.

点になった場合、あるいは仕上温度かAr3点以上ても
熱間最終仕上温度前の再加熱炉挿入温度がAr3〜Ar
、点となると、粗大化しASTM No、 1程度とな
る。従ってγ粒の粗大化を防止するには熱間穿孔連続圧
延の仕上温度および熱間最終仕上温度前の再加熱炉挿入
温度をAr3点以上にすることか必要である。
point, or even if the finishing temperature is Ar3 or higher, the reheating furnace insertion temperature before the hot final finishing temperature is Ar3 to Ar
, when it comes to points, it becomes coarse and becomes about ASTM No. 1. Therefore, in order to prevent coarsening of the γ grains, it is necessary to set the finishing temperature of hot piercing continuous rolling and the reheating furnace insertion temperature before the final hot finishing temperature to be at least Ar3 point.

このような温度の影響については、本発明者らの推測に
よると、熱間穿孔連続圧延工程て該素管の温度がAr3
〜Ar、点に降温しα+γの二相状態となり、その後A
C3点以上の温度に加熱されると、熱間穿孔連続圧延の
最終過程が比較的低温度て小さい圧下率の下ではα→γ
変態した逆変態γ粒か加熱された未変態γ粒へ粒界移動
を起こし、粗大化組織となるものと考える。しかしなか
ら、再加熱前に該素管がAr3点以下に低下しない場合
は、その後の加熱でのγ粒は通常の二次再結晶を起こす
のみてあり、本発明の加熱温度範囲ではγ粒は粗大化し
ないことを知見した。よって、熱間穿孔連続圧延の仕上
温度およびその後の再加熱炉への挿入温度はAr3点以
上とした。
Regarding the influence of such temperature, according to the inventors' speculation, the temperature of the mother pipe during the hot piercing continuous rolling process is Ar3.
~Ar, the temperature decreases to a point where it becomes a two-phase state of α + γ, and then A
When heated to a temperature above the C3 point, the final process of hot continuous continuous rolling changes from α to γ at a relatively low temperature and under a small rolling reduction.
It is considered that grain boundary movement occurs between the transformed reversely transformed γ grains and the heated untransformed γ grains, resulting in a coarsened structure. However, if the raw tube does not drop to the Ar point of 3 or less before reheating, the γ grains will only undergo normal secondary recrystallization during subsequent heating, and in the heating temperature range of the present invention, the γ grains will only undergo secondary recrystallization. It was found that the structure does not become coarse. Therefore, the finishing temperature of hot piercing continuous rolling and the subsequent temperature of insertion into the reheating furnace were set to Ar3 points or higher.

このような圧延温度履歴て製管した中空素管を900〜
1000℃に加熱する。この加熱温度は900℃以下て
は熱間最終仕上圧延後の焼入温度が確保できす、また1
000℃以上では鋼表面に多量の酸化スケールが生じ、
鋼管の形状精度の確保に悪影響を及ぼすため900〜1
000℃の温度に限定した。
Hollow tubes made with such rolling temperature history are heated to 900~
Heat to 1000°C. If this heating temperature is below 900℃, the quenching temperature after final hot rolling can be secured.
At temperatures above 000°C, a large amount of oxide scale forms on the steel surface,
900 to 1 because it has a negative effect on ensuring the shape accuracy of steel pipes.
The temperature was limited to 000°C.

また、熱間最終仕上温度についてもあまり低くなると、
高強度を得るために必要とされる焼入時の完全γの状態
が確保てきないためAr3点+50℃とした。
Also, if the hot final finishing temperature is too low,
Since the perfect γ state during quenching, which is required to obtain high strength, could not be ensured, the Ar 3 point was set at +50°C.

焼入処理開始温度は、十分な焼入組織を確保し必要とす
る強度を得るためAr3点以下とした。焼入時の冷却速
度は特に限定しないが空冷より速い速度とする。焼戻温
度は、強度および靭性の安定化を確保する必要からAc
1点以下とした。その加熱方法については特に限定しな
い。
The starting temperature of the quenching process was set to 3 points or less in order to ensure a sufficient quenched structure and obtain the required strength. The cooling rate during quenching is not particularly limited, but it should be faster than air cooling. The tempering temperature is set to Ac due to the need to ensure stabilization of strength and toughness.
Scored 1 point or less. The heating method is not particularly limited.

以上の製造条件て得られる鋼は粗大粒を含むことなく細
粒化組織の高張力シームレス鋼管の製造に有効である。
The steel obtained under the above manufacturing conditions is effective in manufacturing high-strength seamless steel pipes with a fine-grained structure without containing coarse grains.

[実施例コ 次に本発明の実施例について説明する。[Example code] Next, examples of the present invention will be described.

第1表は転炉で溶製し連続鋳造を経て製造された鋼片を
熱間穿孔連続圧延後再加熱してその後熱間最終仕上圧延
を行って直接焼入−焼戻しだ鋼管の強度、靭性、γ粒度
および耐SSC性を示す。
Table 1 shows the strength and toughness of steel pipes produced by melting them in a converter, continuously casting them, reheating them after hot drilling and continuous rolling, and then directly quenching and tempering them. , γ particle size and SSC resistance.

尚、耐SSC性はNACE TMOI−77に従って定
荷重方式によりa th(Threshold 5tr
ess)を求めて評価した。
In addition, the SSC resistance was determined by a constant load method according to NACE TMOI-77.
ess) was determined and evaluated.

本発明によって製造された鋼管は、高強度を有しかつ従
来法に比しγ粒度は微細であり高靭性が得られ耐SSC
性はσthで0.2ay以上向上することかわかる。
The steel pipe manufactured by the present invention has high strength, has a finer γ grain size than the conventional method, has high toughness, and has SSC resistance.
It can be seen that the performance improves by 0.2 ay or more in σth.

[発明の効果] 上記のような本発明法によりて製造された鋼管は、高強
度を有しざらに細粒であるため低温靭性および耐SSC
性か優れ、極北の寒冷地や硫化物応力腐食環境において
使用される。
[Effect of the invention] The steel pipe manufactured by the method of the present invention as described above has high strength and coarsely fine grains, so it has good low temperature toughness and SSC resistance.
It has excellent properties and is used in the cold regions of the far north and in sulfide stress corrosion environments.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、直接焼入処理後のγ粒度に及ぼす熱間穿孔連続圧
延の仕」二温度850℃における最終仕上温度前の再加
熱炉挿入温度の影響を示したものである。
The figure shows the influence of the reheating furnace insertion temperature before the final finishing temperature at a finishing temperature of 850° C. during hot piercing continuous rolling on the γ grain size after direct quenching.

Claims (1)

【特許請求の範囲】 1、温度1200℃以上に加熱された C:0.05〜0.35%(重量%、以下同じ)、Si
:0.01〜0.5%、 Mn:0.15〜1.5%、 S:0.01%以下、 P:0.02%以下、 Mo:0.05〜0.4%、 Al:0.005〜0.1% を含有して残部が実質的にFeからなる鋼片を、熱間穿
孔連続圧延の仕上温度がAr_3点以上の中空素管を製
管しかつ該素管の該温度よりも高い温度900〜100
0℃に加熱して最終仕上温度がAr_3点+50℃以上
の熱間仕上圧延を施して得られた仕上鋼管をAr_3点
以上の温度から急冷する焼入処理を施し、続いてAc_
1点以下の温度に加熱して冷却する焼戻処理を施すこと
を特徴とする細粒化組織の低合金高張力シームレス鋼管
の製造法。 2、温度1200℃以上に加熱された C:0.05〜0.35%、 Si:0.01〜0.5%、 Mn:0.15〜1.5%、 S:0.01%以下、 P:0.02%以下、 Mo:0.05〜0.4%、 Al:0.005〜0.1% を含有しさらに Cr:0.1〜1.5%、Ni:0.1〜2.0%、V
:0.01〜0.1%、Ti:0.01〜0.1%、B
:0.0003〜0.003%の1種または2種以上を
含有し残部が実質的にFeからなる鋼片を、熱間穿孔連
続圧延の仕上温度がAr_3点以上の中空素管を製管し
かつ該素管の該温度よりも高い温度900〜1000℃
に加熱して最終仕上温度がAr_3点+50℃以上の熱
間仕上圧延を施して得られた仕上鋼管をAr_3点以上
の温度から急冷する焼入処理を施し、続いてAc_1点
以下の温度に加熱して冷却する焼戻処理を施すことを特
徴とする細粒化組織の低合金高張力シームレス鋼管の製
造法。 3、温度1200℃以上に加熱された C:0.05〜0.35%、 Si:0.01〜0.5%、 Mn:0.15〜1.5%、 S:0.01%以下、 P:0.02%以下、 Mo:0.05〜0.4%、 Al:0.005〜0.1% を含有しさらに、 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、Co:0.05〜0.5%、Cu:0
.1〜0.5%の1種または2種以上を含有し残部が実
質的にFeからなる鋼片を、熱間穿孔連続圧延の仕上温
度がAr_3点以上の中空素管を製管しかつ該素管の該
温度よりも高い温度900〜1000℃に加熱して最終
仕上温度がAr_3点+50℃以上の熱間仕上圧延を施
して得られた仕上鋼管をAr_3点以上の温度から急冷
する焼入処理を施し、続いてAc_1点以下の温度に加
熱して冷却する焼戻処理を施すことを特徴とする細粒化
組織の低合金高張力シームレス鋼管の製造法。 4、温度1200℃以上に加熱された C:0.05〜0.35%、 Si:0.01〜0.5%、 Mn:0.15〜1.5%、 S:0.01%以下、 P:0.02%以下、 Mo:0.05〜0.4%、 Al:0.005〜0.1% を含有しさらに、 Cr:0.1〜1.5%、Ni:0.1〜2.0%、V
:0.01〜0.1%、Ti:0.01〜0.1%、B
:0.0003〜0.003%の1種または2種以上と
、 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、Co:0.05〜0.5%、Cu:0
.1〜0.5%の1種または2種以上、 を含有し残部が実質的にFeからなる鋼片を、熱間穿孔
連続圧延の仕上温度がAr_3点以上の中空素管を製管
しかつ該素管の該温度よりも高い温度900〜1000
℃に加熱して最終仕上温度がAr_3点+50℃以上の
熱間仕上圧延を施して選られた仕上鋼管をAr_3点以
上の温度から急冷する焼入処理を施し、続いてAc_1
点以下の温度に加熱して冷却する焼戻処理を施すことを
特徴とする細粒化組織の低合金高張力シームレス鋼管の
製造法。
[Claims] 1. C heated to a temperature of 1200°C or higher: 0.05 to 0.35% (weight %, same hereinafter), Si
: 0.01-0.5%, Mn: 0.15-1.5%, S: 0.01% or less, P: 0.02% or less, Mo: 0.05-0.4%, Al: A steel billet containing 0.005 to 0.1% Fe with the remainder being substantially Fe is used to form a hollow blank tube with a finishing temperature of Ar_3 points or higher during hot piercing and continuous rolling. Temperature 900-100 higher than temperature
The finished steel pipe obtained by heating to 0°C and hot finish rolling at a final finish temperature of Ar_3 point + 50°C or higher is subjected to a quenching treatment in which it is rapidly cooled from a temperature of Ar_3 point or higher, and then Ac_
A method for producing a low-alloy, high-tensile-strength seamless steel pipe with a fine-grained structure, characterized by subjecting it to a tempering treatment of heating to a temperature of 1 point or less and cooling. 2. C: 0.05-0.35%, Si: 0.01-0.5%, Mn: 0.15-1.5%, S: 0.01% or less, heated to a temperature of 1200°C or higher , P: 0.02% or less, Mo: 0.05-0.4%, Al: 0.005-0.1%, and further contains Cr: 0.1-1.5%, Ni: 0.1 ~2.0%, V
:0.01~0.1%, Ti:0.01~0.1%, B
: A steel billet containing 0.0003 to 0.003% of one or more kinds, the remainder being substantially Fe, is made into a hollow mother pipe with a finishing temperature of Ar_3 points or higher in hot drilling and continuous rolling. and a temperature of 900 to 1000°C higher than the temperature of the raw pipe.
The finished steel pipe obtained by heating it to a temperature of 50°C or higher to a final finishing temperature of Ar_3 point + 50°C or higher is subjected to a quenching treatment in which it is rapidly cooled from a temperature of Ar_3 point or higher, and then heated to a temperature of Ac_1 point or lower. A method for producing a low-alloy high-strength seamless steel pipe with a fine-grained structure, which is characterized by subjecting it to a tempering treatment in which it is cooled and then cooled. 3. C: 0.05-0.35%, Si: 0.01-0.5%, Mn: 0.15-1.5%, S: 0.01% or less, heated to a temperature of 1200°C or higher , P: 0.02% or less, Mo: 0.05-0.4%, Al: 0.005-0.1%, and further contains rare earth elements: 0.001-0.05%, Ca: 0 .00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0
.. A steel billet containing 1 to 0.5% of one or more of the above elements, with the remainder substantially consisting of Fe, is made into a hollow blank tube with a finishing temperature of Ar_3 or higher in hot piercing and continuous rolling. Quenching in which the finished steel pipe obtained by heating to a temperature of 900 to 1000°C higher than the temperature of the raw pipe and hot finish rolling at a final finish temperature of Ar_3 point + 50°C or higher is rapidly cooled from a temperature of Ar_3 point or higher. A method for producing a low-alloy high-strength seamless steel pipe with a fine-grained structure, characterized by subjecting it to a tempering treatment, followed by a tempering treatment in which it is heated to a temperature of Ac_1 point or lower and then cooled. 4. C: 0.05-0.35%, Si: 0.01-0.5%, Mn: 0.15-1.5%, S: 0.01% or less, heated to a temperature of 1200°C or higher , P: 0.02% or less, Mo: 0.05-0.4%, Al: 0.005-0.1%, and further contains Cr: 0.1-1.5%, Ni: 0. 1-2.0%, V
:0.01~0.1%, Ti:0.01~0.1%, B
:0.0003~0.003% of one or more types, Rare earth element: 0.001~0.05%, Ca:0.00
1 to 0.02%, Co: 0.05 to 0.5%, Cu: 0
.. A steel billet containing 1 to 0.5% of one or more of the following, with the remainder substantially consisting of Fe, is made into a hollow blank tube with a finishing temperature of Ar_3 points or higher during hot piercing and continuous rolling. Temperature 900 to 1000 higher than the temperature of the raw pipe
The finished steel pipe selected by heating to ℃ and hot finish rolling at a final finish temperature of Ar_3 point + 50℃ or higher is subjected to a quenching treatment to rapidly cool it from a temperature of Ar_3 point or higher, followed by Ac_1.
A method for producing a low-alloy, high-tensile-strength seamless steel pipe with a fine-grained structure, which is characterized by subjecting it to a tempering treatment in which it is heated to a temperature below a point and then cooled.
JP19882688A 1988-08-11 1988-08-11 Production of low ally high tension seamless steel pipe having fine grained structure Pending JPH0250914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19882688A JPH0250914A (en) 1988-08-11 1988-08-11 Production of low ally high tension seamless steel pipe having fine grained structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19882688A JPH0250914A (en) 1988-08-11 1988-08-11 Production of low ally high tension seamless steel pipe having fine grained structure

Publications (1)

Publication Number Publication Date
JPH0250914A true JPH0250914A (en) 1990-02-20

Family

ID=16397560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19882688A Pending JPH0250914A (en) 1988-08-11 1988-08-11 Production of low ally high tension seamless steel pipe having fine grained structure

Country Status (1)

Country Link
JP (1) JPH0250914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719752A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Seamless steel pipe with excellent hydrogen sulfide stress corrosion resistance and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719752A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Seamless steel pipe with excellent hydrogen sulfide stress corrosion resistance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH05105957A (en) Production of heat resistant high strength bolt
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH0250912A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH0250913A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH11302785A (en) Steel for seamless steel pipe
JP2556643B2 (en) Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method
JPH0250914A (en) Production of low ally high tension seamless steel pipe having fine grained structure
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH01234521A (en) Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
JPH04358025A (en) Production of high toughness seamless steel tube having fine-grained structure
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JP2567151B2 (en) Manufacturing method of oil well steel pipe with excellent SSC resistance