JPH0250379B2 - - Google Patents

Info

Publication number
JPH0250379B2
JPH0250379B2 JP56035214A JP3521481A JPH0250379B2 JP H0250379 B2 JPH0250379 B2 JP H0250379B2 JP 56035214 A JP56035214 A JP 56035214A JP 3521481 A JP3521481 A JP 3521481A JP H0250379 B2 JPH0250379 B2 JP H0250379B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant gas
setting circuit
cold water
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56035214A
Other languages
Japanese (ja)
Other versions
JPS57150008A (en
Inventor
Nobuyuki Suzuki
Akio Kiuchi
Masao Shimizu
Kazuo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Building Systems Engineering Co Ltd
Priority to JP56035214A priority Critical patent/JPS57150008A/en
Publication of JPS57150008A publication Critical patent/JPS57150008A/en
Publication of JPH0250379B2 publication Critical patent/JPH0250379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は冷水温度にかかわらず自動運転を可能
にした冷凍装置の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a refrigeration system that enables automatic operation regardless of the temperature of chilled water.

空気調和装置などに用いられる冷凍装置は第1
図に示す如く構成されている。
Refrigeration equipment used in air conditioners etc. is the first
It is configured as shown in the figure.

エバポレータ1、コンデンサ2および冷媒用の
コンプレツサ3からなり、エバポレータ1の入口
温度を温度検出器たとえば測温抵抗体4にて検出
し、温度調節器5にて設定した温度に冷水入口温
度を制御している。なお温度調節器5の操作端は
コンプレツサ3の冷媒ガス量の制御を行なうダン
パーであるか、コンプレツサ3への冷媒ガスの流
入角度および量を制御するペーンか、またはコン
プレツサ3の回転数制御装置である。
Consisting of an evaporator 1, a condenser 2, and a compressor 3 for refrigerant, the inlet temperature of the evaporator 1 is detected by a temperature detector such as a resistance temperature detector 4, and the cold water inlet temperature is controlled to a set temperature by a temperature controller 5. ing. The operating end of the temperature regulator 5 is a damper that controls the amount of refrigerant gas in the compressor 3, a pan that controls the inflow angle and amount of refrigerant gas into the compressor 3, or a rotation speed control device of the compressor 3. be.

コンプレツサ3により圧縮された冷媒ガスはコ
ンデンサ2により冷却され凝縮する。凝縮された
冷媒はエバポレータ1により蒸発される。冷媒が
蒸発する際にエバポレータ1に流入する冷水より
熱を奪い冷水温度を低下させる。この冷水を空気
調和機などの負荷装置に使用する。負荷装置に使
用された冷水は温度上昇してエバポレータ1に流
入する。これにより冷水を熱搬送媒体とする冷凍
システムが構成される。
The refrigerant gas compressed by the compressor 3 is cooled and condensed by the condenser 2. The condensed refrigerant is evaporated by the evaporator 1. When the refrigerant evaporates, it absorbs heat from the cold water flowing into the evaporator 1 and lowers the temperature of the cold water. This cold water is used for load devices such as air conditioners. The temperature of the cold water used in the load device increases and it flows into the evaporator 1. This constitutes a refrigeration system that uses cold water as a heat transfer medium.

一方冷凍装置の冷却能力は冷水の出入口温度差
と冷水の流量とにより決定されるが、一般に流量
は一定であるため、冷水の出入口温度差により決
定されると考えて差支えない。また冷凍装置の出
力としての冷凍能力は負荷により変動する負荷装
置の要求量に一致させる必要があり、冷却能力の
制御手段を必要とする。制御方法としては一般に
冷水の出口温度、または入口温度を一定にする方
法が用いられ、入口温度を一定にする方法によ
り、コンプレツサ3のベーン制御を行なう場合の
例が前記した第1図の例である。第1図に示す例
ではコンプレツサ3への冷媒ガスの流入角および
量をベーン制御して冷水入口温度を一定に制御し
ている。たとえば冷水入口温度が設定値より高い
場合はベーン開度を開き、また設定値より低い場
合はベーン開度を閉じるように制御する。なお、
6はベーンを駆動するベーンモータである。
On the other hand, the cooling capacity of a refrigeration system is determined by the temperature difference between the entrance and exit of the cold water and the flow rate of the cold water, but since the flow rate is generally constant, it can be safely assumed that it is determined by the temperature difference between the entrance and exit of the cold water. Furthermore, the refrigeration capacity as the output of the refrigeration system needs to match the required amount of the load device, which varies depending on the load, and a means for controlling the cooling capacity is required. As a control method, a method is generally used in which the outlet temperature or inlet temperature of the cold water is kept constant, and an example of the case where the vane control of the compressor 3 is performed by the method of keeping the inlet temperature constant is the example shown in FIG. 1 above. be. In the example shown in FIG. 1, the inflow angle and amount of refrigerant gas into the compressor 3 are vane-controlled to control the cold water inlet temperature to be constant. For example, when the cold water inlet temperature is higher than the set value, the vane opening is opened, and when the cold water inlet temperature is lower than the set value, the vane opening is closed. In addition,
6 is a vane motor that drives the vane.

しかしながら、一般に冷凍装置の冷凍能力とベ
ーン開度スパンとの関係は冷却水出口温度および
入口温度により規定され、例えば冷水出口温度5
℃、温度差5℃のときベーン開度100%の如くに
規定される。しかし冷凍装置の始動時の如く冷水
温度が上昇しているような場合、ベーン開度を
100%近くまで開くと、冷水入口温度が高いため
にエバポレータ1における冷媒蒸発圧力が上昇
し、またコンデンサ2の凝縮能力が追つかず、コ
ンデンサ圧力PAが上昇する。コンデンサ圧力が
一定値以上に上昇すると、コンプレツサ3がサー
ジングを生ずるために、冷凍装置の運転続行は不
能となる。
However, in general, the relationship between the refrigeration capacity of a refrigeration system and the vane opening span is defined by the cooling water outlet temperature and the inlet temperature, for example, the chilled water outlet temperature 5
℃, the vane opening is 100% when the temperature difference is 5℃. However, if the chilled water temperature is rising, such as when starting a refrigeration system, the vane opening degree should be adjusted.
When it is opened to nearly 100%, the refrigerant evaporation pressure in the evaporator 1 increases due to the high cold water inlet temperature, and the condensing capacity of the condenser 2 cannot keep up with it, causing the condenser pressure PA to increase. When the condenser pressure rises above a certain value, the compressor 3 causes surging, making it impossible to continue operating the refrigeration system.

このために冷凍装置の始動時などはベーンを手
動にて40〜50%開度に設定し、冷水が冷えてから
自動運転に移行せねばならない欠点があつた。
For this reason, when starting the refrigeration system, the vanes had to be manually set to 40-50% opening, and automatic operation had to be started only after the chilled water had cooled.

本発明は上記にかんがみなされたもので、冷水
入口温度に対するベーン開度との関係を関数化
し、冷水入口温度に対応してベーン開度のスパン
を自動的に決定し、決定したベーン開度のスパン
内においてベーンの制御を行なうことにより上記
の欠点を解消した冷凍装置の制御装置を提供する
ことを目的とする。
The present invention has been made in view of the above, and it converts the relationship between the vane opening degree and the chilled water inlet temperature into a function, automatically determines the span of the vane opening degree corresponding to the chilled water inlet temperature, and It is an object of the present invention to provide a control device for a refrigeration system that eliminates the above-mentioned drawbacks by controlling vanes within a span.

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

第2図は本発明の一実施例のブロツク図であ
る。
FIG. 2 is a block diagram of one embodiment of the present invention.

10は冷水温度を検出する測温抵抗体4の抵抗
を電圧に変換する抵抗−電圧変換器であり、11
は設定温度に対応した電圧を出力する温度設定回
路であり、12は温度設定回路11の出力電圧を
設定値TSとし抵抗−電圧変換器10の出力電圧
をプロセス変数値TDとしてオン・オフ制御する
温度調節器である。温度調節器12のTD>TS
出力はアンドゲート14に入力し、TD<TSの出
力はアンドゲート15に入力する。またアンドゲ
ート14,15にはクロツクパルス発生回路13
の出力パルスを入力する。
10 is a resistance-voltage converter that converts the resistance of the temperature measuring resistor 4 that detects the cold water temperature into a voltage, and 11
12 is a temperature setting circuit that outputs a voltage corresponding to the set temperature, and 12 is a temperature setting circuit that turns on/off the output voltage of the temperature setting circuit 11 as a set value T S and the output voltage of the resistance-voltage converter 10 as a process variable value T D. It is a temperature regulator to control. The output of the temperature controller 12 where T D > T S is input to the AND gate 14 , and the output where T D < T S is input to the AND gate 15 . Also, the AND gates 14 and 15 have a clock pulse generation circuit 13.
Input the output pulse of

一方、アンドゲート14の出力は1ステツプ増
開度設定回路17に入力し、アンドゲート15の
出力は1ステツプ減開度設定回路18に入力し
て、1ステツプ増開度設定回路17の出力は最大
開度設定回路19を通してベーンモータ制御回路
21に入力し、ベーンモータ6を開側に制御し、
1ステツプ減開度設定回路18の出力は最小開度
設定回路20を通してベーンモータ制御回路21
に入力し、ベーンモータ6を閉側に制御する。
On the other hand, the output of the AND gate 14 is input to the 1-step increasing opening degree setting circuit 17, the output of the AND gate 15 is input to the 1-step decreasing opening degree setting circuit 18, and the output of the 1-step increasing opening degree setting circuit 17 is input to the 1-step increasing opening degree setting circuit 17. is input to the vane motor control circuit 21 through the maximum opening setting circuit 19, and controls the vane motor 6 to the open side.
The output of the 1-step reduced opening setting circuit 18 is sent to the vane motor control circuit 21 through the minimum opening setting circuit 20.
is input to control the vane motor 6 to the closing side.

なお、クロツクパルス発生回路13〜アンドゲ
ート15および1ステツプ増開度設定回路17〜
ベーンモータ制御回路21で冷媒ガス調整器を構
成する。
In addition, the clock pulse generation circuit 13 to AND gate 15 and the one-step increase opening degree setting circuit 17 to
The vane motor control circuit 21 constitutes a refrigerant gas regulator.

また、22はベーン位置の検出用ポテンシヨメ
ータであつて、検出用ポテンシヨメータ22の抵
抗値は抵抗−電圧変換器23にて電圧に変換され
て、1ステツプ増開度設定回路17、1ステツプ
減開度設定回路18、最大開度設定回路19およ
び最小開度設定回路20にフイードバツクされ
る。
Further, 22 is a potentiometer for detecting the vane position, and the resistance value of the detecting potentiometer 22 is converted into a voltage by a resistance-voltage converter 23. Feedback is provided to the step reduction opening degree setting circuit 18, the maximum opening degree setting circuit 19, and the minimum opening degree setting circuit 20.

一方、16は抵抗−電圧変換器10の出力電圧
を入力とし、この抵抗−電圧変換器10の出力電
圧を第3図に示す如く関数化して最大開度を設定
する関数化回路であり、関数化回路16の出力は
1ステツプ増開度設定回路17、1ステツプ減開
度設定回路18、最大開度設定回路19および最
小開度設定回路20に入力する。
On the other hand, 16 is a function conversion circuit that receives the output voltage of the resistance-voltage converter 10 as an input and converts the output voltage of the resistance-voltage converter 10 into a function as shown in FIG. 3 to set the maximum opening degree. The output of the conversion circuit 16 is inputted to a one-step increasing opening setting circuit 17, a one-step decreasing opening setting circuit 18, a maximum opening setting circuit 19, and a minimum opening setting circuit 20.

いま測温抵抗体4で検出された冷水温度は抵抗
−電圧変換器10で電圧に変換され、温度調節器
12で設定温度と比較され、TS<TDのときはア
ンドゲート14に温度調節器12から出力が発せ
られてアンドゲート14はTS<TDの期間、開と
なる。従つてクロツクパルス発生回路13の出力
は1ステツプ増開度設定回路17に入力されて、
ベーンモータ制御回路21を通してベーンモータ
6をベーン開度を増加する方向に駆動してベーン
開度を増加させる。一方、TS>TDのときはアン
ドゲート15に温度調節器12から出力が発せら
れてアンドゲート15はTS>TDの期間、開とな
る。従つてクロツクパルス発生回路13の出力は
1ステツプ減開度設定回路18に入力されて、ベ
ーンモータ制御回路21を通してベーンモータ6
をベーン開度が減少する方向に駆動してベーン開
度を減少する。
The cold water temperature detected by the resistance temperature detector 4 is converted into voltage by the resistance-voltage converter 10, and compared with the set temperature by the temperature regulator 12. When T S < T D , the temperature is adjusted by the AND gate 14. An output is generated from the circuit 12, and the AND gate 14 is opened for a period of T S < TD . Therefore, the output of the clock pulse generation circuit 13 is inputted to the one-step increase opening degree setting circuit 17.
The vane motor 6 is driven through the vane motor control circuit 21 in a direction to increase the vane opening, thereby increasing the vane opening. On the other hand, when T S > T D , the temperature controller 12 outputs an output to the AND gate 15, and the AND gate 15 remains open during the period of T S > T D. Therefore, the output of the clock pulse generation circuit 13 is input to the 1-step reduction opening degree setting circuit 18, and is transmitted to the vane motor 6 through the vane motor control circuit 21.
is driven in a direction that reduces the vane opening to decrease the vane opening.

関数化回路16は抵抗−電圧変換器10の出力
電圧を第3図に示した如く変換して出力する。い
ま最大開度設定回路19はたとえば冷水入口温度
が10℃のとき100%の開度に、最小開度設定回路
20は冷水入口温度が10℃のとき25%に設定す
る。一方、アンドゲート14,15を通つて出力
されるクロツクパルス発生回路13の出力パルス
は1ステツプづつモータを増、減方向に駆動す
る。この場合において1ステツプ増開度設定回路
17はたとえばアンドゲート14の出力パルスで
トリガされ、かつ出力パルス幅は関数化回路16
の出力により設定される。いまたとえば冷水温度
10℃のとき5%の増開度となるように設定する。
The function conversion circuit 16 converts the output voltage of the resistance-voltage converter 10 as shown in FIG. 3 and outputs the converted voltage. For example, the maximum opening setting circuit 19 is set to 100% opening when the cold water inlet temperature is 10°C, and the minimum opening setting circuit 20 is set to 25% when the cold water inlet temperature is 10°C. On the other hand, the output pulses of the clock pulse generation circuit 13, which are output through the AND gates 14 and 15, drive the motor in the increasing and decreasing directions one step at a time. In this case, the one-step increased opening setting circuit 17 is triggered by the output pulse of the AND gate 14, and the output pulse width is determined by the function circuit 16.
Set by the output of For example, cold water temperature
Set the opening degree to increase by 5% at 10℃.

そこで、冷水入口温度が10℃で、TD>TSのと
き、クロツクパルス発生回路13のパルス出力毎
に5%づつ増方向にモータ6を駆動する。また1
ステツプ減開度設定回路18は1ステツプ増開度
設定回路17と同様に構成されている。そこで冷
水入口温度が10℃でTD<TSのとき、クロツクパ
ルス発生回路13のパルス出力毎に5%づつ減方
向にモータ6を駆動する。勿論モータの駆動範囲
は最大開度および最小開度は100%および25%内
の範囲である。
Therefore, when the cold water inlet temperature is 10 DEG C. and T D > TS , the motor 6 is driven in an increasing direction by 5% each time the clock pulse generation circuit 13 outputs a pulse. Also 1
The step decreasing opening degree setting circuit 18 is constructed similarly to the one-step increasing opening degree setting circuit 17. Therefore, when the cold water inlet temperature is 10 DEG C. and T D < TS , the motor 6 is driven in a direction of decrease by 5% each time the clock pulse generation circuit 13 outputs a pulse. Of course, the driving range of the motor is within the range of maximum opening and minimum opening of 100% and 25%.

いま、冷水入口温度が15℃となつたとき、関数
化回路16の出力が前記冷水入口温度が10℃のと
きの60%となるように変換するものとすれば、こ
の場合の最大開度は100%×0.6=60%、最小開度
は25%×0.6=15%となり、1ステツプの増減開
度は5%×0.6=3%となり、モータ6の駆動範
囲は最大開度および最小開度として60%〜15%内
の範囲である。
Now, when the cold water inlet temperature reaches 15°C, if the output of the function converting circuit 16 is to be converted to 60% of that when the cold water inlet temperature is 10°C, the maximum opening degree in this case is 100% x 0.6 = 60%, the minimum opening is 25% x 0.6 = 15%, the increase/decrease opening per step is 5% x 0.6 = 3%, and the drive range of motor 6 is the maximum opening and minimum opening. As ranges from 60% to 15%.

すなわち、冷水入口温度が10℃のときは最大開
度100%〜最小開度25%のスパンの間のみをベー
ンが移動し、クロツクパルス発生回路13の1ク
ロツクパルス毎に5%づつ開または閉方向に制御
され、冷水入口温度が15℃のときは最大開度60%
〜最小開度15%のスパンの間のみをベーンが移動
し、クロツクパルス発生回路13の1クロツクパ
ルス毎に3%づつ開または閉方向に制御される。
In other words, when the cold water inlet temperature is 10°C, the vanes move only between the span of the maximum opening of 100% and the minimum opening of 25%, and move in the open or close direction by 5% for each clock pulse of the clock pulse generation circuit 13. Controlled, maximum opening 60% when cold water inlet temperature is 15℃
The vane moves only within a span of 15% to a minimum opening degree, and is controlled to open or close by 3% for each clock pulse of the clock pulse generating circuit 13.

従つて本実施例によれば冷水入口温度が高い場
合においても自動運転を行なうことが可能とな
る。また冷水入口温度が高い状態では同じカロリ
ーを送出するためのコンプレツサ電力は、はるか
に小さくてすむため、負荷が少ない場合にはでき
るだけ冷水入口温度を上昇させ省エネルギー効果
を挙げることができる。
Therefore, according to this embodiment, automatic operation can be performed even when the cold water inlet temperature is high. In addition, when the cold water inlet temperature is high, the compressor power required to deliver the same amount of calories is much smaller, so when the load is small, the cold water inlet temperature can be raised as much as possible to save energy.

つぎに本発明を冷凍装置の並列運転にも応用す
ることができる。
Next, the present invention can also be applied to parallel operation of refrigeration equipment.

この応用例は2台の冷凍装置A,Bを空調機C
の負荷に応じて台数制御するものである。
In this application example, two refrigeration units A and B are connected to an air conditioner C.
The number of units is controlled according to the load.

DおよびEは冷凍装置へ冷水を圧送するポンプ
であり、Fは上記実施例で示した制御装置であ
る。いま、たとえば冷凍装置Aのベーン開度85%
のとき、冷凍装置Bの運転を開始し、冷凍装置
A,Bのベーン開度40%のとき冷凍装置Bの運転
を停止するような場合にも、冷水入口温度に応じ
て冷凍装置Bの運転をオン・オフするベーン開度
を、冷水入口温度に応じて冷却能力を加味して自
動的に関数化して換算できるため、冷凍機を無理
なく、かつ効率的に運転することができる。
D and E are pumps that force-feed cold water to the refrigeration system, and F is the control device shown in the above embodiment. Now, for example, the vane opening of refrigeration equipment A is 85%.
Even if refrigeration equipment B starts operating when , and refrigeration equipment B stops operating when the vane opening of refrigeration equipment A and B is 40%, the operation of refrigeration equipment B will start depending on the chilled water inlet temperature. Since the vane opening degree for turning on and off can be automatically converted into a function according to the cold water inlet temperature, taking into account the cooling capacity, the refrigerator can be operated easily and efficiently.

以上説明した如く本発明によれば、運転開始時
より冷凍機を自動にて運転できて、かつ冷水入口
温度が高い状態では同じカロリーを送出するため
の圧縮機電力は少なくてすむため、負荷が少ない
場合には出来るだけ冷水入口温度を上昇させ省エ
ネルギー効果をあげることができる。
As explained above, according to the present invention, the refrigerator can be operated automatically from the start of operation, and when the cold water inlet temperature is high, less compressor power is required to deliver the same calories, so the load is reduced. If the amount is low, the cold water inlet temperature can be raised as much as possible to save energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍装置の制御装置の説明図、
第2図は本発明の一実施例のブロツク図、第3図
は冷水入口温度とベーン開度との関係を示す図、
第4図は本発明の応用例のブロツク図である。 1……エバポレータ、2……コンデンサ、3…
…コンプレツサ、4……測温抵抗体、5……温度
調節器、6……ベーンモータ、10,23……抵
抗−電圧変換器、11……温度設定回路、12…
…温度調節器、13……クロツクパルス発生器、
14,15……アンドゲート、16……関数化回
路、17,18……1ステツプ増開度設定回路お
よび1ステツプ減開度設定回路、19,20……
最大開度設定回路および最小開度設定回路、21
……ベンモータ制御回路、22……ポテンシヨメ
ータ。
Figure 1 is an explanatory diagram of a conventional refrigeration system control device;
FIG. 2 is a block diagram of an embodiment of the present invention, FIG. 3 is a diagram showing the relationship between cold water inlet temperature and vane opening degree,
FIG. 4 is a block diagram of an application example of the present invention. 1... Evaporator, 2... Capacitor, 3...
...Compressor, 4...Resistance temperature detector, 5...Temperature controller, 6...Vane motor, 10, 23...Resistance-voltage converter, 11...Temperature setting circuit, 12...
...Temperature controller, 13...Clock pulse generator,
14, 15...AND gate, 16...Function circuit, 17, 18...1 step increase opening degree setting circuit and 1 step decrease opening degree setting circuit, 19, 20...
Maximum opening setting circuit and minimum opening setting circuit, 21
... Ben motor control circuit, 22 ... potentiometer.

Claims (1)

【特許請求の範囲】 1 冷媒ガスを圧縮するコンプレツサ、このコン
プレツサからの圧縮冷媒ガスを凝縮するコンデン
サ、このコンデンサからの凝縮冷媒を蒸発させて
前記冷媒ガスとすることにより、熱搬送媒体を冷
却するエバポレータからなる冷凍装置の前記熱搬
送媒体に対する冷却能力を変化させるために前記
コンプレツサへの冷媒ガス量を調整する操作器を
設け、前記熱搬送媒体の温度を温度設定回路で設
定した設定値となるように制御する冷凍装置の制
御装置において、 前記熱搬送体の流入温度を検出する温度検出器
と、 前記熱搬送体の温度と前記温度設定回路の設定
値を比較した比較信号を出力する温度調整器と、 この温度調整器の比較信号に基づいて前記操作
器に冷媒ガス量を調整する調整信号を出力する冷
媒ガス量調整器と、 前記温度検出器の出力と前記冷媒ガス量調整器
への出力の関係を予め関数化し、前記温度検出器
の出力により、前記冷媒ガス量調整器の前記操作
器への冷媒ガス量調整出力を規制する関数化回路
と、 を備えたことを特徴とする冷凍装置の制御装置。
[Scope of Claims] 1. A compressor that compresses refrigerant gas, a condenser that condenses the compressed refrigerant gas from the compressor, and a heat transfer medium that cools the heat transfer medium by evaporating the condensed refrigerant from the condenser into the refrigerant gas. In order to change the cooling capacity for the heat transfer medium of the refrigeration system consisting of an evaporator, an operator is provided to adjust the amount of refrigerant gas to the compressor, and the temperature of the heat transfer medium is set to the set value set by the temperature setting circuit. A control device for a refrigeration system that controls the temperature of the heat carrier, comprising: a temperature detector that detects the inflow temperature of the heat carrier; and a temperature controller that outputs a comparison signal comparing the temperature of the heat carrier and a set value of the temperature setting circuit. a refrigerant gas amount regulator that outputs an adjustment signal for adjusting the refrigerant gas amount to the operating device based on the comparison signal of the temperature regulator; A refrigeration system characterized by comprising: a function conversion circuit that converts the relationship between outputs into a function in advance and regulates the refrigerant gas amount adjustment output of the refrigerant gas amount regulator to the operating device based on the output of the temperature sensor. Device control device.
JP56035214A 1981-03-13 1981-03-13 Controller of refrigerating device Granted JPS57150008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56035214A JPS57150008A (en) 1981-03-13 1981-03-13 Controller of refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56035214A JPS57150008A (en) 1981-03-13 1981-03-13 Controller of refrigerating device

Publications (2)

Publication Number Publication Date
JPS57150008A JPS57150008A (en) 1982-09-16
JPH0250379B2 true JPH0250379B2 (en) 1990-11-02

Family

ID=12435585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56035214A Granted JPS57150008A (en) 1981-03-13 1981-03-13 Controller of refrigerating device

Country Status (1)

Country Link
JP (1) JPS57150008A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589060A (en) * 1984-05-14 1986-05-13 Carrier Corporation Microcomputer system for controlling the capacity of a refrigeration system
JPS6136272U (en) * 1984-07-31 1986-03-06 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JPS57150008A (en) 1982-09-16

Similar Documents

Publication Publication Date Title
KR890004396B1 (en) Opersting method and control system for refrigeration system
EP0186332B1 (en) Self-optimizing centrifugal compressor capacity control
US4535607A (en) Method and control system for limiting the load placed on a refrigeration system upon a recycle start
US4538422A (en) Method and control system for limiting compressor capacity in a refrigeration system upon a recycle start
US4495779A (en) Air conditioner
US4539820A (en) Protective capacity control system for a refrigeration system
JP2723339B2 (en) Heat pump heating equipment
JPS6325458A (en) Method and device for controlling surge of refrigeration system
US5222370A (en) Automatic chiller stopping sequence
JPS6336436B2 (en)
US4446704A (en) Air conditioning apparatus with temperature regulated cooling
JPH0250379B2 (en)
JPS6045336B2 (en) Control device and method of operation for chilled water set point temperature
JPH0510609A (en) Condensation pressure controller of refrigerator
JPH0668410B2 (en) Air conditioner
JP2504997Y2 (en) Air conditioner
JP2624171B2 (en) Air conditioner operation control method
JP2951043B2 (en) Air conditioner
JPS6410746B2 (en)
JPS6256425B2 (en)
JP2508160B2 (en) Turbo refrigerator
JPH08285383A (en) Fast cooling control method and device in freezing system
JPH0510183Y2 (en)
JPS60202276A (en) Air conditioner
JP2611657B2 (en) Air conditioner operation control method