JPH0250446A - Surface treatment of electronic component - Google Patents

Surface treatment of electronic component

Info

Publication number
JPH0250446A
JPH0250446A JP19987488A JP19987488A JPH0250446A JP H0250446 A JPH0250446 A JP H0250446A JP 19987488 A JP19987488 A JP 19987488A JP 19987488 A JP19987488 A JP 19987488A JP H0250446 A JPH0250446 A JP H0250446A
Authority
JP
Japan
Prior art keywords
film
treatment
electronic component
bonding pad
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19987488A
Other languages
Japanese (ja)
Inventor
Toshinori Ozaki
敏範 尾崎
Yuichi Ishikawa
雄一 石川
Toshio Hatsuda
初田 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19987488A priority Critical patent/JPH0250446A/en
Publication of JPH0250446A publication Critical patent/JPH0250446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To form an electrochemically stable surface film on electronic component material by a method wherein a bonding pad surface is composed of a specific material film and, immediately after a plasma etching treatment, the surface is subjected to oxygen plasma treatment or the surface is quickly oxidized in a prescribed oxygen gas atmosphere. CONSTITUTION:A bonding pad 1 surface is composed of a film made of material composed of Al-Si alloy with an Si content of 0.5-4wt% and elements selected among Ti, Zr and Hf added to the alloy with a total content of 0.2-5wt%. Immediately after a plasma etching treatment, the surface is subjected to an oxygen plasma treatment or the surface is quickly oxidized in a prescribed oxygen atmosphere. With this constitution, an electrochemically stable surface film can be formed on Al-series material without changing the alloy composition of Al material for an electronic component substantially and without surface treatment using special chemical species, so that the moisture absorption resistant reliability of the electronic component can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂封止半導体の耐湿信頼性に係り、腐食損傷
が発生しやすいボンディングパッド部分の防食に好適な
表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the moisture resistance reliability of resin-sealed semiconductors, and relates to a surface treatment method suitable for preventing corrosion of bonding pad portions where corrosion damage is likely to occur.

(従来の技術〕 従来の装置は、特開昭62−81034号公報に記載の
ようにポールボンディング後の半導体に酸素プラズマ処
理を与え、ボンディングパッド露出面に酸化膜をつけA
flの耐湿性を改善するようになっていた(I1111
トル、300W、30分の酸素プラズマ)。
(Prior art) As described in Japanese Patent Laid-Open No. 62-81034, a conventional device applies oxygen plasma treatment to a semiconductor after pole bonding, and forms an oxide film on the exposed surface of the bonding pad.
The moisture resistance of fl was improved (I1111
Tor, 300W, 30 minutes oxygen plasma).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は以下の点に配慮されておらず、以下の問
題があった。
The above conventional technology does not take into account the following points, and has the following problems.

a、使用材料−rAQおよびAQ合金」とし特に定めず
一最適組成が示されていない。
a. Materials Used - rAQ and AQ Alloy', and no specific optimum composition is indicated.

b、処理雰囲気−1m+ Torrp 300 W、 
30分の酸素プラズマ−最適なガス組成が示されていな
い。
b, Processing atmosphere -1m+ Torrp 300W,
30 minute oxygen plasma - optimum gas composition not shown.

C6前処理−記載なし一重要な工程となる認識がされて
ない、また、その最適手法が示されていない。
C6 pretreatment - Not described - Not recognized as an important step, and the optimal method thereof has not been shown.

d、処理方法−酸素プラズマ中にさらす−それ以外の手
法で有効な手法を見出していない。
d. Treatment method - exposure to oxygen plasma - no other effective method has been found.

e、プロセス中における処理段階−ボンディング処理前
の熱処理工程後、又はワイヤボンデイング後−処理段階
の限定が正確でない6本発明の目的は上記従来技術の欠
点を解消して電子部品用アルミニウム系材料に電気化学
的に安定な表面皮膜を形成することを特徴とする。
e. Treatment stage in the process - after heat treatment before bonding or after wire bonding - treatment stage is not accurately defined 6. The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide aluminum-based materials for electronic components. It is characterized by forming an electrochemically stable surface film.

〔課題を解決するための手段〕[Means to solve the problem]

従来、AQおよびその合金上に生ずる表面皮膜は、一般
に多孔質であり環境遮断効果に欠けることが知られてい
た。また合金元素の役割も数十%以上添加しない限り耐
食性向上効果に優れるものが見られぬことが通念であっ
た。これは表面皮膜の生成条件に強く依存しており、従
来のように各種化学薬品水溶液や高温蒸気中のいわゆる
湿式雰囲気では数μm〜数十μm厚さの多孔質な皮膜が
生じる為であり、これらの多孔質皮膜の一部を他の合金
元素酸化物皮膜に置換えても耐食性の向上が見られぬこ
とは当然とも言えよう。
It has heretofore been known that surface films formed on AQ and its alloys are generally porous and lack environmental barrier effects. Furthermore, regarding the role of alloying elements, it has been generally accepted that unless they are added in an amount of several tens of percent or more, no excellent corrosion resistance improvement effect can be observed. This strongly depends on the formation conditions of the surface film, and in conventional wet atmospheres such as aqueous solutions of various chemicals and high-temperature steam, a porous film with a thickness of several μm to several tens of μm is produced. It is natural that even if a part of these porous coatings is replaced with an oxide coating of another alloying element, no improvement in corrosion resistance is observed.

本発明は八〇が乾燥雰囲気中で急速酸化され、薄くて緻
密な皮膜を有するとき、上述の皮膜に比べ特に耐食性に
優れると共に2〜3の合金元素が更に耐食性を高めると
の発見事実に基づくものである。
The present invention is based on the discovery that when 80 is rapidly oxidized in a dry atmosphere and has a thin and dense film, it has particularly excellent corrosion resistance compared to the above-mentioned film, and two or three alloying elements further enhance the corrosion resistance. It is something.

また、当初の表面に多孔質の皮膜が存在したり処理雰囲
気中に水分が多く、雰囲気の酸化力が小さいときなどは
おそらく密着性に劣る。多孔質の水酸化アルミニウムに
富んた皮膜が作られるようであって、上記の耐食性を高
める効果が減少する発見事実に基づくものである。
In addition, if a porous film exists on the initial surface or the treatment atmosphere contains a lot of moisture and the oxidizing power of the atmosphere is low, the adhesion will probably be poor. This is based on the discovery that a porous aluminum hydroxide-rich coating appears to be produced, reducing the above-mentioned corrosion resistance enhancing effect.

すなわち本発明は、AQ−0,5〜4重量%Si合金に
Ti、Zr、Hlから選ばれる元素を合計0.2〜5重
量%添加した材料膜にボンディングパッド表面を作製し
、この表面をプラズマエツチング処理直後酸素プラズマ
処理するか、若しくはこの表面を所定の酸素ガス雰囲気
中で急速酸化することを特徴とする。後者の所定の酸素
ガス雰囲気はHiO分圧が0.5 P a以下、08分
圧が10Pa以上を含むことが最適である6 尚、AQ−0,5〜4重量%Si合金にて作製したボン
ディングパッド表面を非ハロゲン系雰囲気中でプラズマ
エツチング処理し、その直後に上記本発明処理を施こす
ことが好ましい。またボンディング処理前及び熱処理工
程前或いはボンディングパッド作成AQ蒸着膜の作成直
後におけるボンディングパッド表面が渭浄な段階におい
て上記本発明処理を施こすことが好ましい。
That is, in the present invention, a bonding pad surface is fabricated on a material film in which a total of 0.2 to 5% by weight of an element selected from Ti, Zr, and Hl is added to an AQ-0, 5 to 4% by weight Si alloy, and this surface is The surface is characterized by being subjected to oxygen plasma treatment immediately after the plasma etching treatment, or by rapidly oxidizing the surface in a predetermined oxygen gas atmosphere. The latter predetermined oxygen gas atmosphere is optimally such that the HiO partial pressure is 0.5 Pa or less and the 08 partial pressure is 10 Pa or more. It is preferable that the surface of the bonding pad is subjected to plasma etching treatment in a non-halogen atmosphere, and immediately thereafter the above-described treatment of the present invention is performed. Further, it is preferable to carry out the above-mentioned treatment of the present invention before the bonding treatment, before the heat treatment step, or immediately after the formation of the bonding pad-forming AQ vapor-deposited film, when the surface of the bonding pad is clean.

〔作用〕[Effect]

イ)0合金元素の役割はTi、ZrおよびHfが共にA
Q (第3族)に近接した第4− a族に属し、合金自
身の表面皮膜の安定性に寄与すること。
b) The role of zero alloying elements is that Ti, Zr and Hf are all A.
It belongs to Group 4-a, which is close to Q (Group 3), and contributes to the stability of the surface film of the alloy itself.

酸化がすみやかであること、AQとの固溶限が大きいこ
とから合金化に無理が小さい、などに基づくものと思わ
れる。
This is thought to be due to the fact that oxidation is rapid and the solid solubility limit with AQ is large, so alloying is less difficult.

口)0次に、当初の表面に多孔質の皮膜が存在しないこ
とは、その後の皮膜形成過程で皮膜の安定したすみやか
な成長や金属素地に密着した皮膜を得る為に必要と考え
られる。
Next, the absence of a porous film on the initial surface is considered necessary for stable and prompt growth of the film during the subsequent film formation process and for obtaining a film that adheres to the metal substrate.

ハ)0次に処理雰囲気については上述のように水分の存
在が多孔質な水酸化アルミニウムの生成を容易とし不利
である。また、雰囲気の酸化力が小さい(08要存在し
ない)ときは皮膜の生成が緩やかにかつ長時間に渡って
継続的に生じて、結果的に結晶性の多孔質皮膜になり不
利である。
c) With regard to the zero-order treatment atmosphere, as mentioned above, the presence of moisture facilitates the formation of porous aluminum hydroxide, which is disadvantageous. Furthermore, when the oxidizing power of the atmosphere is low (no oxidizing power exists), the formation of a film occurs slowly and continuously over a long period of time, resulting in a crystalline porous film, which is disadvantageous.

二)0次にプロセス中における処理段階については、ワ
イヤボンディングによる接着性を考えるとその時点でボ
ンディングパッド上に表面皮膜のないことが望まれる。
2) Regarding the treatment step in the zero-order process, it is desirable that there be no surface film on the bonding pad at that point in view of the adhesion by wire bonding.

しかし、上述のようにして作成した皮膜は特に薄く、ボ
ンディング密着性の著しい低下に導かない、したがって
、作業性に優れたいずれの段階においてもその作業が可
能である。
However, the film produced as described above is particularly thin and does not lead to a significant decrease in bonding adhesion, and therefore can be worked at any stage with excellent workability.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

〈実施例1〉 樹脂封止半導体構造物の吸湿に伴う腐食断線について参
考文献〔尾崎他:日本金属学会会報、第26巻4号(1
987))を示す0本文献より、上記構造物中のAQボ
ンディングパッドにおける腐食寿命はイ)樹脂層欠陥サ
イズ、口)a脂層欠陥内水膜中の腐食性(たとえばCΩ
−イオン濃度)が特に重要でありその値が共に大きい領
域で孔食発生による損傷の生じやすいことが示されてい
る。
<Example 1> Reference literature regarding corrosion disconnection due to moisture absorption of resin-sealed semiconductor structures [Ozaki et al.: Bulletin of the Japan Institute of Metals, Vol. 26, No. 4 (1)
987))) From this document, the corrosion life of the AQ bonding pad in the above structure is determined by (a) resin layer defect size, (a) corrosivity in the water film within the resin layer defect (for example, CΩ).
- ion concentration) is particularly important, and damage due to pitting corrosion is likely to occur in areas where both values are large.

二こで、イ)については樹脂封止材料やそのプロセスの
改良あるいは剥離の生じない工程管理や使用方法が大切
であり、また、口)については樹脂材料や半導体製造プ
ロセス中における雰囲気の清浄化が大切であって、これ
らの管理があるばらつき範囲を保つとき一定の吸湿故障
発生頻度を示すものと考えられる。
Regarding (a), it is important to improve the resin sealing material and its process, or to control the process and use methods that do not cause peeling.As for (b), it is important to improve the resin sealing material and its process, and to control the process and use methods to prevent peeling. are important, and it is thought that if these controls are maintained within a certain variation range, a certain frequency of moisture absorption failure will occur.

以上より1本発明では吸湿故障発生頻度を減少される手
法として上述イ)および口)を考慮すると共にAQ材料
自身の耐食性改善が有効と考えるものである。
Based on the above, the present invention considers the above-mentioned a) and c) as a method for reducing the frequency of moisture absorption failures, and also considers improving the corrosion resistance of the AQ material itself to be effective.

以上、具体的手法を述べる。The specific method will be described above.

まず、試料の作製はシリコンウェハー上にAQおよび以
下に示す合金を5μm厚さで蒸着し、その後フォトレジ
パターンを焼付はエツチングして、正方形で表面積が1
0−δ〜10”ms”(7段階)の試料を各100ケ作
成し、その直後、HzO分圧が0.0IPa、08分圧
100Paを含む20%酸素残りArガス中に10分間
保持した。この試料を1〜108108pp″″イオン
濃度水(蒸留水にNxa CQ添加、7段階)中に48
時間浸漬し。
First, a sample was prepared by depositing AQ and the alloy shown below to a thickness of 5 μm on a silicon wafer, and then baking or etching a photoresist pattern to form a square shape with a surface area of 1.
100 samples each from 0-δ to 10"ms" (7 steps) were prepared, and immediately after that, they were held in 20% oxygen and residual Ar gas containing HzO partial pressure of 0.0IPa and 08 partial pressure of 100Pa for 10 minutes. . This sample was placed in 1~108108 pp'' ion concentration water (Nxa CQ added to distilled water, 7 steps) at 48
Soak for an hour.

孔食発生頻度を求めた。測定は同一条件の全試料に対し
、孔食が1個以上発生した試料の数の割合とした。第1
図は純AjlおよびA Q −2S’ iの腐食挙動で
あり両材料ともほとんど同じ特性を示し、図中の点線以
下の領域では孔食の発生しないことが理解される。一方
、A Q −2w t%Si材にTi、ZrおよびHf
を様々に添加した材料を用い、同様に処理、試験をした
場合を第2図に示す。
The frequency of occurrence of pitting corrosion was determined. The measurement was made as a ratio of the number of samples in which one or more pitting corrosion occurred to all samples under the same conditions. 1st
The figure shows the corrosion behavior of pure Ajl and AQ-2S'i, and it is understood that both materials exhibit almost the same characteristics, and that pitting corrosion does not occur in the region below the dotted line in the figure. On the other hand, Ti, Zr and Hf were added to the AQ-2wt%Si material.
Figure 2 shows cases in which materials with various additions were treated and tested in the same manner.

図ではその内代表例を示した6図より、添加元素Xが0
.15wt、%Ti  の場合は第1図に示した無添加
の場合とほぼ同様な挙動をとり、その効果が認められな
かった。一方、2.8wt%T i 。
In Figure 6, which shows a representative example, the additive element X is 0.
.. In the case of 15wt% Ti, the behavior was almost the same as in the case of no additive shown in FIG. 1, and no effect was observed. On the other hand, 2.8 wt% T i .

1.9 w t%Z r + 0 、5 w t%Ti
、3.4wt%Zr、1.2wt%Zr+2.2wt%
Hf、2.6w t、%Ti+0.8wt%Hf  な
どはいずれも孔食発生頻度:0の範囲が大きく、耐食性
に優れていることが理解される。また、これらのデータ
を集計すると、Ti、Zr、Hfのいずれかが合計で0
.2wt%以上で著しい効果が見られそれらが5wt%
以上ではその効果が飽和傾向を示した。
1.9 w t%Z r + 0, 5 w t%Ti
, 3.4wt%Zr, 1.2wt%Zr+2.2wt%
It is understood that Hf, 2.6wt%, %Ti+0.8wt%Hf, etc. all have a large range of pitting corrosion occurrence frequency of 0, and are excellent in corrosion resistance. Also, when these data are aggregated, any of Ti, Zr, and Hf is 0 in total.
.. Significant effects were seen at 2 wt% or more;
Above, the effect showed a tendency to saturate.

また、表面処理については雰囲気中にHx Oが0.5
 P a 以上存在した場合、08が3Pa以下の場合
は表面皮膜の安定性が十分でないこともわかった。そし
て、請求項に記載の条件を守れば電気化学的安定性に富
んだ表面皮膜が作成されることがわかった。
Regarding surface treatment, HxO was added to the atmosphere by 0.5
It was also found that when P a or more is present, and when 08 is less than 3 Pa, the stability of the surface film is not sufficient. It has also been found that a surface film with high electrochemical stability can be created if the conditions set forth in the claims are followed.

次に、上記材料を用いて25eMbitDILタイプD
RAlを作製した。第3図はその断面形状である。以下
、各部品材料とその製法である。
Next, using the above materials, 25eMbit DIL type D
RAl was produced. FIG. 3 shows its cross-sectional shape. Below are the materials for each part and their manufacturing methods.

ボンディングパッドAQ−2,5wt%5t−X材でX
=Owt%、1.8wt%Tiおよび、1.5wt%Z
r+0.6wt%Hf ボンディングパッドの表面処理
:ワイヤボンディング直後Hz 0分圧が0.05Pa
、Oa全分圧100Pa、5%02残部Arガス、60
℃で30分放置、ボンディングワイヤ材: A u e
 リードフレーム材=4270イ、封止樹脂材二ノボラ
ック系エポキシ樹脂(100g樹脂150 Qm Q蒸
留の抽出液:15ppmcM−)封止プロセス:170
℃にてトランスファマシン使用6以上のようにして製作
した半導体構造物をそれぞれ400ケ65℃、95%相
対湿度環境中に6ケ月放置後の配線故障状況を測定した
。その結果を次表に示す。
Bonding pad AQ-2, 5wt%5t-X material
=Owt%, 1.8wt%Ti and 1.5wt%Z
r+0.6wt%Hf Bonding pad surface treatment: Immediately after wire bonding Hz 0 partial pressure is 0.05Pa
, Oa total partial pressure 100 Pa, 5% O2 balance Ar gas, 60
Leave at ℃ for 30 minutes, bonding wire material: A u e
Lead frame material = 4270 I, sealing resin material dinovolac epoxy resin (100g resin 150 Qm Q distillation extract: 15ppmcM-) Sealing process: 170
Using a transfer machine at 65°C, 400 semiconductor structures were each manufactured in the above manner and were left in an environment of 65°C and 95% relative humidity for 6 months, and then the wiring failure status was measured. The results are shown in the table below.

表より、AΩ材料として本発明材を用いたもの、および
、本発明材を用い前処理を与えたものの故障発生頻度は
著しく小さく、優れた耐吸湿信頼性を示すことが理解さ
れる。
From the table, it can be seen that the frequency of failure occurrence is extremely low for those using the material of the present invention as the AΩ material and for those pretreated using the material of the present invention, and exhibiting excellent moisture absorption resistance reliability.

〈実施例2〉 前述の試験体&2および3のモールディング直前の製品
を用い、10″″1〜10−”PaHz気流中における
グローモードプラズマ洗浄を6分間与え。
<Example 2> Using the aforementioned test specimens &2 and 3 immediately before molding, glow mode plasma cleaning was applied for 6 minutes in a 10''''1 to 10-'' PaHz air flow.

表面を洗浄した。グローモードプラズマ装置は真空容器
内においた。タングステン製フィラメントを熱陰極とし
、種プラズマを作製し、ステンレス鋼製メツシュを陽極
とし、真空容器(接地)および上記陰極間でアノード電
圧m a x 120 Vのプラズマを発生させるもの
である。試料は、真空容器上に導通状態で固定した。上
記洗浄直後、真空容器内に〈実施例1〉で述べたガスを
急速に導入し、AQ合金表面に安定な表面皮膜を与えた
。その後〈実施例1〉と同様な加工、試験、評価を行な
った結果、&2およびNα3の試験体を用いた場合、故
障率はそれぞれ0.5%および0%となった1以上より
1本発明の前処理を行う場合、素材表面が十分清浄であ
る方が効果的であるとRえる。
The surface was cleaned. The glow mode plasma device was placed in a vacuum container. A seed plasma is created using a tungsten filament as a hot cathode, a stainless steel mesh is used as an anode, and plasma is generated at an anode voltage max of 120 V between a vacuum vessel (grounded) and the cathode. The sample was fixed on a vacuum container in a conductive state. Immediately after the above cleaning, the gas described in Example 1 was rapidly introduced into the vacuum vessel to provide a stable surface film on the AQ alloy surface. After that, as a result of processing, testing, and evaluation similar to <Example 1>, when using &2 and Nα3 test specimens, the failure rate was 0.5% and 0%, respectively. When pre-treatment is performed, it is considered to be more effective if the surface of the material is sufficiently clean.

ただし、単に表面酸化物の除去を目的としてハロゲン系
雰囲気(たとえばCCf1a)中でプラズマエツチング
処理した場合は、反応生成物(塩化物主体)が残留付着
する為か、明確な改善効果が認められなかった。また、
上記オゾン環境の作成あるいは雰囲気の酸化力を強める
目的で3mTorr以上の酸素分圧を有す雰囲気中でプ
ラズマ処理を与えても良く、この場合前記試料&2およ
び3の故障発生率は共に0%となることを確認した。
However, when plasma etching is performed in a halogen atmosphere (e.g. CCf1a) for the purpose of simply removing surface oxides, no clear improvement effect is observed, perhaps because reaction products (mainly chloride) remain attached. Ta. Also,
Plasma treatment may be applied in an atmosphere having an oxygen partial pressure of 3 mTorr or more for the purpose of creating the ozone environment or strengthening the oxidizing power of the atmosphere. In this case, the failure rate for both samples &2 and 3 is 0%. I confirmed that it would happen.

次に上記のAΩ表面処理ではボンディングパッド上に表
面皮膜を積極的に与える訳であるから、その後のボンデ
ィング接続性の低下が予想された。
Next, since the above AΩ surface treatment actively forms a surface film on the bonding pad, it was expected that the bonding connectivity would deteriorate thereafter.

しかし、処理時間を短くして、表面皮膜厚さの成長を制
限すれば、ボンディング接続性にほとんど影響のないこ
とがわかった。すなわち、〈実施例1〉における表面処
理時間を30分間から12分間に、同様に〈実施例2〉
の場合は6分間にすることにより、ミスボンディング発
生頻度の観察結果から判断されるボンディング接続性は
ほとんど処理前と変らなかった。
However, it was found that shortening the treatment time and limiting the growth of the surface film thickness had little effect on bond connectivity. That is, the surface treatment time in <Example 1> was changed from 30 minutes to 12 minutes, and similarly in <Example 2>.
In the case of 6 minutes, the bonding connectivity judged from the observation results of the frequency of occurrence of misbonding was almost unchanged from before the treatment.

以上より、全プロセス中におけるいずれの段階において
も1表面が清浄であれば本発明処理を施こすことに制約
がなく、本発明目的を達成することが可能と考えられる
From the above, it is considered that as long as one surface is clean at any stage in the entire process, there is no restriction on applying the treatment of the present invention, and the object of the present invention can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子部品用Afl材料の合金組成を大
11に変化させることなく、また、特別な化学種を用い
た表面処理を行うことなく、電子部品の耐吸湿信頼性を
向上させることが出来る。よって、電子部品材料用Af
i本来の各種電子的性質やプロセス被加工性を生かすこ
とが出来、その製造プロセスをそのままに本発明法が適
用出来る。また、半導体構造物の信頼性向上に伴う関連
機械装置の信頼性向上、関連装置の高性能化などの効果
がある。
According to the present invention, the moisture absorption reliability of electronic components can be improved without significantly changing the alloy composition of Afl material for electronic components or without performing surface treatment using special chemical species. I can do it. Therefore, Af for electronic component materials
It is possible to take advantage of various electronic properties and processability inherent to i, and the method of the present invention can be applied to the manufacturing process as it is. In addition, there are effects such as improved reliability of related mechanical devices and improved performance of related devices due to improved reliability of semiconductor structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は純アルミニウム(/’M1.)及びアルミニウ
ム(AQ)−2ケイ素(Si)材の孔食発生挙動を示す
特性図、第2図はアルミニウム(Afl)−2ケイ!(
Si)−第3添加物(チタン、ジルコニウム、ハフニウ
ム)材の孔食発生挙動を示す特性図、第3図は本発明が
適用される樹脂封止半導体捕造物の要部断面図である。 1・・・ボンディングパッド、2・・・ボンディングパ
ラ第 l 口 αイ牢ン濃!  (rr奈つ ce イ+ン$度 (f’F公) 旧 l  、ヰぐンデインクーバツF 2 ・−イぐンデ°イングツVソト長面庚膜J  ・半
導伯N崖しj 4・・・ソードフ14 5・・・ボンデインク゛ワイヤ 6 ・・+TE利け1旨
Fig. 1 is a characteristic diagram showing the pitting corrosion occurrence behavior of pure aluminum (/'M1.) and aluminum (AQ)-2 silicon (Si) materials, and Fig. 2 is a characteristic diagram showing the pitting corrosion occurrence behavior of pure aluminum (/'M1.) and aluminum (AQ)-2 silicon (Si) materials. (
Fig. 3 is a characteristic diagram showing the pitting corrosion occurrence behavior of Si)-third additive (titanium, zirconium, hafnium) material, and Fig. 3 is a sectional view of the main part of a resin-sealed semiconductor structure to which the present invention is applied. 1...Bonding pad, 2...Bonding para Part 1 Mouth αi prison is thick! (rrnatsu ce i+n$ degree (f'F Duke) old l, Igundeinkubattu F 2 ・-Igunde° Ingtu V Soto Long Face Bubbles J ・Sandei Haku N Cliff Shij 4・・・Sordoff 14 5...Bonde Ink Wire 6...+TE advantage 1 effect

Claims (1)

【特許請求の範囲】[Claims] 1、Al−0.5〜4重量%Si合金にTi、Zr、H
fから選ばれる元素を合計0.2〜5重量%添加した材
料膜にてボンディングパッド表面を作製し、該表面をプ
ラズマエッチング処理直後酸素プラズマ処理するか該表
面を所定の酸素ガス雰囲気中で急速酸化することにより
、電子部品用Al系材料に電気化学的に安定な表面皮膜
を形成することを特徴とする電子部品の表面処理法。
1. Al-0.5 to 4 wt% Si alloy with Ti, Zr, and H
A bonding pad surface is prepared using a material film to which a total of 0.2 to 5% by weight of elements selected from A method for surface treatment of electronic components, characterized by forming an electrochemically stable surface film on an Al-based material for electronic components by oxidation.
JP19987488A 1988-08-12 1988-08-12 Surface treatment of electronic component Pending JPH0250446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19987488A JPH0250446A (en) 1988-08-12 1988-08-12 Surface treatment of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19987488A JPH0250446A (en) 1988-08-12 1988-08-12 Surface treatment of electronic component

Publications (1)

Publication Number Publication Date
JPH0250446A true JPH0250446A (en) 1990-02-20

Family

ID=16415061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19987488A Pending JPH0250446A (en) 1988-08-12 1988-08-12 Surface treatment of electronic component

Country Status (1)

Country Link
JP (1) JPH0250446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250994B2 (en) 1996-11-20 2007-07-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display panel and method for manufacturing light reflecting film thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250994B2 (en) 1996-11-20 2007-07-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display panel and method for manufacturing light reflecting film thereof

Similar Documents

Publication Publication Date Title
TW515853B (en) Improved anode formulation and methods of manufacture
JP6160877B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JP2010236091A (en) Corrosion-resistant conductive member, method of manufacturing the same and fuel cell
TW200408010A (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
TW200846496A (en) Extending lifetime of yttrium oxide as a plasma chamber material
US5883060A (en) Cleaning compositions for wafers used in semiconductor devices
JP2690026B2 (en) Thin film interconnection circuit and method of forming the same
JP2008127598A (en) Method for forming corrosion resistant plating layer, and rotary machine
JP2019133862A (en) Fuel cell separator material
JPH0250446A (en) Surface treatment of electronic component
JP3608707B2 (en) Vacuum chamber member and manufacturing method thereof
FR2461023A1 (en) PROCESS FOR PREPARING CONDUCTIVE SUBSTRATES AND ELECTRODES FOR THE ELECTROLYSIS OF A BRINE, AND THE LOW-VOLTAGE ELECTRODE THUS OBTAINED
JPH08311692A (en) Parts for vacuum chamber and production thereof
JPH09217197A (en) Formation of alumina film and aluminum product
JP2884948B2 (en) Semiconductor substrate processing method
JP5564928B2 (en) DLTS measurement electrode and manufacturing method thereof
WO2007043645A1 (en) Process for production of devices
JP2006278172A (en) Separator material for fuel sell
JP2000106384A (en) Manufacture of bonding wire
JP2000216064A (en) Electrode foil having less spotted luster for electrolytic capacitor and its manufacturing method
JPH111797A (en) Vacuum chamber member made of al or al alloy
JP3365497B2 (en) Hydrogen peroxide electrode and hydrogen peroxide sensor and measuring device using the same
JPH08107226A (en) Solar cell, its manufacture, and plating method
JP2504081B2 (en) Manufacturing method of lead frame
JP3112275B2 (en) Wiring materials for thin film components