JPH0250705B2 - - Google Patents

Info

Publication number
JPH0250705B2
JPH0250705B2 JP18955680A JP18955680A JPH0250705B2 JP H0250705 B2 JPH0250705 B2 JP H0250705B2 JP 18955680 A JP18955680 A JP 18955680A JP 18955680 A JP18955680 A JP 18955680A JP H0250705 B2 JPH0250705 B2 JP H0250705B2
Authority
JP
Japan
Prior art keywords
capacitor
source
fet
fets
scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18955680A
Other languages
Japanese (ja)
Other versions
JPS57113770A (en
Inventor
Sadahiro Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18955680A priority Critical patent/JPS57113770A/en
Publication of JPS57113770A publication Critical patent/JPS57113770A/en
Publication of JPH0250705B2 publication Critical patent/JPH0250705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC
    • H02M5/04Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters
    • H02M5/22Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/257Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/2573Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into DC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】 本発明は主として電気掃除機等の比較的長い制
御用電線を必要とする機器に用いる交流整流子電
動機の位相制御回路に関するものであり位相制御
によるパワーコントロールを安全かつ確実に行な
うことを特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase control circuit for an AC commutator motor mainly used in devices such as vacuum cleaners that require relatively long control wires, and provides safe and reliable power control using phase control. It is characterized by the fact that it is carried out in

従来のこの種の位相制御回路は例えば第1図に
示す如く構成されていた。
A conventional phase control circuit of this type has been constructed as shown in FIG. 1, for example.

すなわち、交流電源101に電動機102とシ
リコン制御整流素子(silicon Controlled
Rectifier)のことでサイリスタとも呼ばれてい
るが以下単にSCRと称す)103とを直列接続
し、該SCR103のカソード.ゲート間に負性
抵抗素子104とコンデンサ105とを直列に接
続し、さらに該サイリスタ105には前記SCR
103のアノードに接続した可変抵抗106を接
続して、位相制御回路を構成したものである。
That is, an AC power supply 101 is connected to an electric motor 102 and a silicon controlled rectifier.
Rectifier (also called thyristor, hereinafter simply referred to as SCR) 103 is connected in series with the cathode of SCR 103. A negative resistance element 104 and a capacitor 105 are connected in series between the gates, and the thyristor 105 is connected to the SCR.
A variable resistor 106 is connected to the anode of 103 to form a phase control circuit.

斯る従来構造の位相制御回路において、いま前
記電源101より電動機102および可変抵抗1
06を介して前記コンデンサ105に電荷を充電
し、該コンデンサ105の電位がある電位を超え
ると、前記負性抵抗素子104が導通状態となつ
て、前記SCR103のゲートをトリガし、該
SCR103がONになる。
In the phase control circuit having such a conventional structure, the electric motor 102 and the variable resistor 1 are connected from the power source 101.
06, and when the potential of the capacitor 105 exceeds a certain potential, the negative resistance element 104 becomes conductive, triggering the gate of the SCR 103, and
SCR103 turns ON.

ここで前記可変抵抗106の抵抗値を可変する
と、前記コンデンサ105への充電電流が変化す
るので、該コンデンサ105の電位上昇時間が変
化する。この結果、前記SCR103のゲートを
トリガする時間が変つて、該SCR103のONに
なる位相が変化し、前記電動機102へ流れる電
流の導通角が制御され、パワーコントロールを行
なうことができるものであるが、斯る従来構造の
位相制御回路は次の如き欠点があつた。
Here, when the resistance value of the variable resistor 106 is varied, the charging current to the capacitor 105 changes, so the time for which the potential of the capacitor 105 rises changes. As a result, the time for triggering the gate of the SCR 103 changes, the phase at which the SCR 103 turns on changes, and the conduction angle of the current flowing to the motor 102 is controlled, making it possible to perform power control. However, the conventional phase control circuit has the following drawbacks.

すなわち、電気掃除機等の如く比較的長い電源
用の電線107を必要とする移動用機器において
は、前記電線107がその移動中にすれたり或い
は当つたりすることにより、該電線107の絶縁
がそこなわれる可能性が極めて大きく、仮りに前
記電線107が露出すると、該電線107は前記
電動機102又はSCR103を介して電線10
1に接続されているので、使用者が該電線107
に触れると、人体に大電流が流れ、感電事故が発
生するので極めて危険であつた。
That is, in a mobile device such as a vacuum cleaner that requires a relatively long electric wire 107 for power supply, the insulation of the electric wire 107 may be damaged due to the electric wire 107 being rubbed or hit during movement. There is a very high possibility that the electric wire 107 will be damaged, and if the electric wire 107 is exposed, the electric wire 107 will pass through the electric motor 102 or the SCR 103 to the electric wire 10
1, the user can connect the electric wire 107 to
If you touch it, a large current will flow through your body, causing an electric shock, which is extremely dangerous.

斯る欠点を改善するために従来、第2図に示す
如き回路が既に案出されているが、同図に示す回
路ではパワーコントロールの変化範囲が著るしく
せまくなる欠点があつた。
In order to overcome this drawback, a circuit as shown in FIG. 2 has been devised in the past, but the circuit shown in FIG. 2 has the drawback that the range of change in power control becomes extremely narrow.

すなわち、第2図に示す位相制御回路は、可変
抵抗106の両端に比較的抵抗値の大きい保護抵
抗アノード108,109を接続し、電線107
に人が触れても、前記抵抗108,109を介し
て人体に流れる電流値が小であり、人体に何等影
響を与えないものである反面、前記可変抵抗10
6を変化させても、前記抵抗108,109を介
設しているために、コンデンサ105への充電電
流がほとんど変化せず、パワーコントロールの変
化幅が著るしくせまくなる欠点があつた。
That is, the phase control circuit shown in FIG.
Even if a person touches the variable resistor 10, the current flowing through the human body through the resistors 108 and 109 is small and has no effect on the human body.
6, since the resistors 108 and 109 are interposed, the charging current to the capacitor 105 hardly changes, resulting in a drawback that the range of change in power control becomes extremely narrow.

そこで本発明は、このような従来欠点を解消し
て、感電時においても安全であり、かつパワーコ
ントロールの変化範囲が広い位相制御回路を提供
しようとするものである。
SUMMARY OF THE INVENTION The present invention aims to eliminate these conventional drawbacks and provide a phase control circuit that is safe even in the event of an electric shock and has a wide power control variation range.

以下、本発明の実施例を図面に基づいて詳述す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図は本発明に係る位相制御回路の電気結線
図で、同図中1は交流電源であり、該電源1には
負荷である電動機2とSCR3とを直列に接続し
ている。
FIG. 3 is an electrical wiring diagram of the phase control circuit according to the present invention. In the figure, 1 is an AC power source, and a motor 2 and an SCR 3, which are loads, are connected in series to the power source 1.

また該SCR3のゲート3gとカソード3kと
の間には負性抵抗素子4とトリガ用コンデンサ5
とを直列に接続している。なお、該SCR3のア
ノード3aは図面からも明らかな如く前記電動機
2に接続している。
Moreover, a negative resistance element 4 and a trigger capacitor 5 are connected between the gate 3g and the cathode 3k of the SCR 3.
are connected in series. Incidentally, the anode 3a of the SCR 3 is connected to the electric motor 2 as is clear from the drawing.

6,7は電界効果トランジスタ(Field Effect
Transistorのことで以下単にFETと称す)で、
これら2つのFET6,7と後述する抵抗体8,
8とによつて前記コンデンサ5の充電回路Aを構
成したものである。
6 and 7 are field effect transistors.
Transistor (hereinafter simply referred to as FET),
These two FETs 6 and 7 and the resistor 8, which will be described later,
8 constitutes a charging circuit A for the capacitor 5.

すなわち、前記一方のFET6のドレイン6d
と他方のFET7のドレイン7dとを互に接続し、
前記一方のFET6のソース6sは前記電動機2
の二次側に接続する一方、前記他方のFET7の
ソース7sはコンデンサ5に接続している。また
前記一方のFET6のソース6sとゲート6gと
の間並びに他方のFET7のソース7sとゲート
7gとの間には、抵抗値の互に等しい抵抗体8,
8を接続したものである。
That is, the drain 6d of the one FET 6
and the drain 7d of the other FET 7 are connected together,
The source 6s of the one FET 6 is the electric motor 2.
The source 7s of the other FET 7 is connected to the capacitor 5. Further, between the source 6s and gate 6g of the one FET 6 and between the source 7s and gate 7g of the other FET 7, resistors 8 having the same resistance value,
8 are connected.

なお、9は可変抵抗、10は電線である。 Note that 9 is a variable resistor and 10 is an electric wire.

本発明は上記の如く構成するものにして、以下
作用を説明する。
The present invention is constructed as described above, and its operation will be explained below.

いま、電源1が正のサイクルの時は前記SCR
3のアノード3a側よりFET6,7を通してト
リガ用コンデンサ5に充電され、この充電電流に
よつて前記コンデンサ5の電位が上昇する。
Now, when power supply 1 is in a positive cycle, the SCR
The trigger capacitor 5 is charged from the anode 3a side of the trigger capacitor 5 through the FETs 6 and 7, and the potential of the capacitor 5 is increased by this charging current.

該コンデンサ5の電位がある電位に達すると負
性抵抗素子4が導通状態となり、SCR3のゲー
ト3gをトリガし、該SCR3が導通常態となる。
When the potential of the capacitor 5 reaches a certain potential, the negative resistance element 4 becomes conductive, triggering the gate 3g of the SCR 3, and the SCR 3 becomes conductive.

SCR3が導通常態になると電源1より電動機
2に電流が流れて電動機2が回転する。
When the SCR 3 becomes conductive, current flows from the power source 1 to the motor 2, causing the motor 2 to rotate.

逆に電源1が負のサイクルのときは、前述とは
逆で、前記FET6,7を通じて前記コンデンサ
5に負の電荷が充電され、該コンデンサ5の電位
がある電位を下まわると、前記負性抵抗素子4が
導通常態となり、SCR3がトリガされ、該SCR
3が導通状態となり、前記電動機2が回転する。
Conversely, when the power supply 1 is in a negative cycle, the capacitor 5 is charged with a negative charge through the FETs 6 and 7, and when the potential of the capacitor 5 falls below a certain potential, the negative charge is Resistive element 4 becomes conductive, SCR3 is triggered, and the SCR
3 becomes conductive, and the electric motor 2 rotates.

前記負性抵抗素子4およびSCRは正、負とも
ほゞ同一特性のため、正の場合も、負の場合も、
FET6,7を通じて充電される電流〔電源1が
正の場合は正の電流、負の場合は負の電流〕によ
り前記コンデンサ5の電位上昇率が変化し、トリ
ガするまでの時間が変わる。
Since the negative resistance element 4 and the SCR have substantially the same characteristics in both positive and negative cases,
The rate of increase in potential of the capacitor 5 changes depending on the current charged through the FETs 6 and 7 (positive current when the power source 1 is positive, negative current when the power source 1 is negative), and the time until triggering changes.

このように、トリがするまでの時間が変化する
と、前記SCR3がONになるまでの時間が変化
し、電動機2に流れる電流の時間(位相)が制御
されて、パワーコントロールが行なわれる。
In this way, when the time until the trigger changes, the time until the SCR 3 turns ON changes, and the time (phase) of the current flowing through the motor 2 is controlled, thereby performing power control.

FET6,7を流れる電流について説明すると、
一方のFET6のソース6sがSCR3のアノード
3aに、ドレイン6dは他方のFET7のドレイ
ン7dに接続され、またFET7のソース7sは
コンデンサ5に接続され、さらにFET6のソー
ス6sとゲート6gとの間には抵抗8が、また
FET6,7の各ゲート6g,7g間には可変抵
抗9がそれぞれ接続され、さらにまた、FET7
のゲート7gとソース7sとの間には抵抗8が接
続されているため、前記SCR3のアノード3a
とコンデンサ5との間の電圧をVSSとすると、
FET7のゲート.ソース間の電圧VGS7は、 VGS7=R8.VSS/(R9+2R8)となる。
To explain the current flowing through FET6 and 7,
The source 6s of one FET6 is connected to the anode 3a of the SCR3, the drain 6d is connected to the drain 7d of the other FET7, the source 7s of FET7 is connected to the capacitor 5, and the source 6s of FET6 is connected to the gate 6g. has a resistance of 8, and
A variable resistor 9 is connected between each gate 6g and 7g of FET 6 and 7, and furthermore, FET 7
Since a resistor 8 is connected between the gate 7g and the source 7s of the SCR 3, the anode 3a of the SCR 3
Letting the voltage between and capacitor 5 be V SS ,
Gate of FET7. The source-to-source voltage V GS7 is V GS7 = R 8 .V SS /(R 9 +2R 8 ).

但し、抵抗8の抵抗値をR8、可変抵抗9の抵
抗をR9とする。
However, the resistance value of the resistor 8 is R8 , and the resistance of the variable resistor 9 is R9 .

この電圧VGS7によりFET7を流れる電流が決
まる。
The current flowing through FET7 is determined by this voltage VGS7.

FET6についてFETは双方向性のためドレイ
ンがソース、ソースがドレインの働きをし、
FET6のゲート.ドレイン間の電圧VGD6がFET
6を流れる電流が決まる。
About FET6 FET is bidirectional, so the drain functions as the source and the source functions as the drain.
Gate of FET6. The voltage across the drain V GD6 is FET
The current flowing through 6 is determined.

VGD6=(R8+R9)・VSS/(R9+2R8)−VDS7、但
しVDS7はFET7のドレイン、ソース間電圧であ
る。
V GD6 = (R 8 + R 9 ) · V SS / (R 9 + 2R 8 ) - V DS7 , where V DS7 is the voltage between the drain and source of FET7.

SCR3がOFFの時、コンデンサ5への充電回
路へは電動機2を介して交流電源1のほぼ全電圧
が印加される。これがVSSとなり、一方、FET7
がONの時はFET7のドレイン、ソース電圧VDS7
は低い電圧(例えば、1V前後)で充分動作する
ため、VSS≫VDS7となる。
When the SCR 3 is OFF, almost the entire voltage of the AC power supply 1 is applied to the charging circuit for the capacitor 5 via the motor 2. This becomes V SS , while FET7
When is ON, the drain and source voltage of FET7 is V DS7
Since it operates satisfactorily at a low voltage (for example, around 1V), V SS ≫ V DS7 .

可変抵抗9の抵抗値が大きい時、R9≫R8
してVGS7とVGD6を比較すると、 前式より、 VGS7=R8・VSS(R9+2R8)≒R8・VSS/R9 VGD6=(R8+R9)VSS/(R9+2R8)−VDS7≒R9
VSS/R9−VDS7=VSS−VDS7≒VSS ∴VGD6≒VSS≫R8・VSS/R9=VGS7 となつてVGD6はVGS7より大きくなり、FET6は
FET7より大きな電流を流し得るゲート電位を
得ることが可能となる。このため全体の電流値は
FET7を流れる電流で決まり、つまりFET7の
ゲート電位VGS7で決定される。
When the resistance value of variable resistor 9 is large, comparing V GS7 and V GD6 with R 9 ≫ R 8 , from the previous formula, V GS7 = R 8・V SS (R 9 +2R 8 ) ≒ R 8・V SS / R 9 V GD6 = (R 8 + R 9 ) V SS / (R 9 + 2R 8 ) − V DS7 ≒ R 9
V SS /R 9 −V DS7 = V SS −V DS7 ≒V SS ∴V GD6 ≒V SS ≫R 8・V SS /R 9 = V GS7 , so V GD6 becomes larger than V GS7 , and FET6
It becomes possible to obtain a gate potential that allows a larger current to flow than that of FET7. Therefore, the overall current value is
It is determined by the current flowing through FET7, that is, determined by the gate potential V GS7 of FET7.

可変抵抗9の抵抗値が小さい時、R9=0と
してVGS7とVGD6を比較すると、 前式より VGS7=R8・VSS/(R9+2R8)=R8・VSS/2R8=VS
S
/2 VGD6=(R8+R9)VSS/(R9+2R8)−VDS7=R8
VSS/2R8−VDS7=VSS/2−VDS7≒VSS/2 ∴VGD6≒VSS/2=VGS7 となり、VGD6とVGS7はほぼ同一となり、FET6
とFET7はほぼ同一の電流を流す状態になる。
When the resistance value of variable resistor 9 is small, and comparing V GS7 and V GD6 with R 9 = 0, from the previous formula, V GS7 = R 8・V SS / (R 9 + 2R 8 ) = R 8・V SS / 2R 8 = V S
S
/ 2 V GD6 = (R 8 + R 9 ) V SS / (R 9 + 2R 8 ) − V DS7 = R 8
V SS /2R 8 −V DS7 = V SS /2−V DS7 ≒V SS /2 ∴V GD6 ≒V SS /2=V GS7 , so V GD6 and V GS7 are almost the same, and FET6
and FET7 are in a state where almost the same current flows.

よつてVGD6≧VGS7 となり、FET6,7を流れる電流はVGS7で決ま
る。但し、VSS>0である。
Therefore, V GD6 ≧ V GS7 , and the current flowing through FETs 6 and 7 is determined by V GS7 . However, V SS >0.

電流1が負のサイクルのときはVSSが負となり
前記と同様にしてFET6のゲート.ソース間電
圧VGS6は、 VGS6=R8.VSS/(R9+2R8)但し、 VSS<0である。
When current 1 is in a negative cycle, V SS becomes negative, and the gate of FET 6 becomes negative in the same way as above. The source-to-source voltage V GS6 is V GS6 = R 8 .V SS /(R 9 +2R 8 ), where V SS <0.

上式となり、これによつてFET6および7を
流れる電流が決まる。
The above formula is obtained, and the current flowing through FETs 6 and 7 is determined by this.

抵抗値R8を大きな値に選定しておけば、抵抗
8及び可変抵抗9を通じて流れる電流はFET6,
7を通じて流れる電流に比較して無視できるた
め、コンデンサ5に充電される電流はVGS7(正の
時)及びVGS6(負の時)で決まり、VGS7=VGS7
あるから、FET6とFET7を同一特性のものに
しておけば、コンデンサ5へ充電される電流は電
源1が正の時も負の時も同一の大きさ(負号は異
なる)になり、トリガの時間は正負いずれも同一
となる。
If the resistance value R8 is set to a large value, the current flowing through the resistor 8 and the variable resistor 9 will flow through the FET 6,
The current charged to capacitor 5 is determined by V GS7 (when positive) and V GS6 (when negative), and since V GS7 = V GS7 , FET 6 and FET 7 can be ignored compared to the current flowing through FET 7. If the characteristics of the capacitor 5 are the same, the current charged to the capacitor 5 will be the same magnitude (the negative sign is different) when the power supply 1 is positive and negative, and the trigger time will be the same for both positive and negative. becomes.

VGS7=R8.VSS/(R9+2R8)のため、前記抵抗
値R9を零から充分大きな値に変化させると、電
圧VGS7は、VSS/2〜0まで変化し、コンデンサ
5に充電される電流は大から小まで(但し、
FETの特性がエンハンスメント型の場合は大か
ら零まで)変化し、トリガの時間が可変してパワ
ーコントロールを行なうことができる。
Since V GS7 = R 8 .V SS /(R 9 +2R 8 ), when the resistance value R 9 is changed from zero to a sufficiently large value, the voltage V GS7 changes from V SS /2 to 0, and the capacitor The current charged to 5 varies from large to small (however,
In the case of an enhancement type FET, the characteristics of the FET change (from large to zero), and the trigger time can be varied to perform power control.

ひき回し用の電線10に人が感電した場合、
FETのゲート抵抗は非常に大きく、また抵抗8
の抵抗値R8も大きくすることができるため、感
電電流は微小電流に抑制することができ、危険の
ない値にまでおさえることができる。
If a person is electrocuted by the power line 10,
The gate resistance of FET is very large, and the resistance 8
Since the resistance value R 8 of can also be increased, the electric shock current can be suppressed to a minute current, and can be suppressed to a value that is not dangerous.

抵抗値R8は大きくしても、抵抗値R9を大きく
しておけば、パワーコントロールはFETの増巾
作用によつて変化範囲を広くとることができる。
この結果、感電時においても安全であり、かつパ
ワーコントロールの変化範囲を広くすることがで
きるという初期の目的を達成することができるの
である。
Even if the resistance value R 8 is increased, if the resistance value R 9 is increased, the range of power control can be widened by the amplification effect of the FET.
As a result, it is possible to achieve the initial objectives of being safe even in the event of an electric shock and widening the variation range of power control.

第4図は他の実施例を示す回路図でゲート.ソ
ース間電位を負まで変化させるためのもので、前
記各抵抗体8,8のソース側接続部と前記各
FET6,7の各ソースとの間に抵抗値の等しい
抵抗体11,11を介設している。これによりデ
プレーシヨン型のFETに対しても広いパワーコ
ントロールが可能となるのである。
Figure 4 is a circuit diagram showing another embodiment of the gate. This is for changing the potential between the sources to a negative level, and connects the source side connection portion of each of the resistors 8, 8 to the source side connection portion of each of the resistors 8,
Resistors 11, 11 having the same resistance are interposed between the sources of the FETs 6, 7. This allows wide power control even for depletion type FETs.

本発明は以上詳述したように交流電源1に負荷
2とSCR3とを直列接続し、該SCR3のゲート
をコンデンサ5でトリガして該コンデンサ5に充
電する電流を可変することにより、トリガの位相
を制御し、前記負荷2に流れる電流の導通位相を
変化させてパワーコントロールを行なう如く構成
した交流電源の位相制御回路において、前記コン
デンサ5の充電回路Aを設け、該充電回路Aはド
レイン相互間を接続した2つのFET6,7で構
成すると共に、これら各FET6,7の各ソース.
ゲート間に抵抗値の互に等しい抵抗体8,8を接
続したものであるから極めて簡単な構成で、パワ
ーコントロールの変化範囲が広く、かつ感電時に
も安全な位相制御回路を提供することができるも
ので、その実用的価値はきわめて大である。
As described in detail above, the present invention connects the load 2 and the SCR 3 in series to the AC power supply 1, triggers the gate of the SCR 3 with the capacitor 5, and varies the current charging the capacitor 5, thereby controlling the phase of the trigger. In a phase control circuit for an AC power supply configured to control power by controlling the conduction phase of the current flowing through the load 2, a charging circuit A for the capacitor 5 is provided, and the charging circuit A is connected between the drain and the drain. It consists of two FETs 6 and 7 connected together, and each source of each of these FETs 6 and 7.
Since the resistors 8 and 8 having the same resistance value are connected between the gates, the configuration is extremely simple, and it is possible to provide a phase control circuit that has a wide power control variation range and is safe even in the event of an electric shock. Its practical value is extremely great.

なお、上記実施例においては主要部の回路につ
いてのみ説明したが、電源スイツチやその他のコ
ントロール用スイツチあるいは雑音防止回路、ヒ
ステリシス改良回路等は実使用時付加する必要が
ある。またコンデンサ5への充電回路をSCR3
と電動機2との間からとつたが、電動機2と電源
1との間からとつても良く、さらには合型FET
の代わりにMOSFETを用いても同様の特性とな
ることは云うまでもない。
Although only the main circuits have been described in the above embodiments, it is necessary to add a power switch, other control switches, a noise prevention circuit, a hysteresis improvement circuit, etc. during actual use. In addition, the charging circuit for capacitor 5 is connected to SCR3.
and electric motor 2, but it is very good from between electric motor 2 and power supply 1, and even a combined FET
It goes without saying that similar characteristics can be obtained even if a MOSFET is used instead of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の主要部の回路図、第2図は従
来品の他の例を示す主要部の回路図、第3図は本
発明の一実施例を示す電気回路図、第4図は他の
実施例を示す電気回路図である。 1は交流電源、2は負荷、3はSCR、5はコ
ンデンサ、6,7はFET、8,11は抵抗体、
Aは充電回路。
Fig. 1 is a circuit diagram of the main parts of a conventional example, Fig. 2 is a circuit diagram of main parts showing another example of the conventional product, Fig. 3 is an electric circuit diagram showing an embodiment of the present invention, and Fig. 4 FIG. 2 is an electric circuit diagram showing another embodiment. 1 is an AC power supply, 2 is a load, 3 is an SCR, 5 is a capacitor, 6 and 7 are FETs, 8 and 11 are resistors,
A is the charging circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源に負荷の一次側を接続し、この負荷
の二次側に双方向サイリスタのアノードを接続す
ると共に、該双方向サイリスタのカソードを前記
交流電源に接続して直列の閉回路を構成し、前記
双方向サイリスタのゲートと前記交流電源間に該
双方向サイリスタのゲートトリガ用のコンデンサ
を介設し、一方、このコンデンサへの充電回路
を、ドレイン相互間が接続された2つのFETと、
これらFETの各ソース、ゲート間に接続された
抵抗値の等しい抵抗体と、前記2つのFETのゲ
ート間に接続された可変抵抗体とにより構成し
て、該充電回路の一方のFETのソースを前記負
荷の二次側に接続すると共に、他方のFETのソ
ースを前記コンデンサに接続してなる交流電源用
位相制御回路。
1 Connect the primary side of a load to an AC power source, connect the anode of a bidirectional thyristor to the secondary side of this load, and connect the cathode of the bidirectional thyristor to the AC power source to form a series closed circuit. , a capacitor for gate triggering of the bidirectional thyristor is interposed between the gate of the bidirectional thyristor and the AC power supply, and a charging circuit for the capacitor is connected to two FETs whose drains are connected to each other;
The source of one of the FETs in the charging circuit is configured by a resistor of equal resistance connected between the sources and gates of these FETs, and a variable resistor connected between the gates of the two FETs. A phase control circuit for an AC power supply, which is connected to the secondary side of the load, and the source of the other FET is connected to the capacitor.
JP18955680A 1980-12-30 1980-12-30 Control circuit for phase Granted JPS57113770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18955680A JPS57113770A (en) 1980-12-30 1980-12-30 Control circuit for phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18955680A JPS57113770A (en) 1980-12-30 1980-12-30 Control circuit for phase

Publications (2)

Publication Number Publication Date
JPS57113770A JPS57113770A (en) 1982-07-15
JPH0250705B2 true JPH0250705B2 (en) 1990-11-05

Family

ID=16243293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18955680A Granted JPS57113770A (en) 1980-12-30 1980-12-30 Control circuit for phase

Country Status (1)

Country Link
JP (1) JPS57113770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624301U (en) * 1992-08-24 1994-03-29 森尾電機株式会社 Abnormal vibration detection device for railway vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624301U (en) * 1992-08-24 1994-03-29 森尾電機株式会社 Abnormal vibration detection device for railway vehicles

Also Published As

Publication number Publication date
JPS57113770A (en) 1982-07-15

Similar Documents

Publication Publication Date Title
US3731182A (en) Phase control type dimming system with means to compensate for the hysteresis effect
JPH0250705B2 (en)
JPH02278915A (en) Protective circuit of power mos-fet
US3991329A (en) Touch-operation switch
JPH02502331A (en) Triack control circuit
JPH10243555A (en) Inrush current limiting circuit
US3633050A (en) Time delay circuit with normally conducting fet gated off during time delay period
JPS605642Y2 (en) AC non-contact relay circuit
JP3314901B2 (en) Power supply
US3225214A (en) Transistorized r-c network
US3428832A (en) Electronic switching circuit employing insulated gate field effect transistors
US3335333A (en) Bistable multivibrator for operating a pair of control coils
JPH052452U (en) Semiconductor circuit breaker
JPH07288981A (en) Constant voltage system
JP2681632B2 (en) AC 2-wire non-contact switch
JPS637014Y2 (en)
JPS63260220A (en) Rush current preventing circuit
KR900001386Y1 (en) Controll apparatus
SU790128A1 (en) Flip-flop
JPH0128591Y2 (en)
JPS61295862A (en) Triac trigger circuit device
JPH01170365A (en) Rush current preventing circuit
JPS585430Y2 (en) solid state relay
JP2563124Y2 (en) Surge absorbing element
JPH0350864Y2 (en)