【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
この発明は、金属材料と、ハイドロキシアパタ
イトを主成分とする生体活性材料とからなる複合
材料に関するものであり、特に人工歯、人工骨、
人工関節などに好適なものである。
(従来の技術)
人工歯材料として、金属冠の外周に、酸化ジル
コニウムまたは酸化ジルコニウムおよび酸化アル
ミニウム混合物を主成分とするセラミツク溶射
層、および陶材焼付層を形成した複合材料が知ら
れている(特公昭55−46731号公報、特公昭56−
14295号公報参照)。これらの陶材としては、焼成
温度800〜1100℃で焼付可能なもので、SiO2、
Al2O3、CaO、K2O、Na2O、ZrO2、TiO2、
BaO、B2O3、SnO2等を成分とする混合物または
その溶融塩である。また金属芯体を、100〜300℃
における熱膨張係数が上記金属芯体のそれと実質
的に等しい生体活性ガラスの溶融液に浸漬したの
ち引き上げ、これを放冷して上記ガラスのガラス
転移温度に保持し、しかるのち徐冷する歯科用イ
ンプラントの製造法が知られている(特開昭58−
118746号公報参照)。この歯科用インプラントに
おける生体活性ガラスは、SiO235〜60モル%、
B2O55〜15モル%、Na2O10〜30モル%、CaO5〜
40モル%を主成分とし、これにTiO2、P2O5、
K2O、LiO2、MgO、Al2O3+ZrO2+Nb2O3、
La2O3+Ta2O3+Y2O3、F2を任意に適当量を配
合したものである。
上記公知の陶材および生体活性ガラスは、いず
れもSiO2を多量に含み、骨の無機成分とは本質
的に異なる材料であるため、顎骨との化学結合性
能が十分でないという問題があつた。
歯や骨の無機成分は、ハイドロキシアパタイト
Ca10(PO4)6(OH)2(略称HAP)なる化学物質で
形成されていることはよく知られており、最近合
成HAPが骨と直接結合する最も親和性の高い材
料であることが判つた。
(発明が解決しようとする問題点)
上記合成HAPの融点は1400〜1500℃の範囲で
非常に高く、これを金属材料に直接融着させるに
は、加圧下で融点付近まで加熱しなければなら
ず、そのためにはHAPよりも高い融点の金属材
料が必要となり、現状では実現できない。従つて
合成HAP自体の焼結温度を低下させる必要があ
る。一方、HAPを金属材料に溶着させるために
上記公知のプラズマ溶射法を使用することができ
るが、プラズマ溶射は非常に高温となるため、適
切に取扱わないとHAPの変質、分解が起こり易
い。またプラズマジエツト装置は高価であり、そ
の使用に相当な熟練を要し、かつ多量の材料を必
要とする。さらにHAPの焼成品は曲げ強度が小
さいという問題があつた。
(問題点を解決するための手段)
この発明は、芯体となるべき金属材料の表面に
ある種のガラスを溶着すると共に、HAPに少量
のリチウムを含有させてHAPの焼結温度を下げ
ると共に接着し易くすることにより、従来の陶材
と同様に通常の焼成法によつて金属材に溶着させ
るようにし、しかもHAPの曲げ強度などの物性
を向上させたものである。
すなわちこの発明は、金属表面に、該表面に溶
着させたリン酸カルシウム系ガラスまたは長石系
ガラスを介してリチウム含有量0.1〜1.0重量%の
ハイドロキシアパタイトが焼成法によつて溶着さ
れたことを特徴とするハイドロキシアパタイト複
合材料である。
リチウム含有のHAPを生成するには、種々の
方法がある。第1の方法は、溶液法にて合成した
微粉状のHAPにリン酸リチウム(Li3PO4)また
は炭酸リチウム(Li2CO3)などのリチウム化合
物を添加した混合物を800℃〜1100℃にて焼結さ
せる方法である。第2の方法はCaイオンとPO4
イオンとの反応によつて合成された第3リン酸カ
ルシウムCa3(PO4)2(略称TCP)にLi2CO3、
CaCO3を添加混合したのち800〜1100℃にて焼結
させて第3リン酸カルシウムをHAPに変化させ
る方法である。第3の方法は、Caイオンとリン
酸イオンとリチウムイオンとを同時に反応させる
ことによつてリチウム含有のハイドロキシアパタ
イトを合成する方法で、この方法では均一な反応
生成物が得られる。
HAPに含有されるリチウム成分の量は0.1〜1.0
重量%である。リチウム含有量が0.1重量%未満
であると曲げ強度が小さく、また嵩密度を上昇さ
せるための焼結温度が高くなる。リチウム含有量
が1.0重量%を越えても性能がさらに向上するも
のではない。
この発明に使用される金属材料としては、Ni
−Cr合金、Ni−Cr−Mo合金、Ni−Cr−Mo−
Al合金、Cr−Co−Mo合金、Ti−Al−V合金、
Ti−Ni合金、Au−Pt−Pd合金などの合金が使
用できるが、HAPの接着性ならびに価格の点か
らみて、Cr、Co、Mo、Tiを含んだ合金が好ま
しい。
上記金属表面にリン酸カルシウム系ガラスまた
は長石系ガラスを溶着させ、さらにこの表面にリ
チウム含有HAPを焼結させたいわゆる2段溶着
法で行なう。
(作用)
ハイドロキシアパタイトに少量のリチウムを含
有させ、かつ金属材料にリン酸カルシウム系ガラ
スまたは長石系ガラスをあらかじめ溶着しておく
ことによつて、焼結温度を低下させ、かつ金属材
料に対して接着し易くすることができ、嵩密度が
大きいもの、すなわち曲げ強度が大きいものが得
られる。
実施例 1
HAPに、リン酸リチウム(Li3PO4)の任意の
量を混合し、焼結温度(℃)と嵩密度(g/cm3)
との関係を第1図のグラフに示した。第1図でわ
かるようにリチウム含有量が0.1重量%を越える
と、900℃で嵩密度が急に上昇し、1000℃では嵩
密度は3g/cm3以上となる。また950℃、10分間
焼結したのちの曲げ強度(Kg/cm2)は、第2図の
グラフに示すように、リチウム含有量0.1重量%
で急に上昇し、0.2重量%を越えると曲げ強度は
平均300〜400Kg/cm2になる。なおヌープ硬度と曲
げ強度は相関関係を有し、リチウム含有量0.2〜
0.8重量%において曲げ強度は300〜500Kg/cm2で、
ヌープ硬度は420〜550Kg/mm2になることが判つ
た。
上記リチウム含有のHAPのペーストを、リン
酸カルシウム系ガラスを溶着した金属材料(Co
−Cr−Mo合金)の表面に塗布し、1000℃、30分
間焼結したのち、押抜き試験による接着強度は
150〜250Kg/cm2であつた。
実施例 2
第3リン酸カルシウム(TCP)に、HAPの化
学計算量のCaCO3と、炭酸リチウムの任意量と
を混合して800℃で焼成し、TCPがHAPに変化
する量を試験し、その結果を第3図のグラフに示
した。第3図に示すように、リチウム含有量が1
重量%未満ではHAPの生成率が小さい。第4図
はリチウム含有量が1重量%の場合のHAPの生
成率と焼結温度、時間との関係を示すグラフであ
り、焼結温度が800℃であれば30分間、焼結温度
が900℃であれば5分間でHAPに変化しているこ
とがわかる。この実施例2においては、実施例1
に比べて多量のリチウム成分を必要とするが、リ
チウムの大部分は触媒作用をするものとみられ
る。なおこの実施例2において焼結されたリチウ
ム含有のHAPは、その嵩密度、曲げ強度、金属
材料との接着強度などの物性は、上記実施例1と
同様にして大差がなかつた。
実施例 3
異なる金属材料、(A)Dan Ceramalloy、(B)
Negium、(C)Wachromの表面に、CaOとP2O5と
の割合が25/75、30/70、35/65であるリン酸カ
ルシウム系ガラスを溶着し、このリン酸カルシウ
ム系ガラスの表面に実施例1におけるリチウム含
有量0.2重量%のハイドロキシアパタイトを950
℃、10分間加熱焼結して2段溶着をした。上記各
金属材料とリン酸カルシウム系ガラスの押抜き試
験による接着強度を下記表に示した。
(Field of Industrial Application) This invention relates to a composite material consisting of a metal material and a bioactive material whose main component is hydroxyapatite, and in particular, it relates to a composite material that is used for artificial teeth, artificial bones,
It is suitable for artificial joints, etc. (Prior Art) As an artificial tooth material, a composite material is known in which a ceramic sprayed layer containing zirconium oxide or a mixture of zirconium oxide and aluminum oxide as a main component and a porcelain baked layer are formed on the outer periphery of a metal crown ( Special Publication No. 55-46731, Special Publication No. 56-
(See Publication No. 14295). These porcelain materials can be fired at a firing temperature of 800 to 1100℃, and include SiO 2 ,
Al2O3 , CaO, K2O , Na2O , ZrO2 , TiO2 ,
It is a mixture or a molten salt thereof containing BaO, B 2 O 3 , SnO 2 , etc. as components. In addition, the metal core is heated to 100 to 300℃.
For dental use, which is immersed in a molten liquid of bioactive glass whose coefficient of thermal expansion is substantially equal to that of the metal core, then pulled up, allowed to cool to maintain the glass transition temperature of the glass, and then slowly cooled. A method for manufacturing implants is known (Japanese Patent Application Laid-Open No. 1983-1999).
(See Publication No. 118746). The bioactive glass in this dental implant contains 35-60 mol% SiO2 ,
B2O5 5-15 mol%, Na2O 10-30 mol%, CaO5~
The main component is 40 mol%, including TiO 2 , P 2 O 5 ,
K2O , LiO2 , MgO, Al2O3 + ZrO2 + Nb2O3 ,
La 2 O 3 + Ta 2 O 3 + Y 2 O 3 and F 2 are arbitrarily blended in appropriate amounts. The above-mentioned known porcelain materials and bioactive glasses both contain a large amount of SiO 2 and are essentially different materials from the inorganic components of bone, so they have had the problem of insufficient chemical bonding performance with the jawbone. The inorganic component of teeth and bones is hydroxyapatite
It is well known that it is made of a chemical substance called Ca 10 (PO 4 ) 6 (OH) 2 (abbreviated as HAP), and it has recently been discovered that synthetic HAP is the material with the highest affinity for directly bonding to bone. I understand. (Problem to be solved by the invention) The melting point of the synthetic HAP described above is extremely high in the range of 1400 to 1500°C, and in order to directly fuse it to a metal material, it must be heated under pressure to around the melting point. First, this would require a metal material with a higher melting point than HAP, which is currently not possible. Therefore, it is necessary to lower the sintering temperature of the synthetic HAP itself. On the other hand, the above-mentioned known plasma spraying method can be used to weld HAP to a metal material, but since plasma spraying involves extremely high temperatures, HAP is likely to undergo deterioration and decomposition if not handled appropriately. Plasma jet devices are also expensive, require considerable skill to use, and require large amounts of materials. Furthermore, the fired products of HAP had a problem of low bending strength. (Means for Solving the Problems) This invention involves welding a certain type of glass to the surface of the metal material that is to become the core, and also lowering the sintering temperature of the HAP by containing a small amount of lithium in the HAP. By making it easier to adhere, HAP can be welded to metal materials using the usual firing method like conventional porcelain materials, and HAP's physical properties such as bending strength have been improved. That is, this invention is characterized in that hydroxyapatite with a lithium content of 0.1 to 1.0% by weight is welded to a metal surface via a calcium phosphate glass or a feldspar glass welded to the surface by a firing method. It is a hydroxyapatite composite material. There are various methods for producing lithium-containing HAP. The first method is to add a lithium compound such as lithium phosphate (Li 3 PO 4 ) or lithium carbonate (Li 2 CO 3 ) to finely powdered HAP synthesized by a solution method and heat the mixture to 800°C to 1100°C. This method involves sintering. The second method is Ca ion and PO 4
Li 2 CO 3 is added to tertiary calcium phosphate Ca 3 (PO 4 ) 2 (abbreviated as TCP) synthesized by reaction with ions.
This is a method in which tertiary calcium phosphate is converted into HAP by adding and mixing CaCO 3 and then sintering at 800 to 1100°C. The third method is to synthesize lithium-containing hydroxyapatite by simultaneously reacting Ca ions, phosphate ions, and lithium ions, and this method yields a uniform reaction product. The amount of lithium component contained in HAP is 0.1 to 1.0
Weight%. If the lithium content is less than 0.1% by weight, the bending strength will be low and the sintering temperature for increasing the bulk density will be high. Even if the lithium content exceeds 1.0% by weight, the performance will not be further improved. The metal material used in this invention is Ni
-Cr alloy, Ni-Cr-Mo alloy, Ni-Cr-Mo-
Al alloy, Cr-Co-Mo alloy, Ti-Al-V alloy,
Although alloys such as Ti-Ni alloy and Au-Pt-Pd alloy can be used, alloys containing Cr, Co, Mo, and Ti are preferred from the viewpoint of HAP adhesiveness and cost. This is carried out by a so-called two-step welding method in which calcium phosphate glass or feldspar glass is welded to the metal surface, and lithium-containing HAP is sintered to this surface. (Function) By containing a small amount of lithium in hydroxyapatite and welding calcium phosphate glass or feldspar glass to the metal material in advance, the sintering temperature can be lowered and it can be bonded to the metal material. It is possible to obtain a product with a high bulk density, that is, a high bending strength. Example 1 HAP is mixed with an arbitrary amount of lithium phosphate (Li 3 PO 4 ), and the sintering temperature (°C) and bulk density (g/cm 3 ) are determined.
The relationship between the two is shown in the graph of Figure 1. As can be seen in Figure 1, when the lithium content exceeds 0.1% by weight, the bulk density suddenly increases at 900°C, and at 1000°C, the bulk density becomes 3 g/cm 3 or more. In addition, the bending strength (Kg/cm 2 ) after sintering at 950°C for 10 minutes is as shown in the graph in Figure 2, with a lithium content of 0.1% by weight.
When it exceeds 0.2% by weight, the bending strength increases to an average of 300 to 400 kg/cm 2 . There is a correlation between Knoop hardness and bending strength, and the lithium content is 0.2~
At 0.8% by weight, the bending strength is 300-500Kg/ cm2 ,
The Knoop hardness was found to be 420-550 Kg/ mm2 . The above lithium-containing HAP paste is applied to a metal material (Co) to which calcium phosphate glass is welded.
-Cr-Mo alloy) and sintered at 1000℃ for 30 minutes, the adhesive strength was determined by a punch-out test.
It was 150-250Kg/ cm2 . Example 2 Tertiary calcium phosphate (TCP), CaCO 3 in the chemically calculated amount of HAP, and an arbitrary amount of lithium carbonate were mixed and fired at 800°C, and the amount of TCP converted to HAP was tested, and the results were is shown in the graph of Figure 3. As shown in Figure 3, the lithium content is 1
If the amount is less than % by weight, the HAP production rate is low. Figure 4 is a graph showing the relationship between the HAP production rate, sintering temperature, and time when the lithium content is 1% by weight. It can be seen that if the temperature is ℃, it changes to HAP in 5 minutes. In this Example 2, Example 1
Although it requires a large amount of lithium component compared to the conventional method, most of the lithium appears to have a catalytic effect. Note that the physical properties of the lithium-containing HAP sintered in Example 2, such as bulk density, bending strength, and adhesive strength with metal materials, were similar to those of Example 1, and there was no significant difference. Example 3 Different metal materials, (A) Dan Ceramalloy, (B)
Example 1 Calcium phosphate glass with a ratio of CaO and P 2 O 5 of 25/75, 30/70, and 35/65 was welded to the surface of Negium and (C)Wachrom. Hydroxyapatite with lithium content 0.2% by weight in 950
Two-stage welding was performed by heating and sintering at ℃ for 10 minutes. The adhesive strength of each of the above metal materials and calcium phosphate glass in a punch test is shown in the table below.
【表】【table】
【表】
上記表に示すように接着強度は100Kg/cm2以上
を示し、従来の陶材溶着の場合に比べて劣ること
はなく、むしろ優れている。なおリン酸カルシウ
ム系ガラスはHAPとは化学的に接合していた。
(発明の効果)
ハイドロキシアパタイトに少量のリチウム成分
を含有させることによつてハイドロキシアパタイ
トの焼結温度、時間を小さくすることができる。
また焼結されたハイドロキシアパタイトの嵩密度
および曲げ強度が大きくなり、各種生体活性材料
として十分に使用することができる。[Table] As shown in the table above, the adhesive strength is 100Kg/cm 2 or more, which is not inferior to, but in fact superior to, that of conventional porcelain welding. Note that calcium phosphate glass was chemically bonded to HAP. (Effects of the Invention) By containing a small amount of lithium component in hydroxyapatite, the sintering temperature and time of hydroxyapatite can be reduced.
Moreover, the bulk density and bending strength of the sintered hydroxyapatite are increased, and it can be used satisfactorily as various bioactive materials.
【図面の簡単な説明】[Brief explanation of drawings]
第1図はHAP中のリチウム含有量による焼結
温度と嵩密度との関係を示すグラフ、第2図は
HAP中のリチウム含有量と曲げ強度との関係を
示すグラフ、第3図は実施例2におけるTCP中
のリチウム含有量によるHAPの生成率と時間と
の関係を示すグラフ、第4図は実施例2における
焼成温度によるHAPの生成率と時間との関係を
示すグラフである。
Figure 1 is a graph showing the relationship between sintering temperature and bulk density depending on the lithium content in HAP, and Figure 2 is a graph showing the relationship between sintering temperature and bulk density depending on the lithium content in HAP.
A graph showing the relationship between the lithium content in HAP and bending strength. Figure 3 is a graph showing the relationship between the HAP production rate and time depending on the lithium content in TCP in Example 2. Figure 4 is an example 2 is a graph showing the relationship between the HAP production rate and time depending on the firing temperature in Example 2.