JPH0250358B2 - - Google Patents

Info

Publication number
JPH0250358B2
JPH0250358B2 JP63055938A JP5593888A JPH0250358B2 JP H0250358 B2 JPH0250358 B2 JP H0250358B2 JP 63055938 A JP63055938 A JP 63055938A JP 5593888 A JP5593888 A JP 5593888A JP H0250358 B2 JPH0250358 B2 JP H0250358B2
Authority
JP
Japan
Prior art keywords
lubricating oil
chamber
piston
oil chamber
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63055938A
Other languages
Japanese (ja)
Other versions
JPS6426096A (en
Inventor
Furai Benharudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrowatt Systems Ltd
Original Assignee
Hydrowatt Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrowatt Systems Ltd filed Critical Hydrowatt Systems Ltd
Publication of JPS6426096A publication Critical patent/JPS6426096A/en
Publication of JPH0250358B2 publication Critical patent/JPH0250358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0439Supporting or guiding means for the pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/084Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular member being deformed by stretching or distortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はピストン・シリンダ組体の潤滑装置、
詳しくは脈動作用室を形成する少なくとも1つの
ピストン・シリンダ組体を有し、特にシリンダ内
面に潤滑油を介して摺動自在に支持される伸縮自
在なシーリングチユーブを有し、ピストンの上下
運動によつて前記シーリングチユーブ内に脈動作
用室を形成するピストン・シリンダ組体における
潤滑装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a lubricating device for a piston-cylinder assembly,
Specifically, it has at least one piston-cylinder assembly forming a pulsating chamber, and in particular has a retractable sealing tube that is slidably supported on the inner surface of the cylinder via lubricating oil, and is adapted to the vertical movement of the piston. The present invention therefore relates to a lubricating device for a piston/cylinder assembly which forms a pulsating chamber in the sealing tube.

(従来技術とその課題) 上記ピストン・シリンダ組体においては、ピス
トンとシリンダとの摺動面、あるいはシーリング
チユーブを有する組体にあつて該チユーブとシリ
ンダとの摺動面に潤滑油を供給する強制循環給油
系を含む潤滑装置を必要としている。
(Prior art and its problems) In the piston/cylinder assembly described above, lubricating oil is supplied to the sliding surface between the piston and the cylinder, or to the sliding surface between the tube and the cylinder in the case of an assembly having a sealing tube. Requires a lubrication system including a forced circulation lubrication system.

しかるに上記潤滑装置は潤滑油を収容する潤滑
油室(オイルタンク)、該油室から潤滑油を前記
組体へ供給する給油ポンプ、シリンダ組体に作用
した潤滑油が導入される回収室及び回収室から前
記油室へ潤滑油を戻す還流ポンプを装備する必要
があるが、従来装置においては前記潤滑油室、給
油ポンプ等をピストン・シリンダ組体の筐体とは
別体に配設して接続しており、とくに潤滑油室、
給油ポンプは組体との関係ではばく然と配置する
構造であつた。そのため従来装置においては前記
組体と潤滑油室、給油ポンプとの位置が離れ全体
として大型化するとともに各部材間を結ぶ循環給
油系路の配回しが複雑になり、その一部は露出す
ることにもなり好ましくない。
However, the above-mentioned lubricating device includes a lubricating oil chamber (oil tank) that stores lubricating oil, an oil supply pump that supplies lubricating oil from the oil chamber to the assembly, a recovery chamber into which lubricating oil that has acted on the cylinder assembly is introduced, and recovery. It is necessary to be equipped with a reflux pump that returns lubricating oil from the chamber to the oil chamber, but in conventional devices, the lubricating oil chamber, oil supply pump, etc. are arranged separately from the housing of the piston-cylinder assembly. It is connected, especially the lubricating oil chamber,
The fuel pump was designed to be placed in an obvious manner in relation to the assembly. Therefore, in conventional equipment, the positions of the assembly, lubricating oil chamber, and oil supply pump are far apart, making the overall size larger, and the layout of the circulation oil supply system connecting each member becomes complicated, with some parts exposed. This is not desirable.

又、潤滑装置にあつては、その循環給油系に潤
滑油の冷却装置を含めることが、装置の作動安定
性及びピストン・シリンダ組体の性能向上に効果
的であるが、その冷却装置の配置構成によつては
装置がさらに大型化、複雑化して製造コストの大
幅な増大を招く結果となる。
In addition, in the case of a lubricating system, it is effective to include a lubricating oil cooling device in the circulation oil supply system to improve the operational stability of the device and the performance of the piston/cylinder assembly, but the location of the cooling device Depending on the configuration, the device becomes even larger and more complex, resulting in a significant increase in manufacturing costs.

而して本発明は斯る従来事情に鑑み、潤滑装置
各部材の収まりをよくして装置を小型化し、依つ
て製造コストを安価にすることが可能なピスト
ン・シリンダ組体の潤滑装置を提供せんとするも
のである。
In view of the conventional circumstances, the present invention provides a lubricating device for a piston-cylinder assembly, which allows each member of the lubricating device to fit well, making the device compact and reducing manufacturing costs. This is what I am trying to do.

(課題を解決するための手段) 斯る本発明の課題解決のための手段は、脈動作
用室を形成する少なくとも1つのピストン・シリ
ンダ組体と、潤滑油を収容する潤滑油室と、前記
油室から潤滑油をピストン・シリンダ組体へ供給
する給油ポンプ、ピストン・シリンダ組体に作用
した潤滑油が導入される回収室及び回収室から前
記油室へ潤滑油を戻す還流ポンプを含む閉回路か
らなる強制循環給油系とを有し、前記潤滑油室、
給油ポンプ、回収室及び還流ポンプがピストン・
シリンダ組体と共通する筐体内に形成されるとと
もに潤滑油室が前記組体の駆動装置の回転軸線を
囲み、かつ該軸線と同心状な環状形状に形成され
ていることを特徴とする。
(Means for Solving the Problems) Means for solving the problems of the present invention include at least one piston-cylinder assembly forming a pulsating chamber, a lubricating oil chamber containing lubricating oil, and a lubricating oil chamber containing lubricating oil. A closed circuit including an oil supply pump that supplies lubricating oil from a chamber to the piston/cylinder assembly, a recovery chamber into which the lubricating oil that has acted on the piston/cylinder assembly is introduced, and a return pump that returns the lubricating oil from the recovery chamber to the oil chamber. a forced circulation oil supply system consisting of the lubricating oil chamber;
The refueling pump, recovery chamber and reflux pump are pistons and
The lubricating oil chamber is formed in a housing common to the cylinder assembly, and has an annular shape that surrounds and is concentric with the axis of rotation of the drive device of the assembly.

又、上記給油ポンプ及び還流ポンプもまたピス
トン・シリンダ組体の駆動装置回路軸線と同心状
に配置することが好ましく、その給油ポンプを前
記潤滑油室の環状内空間部を利用しそこに配置す
ればさらに小型化が図れ好ましい。
Further, it is preferable that the oil supply pump and the return pump are also arranged concentrically with the axis of the drive circuit of the piston-cylinder assembly, and the oil supply pump is arranged there using the annular inner space of the lubricating oil chamber. This is preferable since it can be further miniaturized.

本発明の冷却装置に関する課題解決のための手
段は、前記潤滑油室内に熱交換器を配置し、前記
組体へ作用媒を供給する作用媒供給手段によつ
て、該作用媒の一部を前記熱交換器へ送つて通過
させ、それにより潤滑油室内の潤滑油を冷却させ
ることを特徴とする。
Means for solving the problems related to the cooling device of the present invention is that a heat exchanger is arranged in the lubricating oil chamber, and a part of the working medium is supplied by a working medium supply means that supplies the working medium to the assembly. The lubricating oil in the lubricating oil chamber is cooled by sending the lubricating oil through the heat exchanger.

上記作用媒供給手段は、例えば供給ポンプ(軸
流ポンプ)を具備し、この供給ポンプによりピス
トン・シリンダ組体のシリンダ内へ作用媒(例え
ば油であるが、前記潤滑油とは区別される)を供
給するものであるが、その一部が熱交換器へバイ
パスとして供給され潤滑油の冷却のために使用さ
れる。
The working medium supply means includes, for example, a supply pump (axial flow pump), and this supply pump supplies the working medium (for example, oil, but it is distinguished from the lubricating oil) into the cylinder of the piston-cylinder assembly. A portion of it is supplied to the heat exchanger as a bypass and used for cooling the lubricating oil.

上記熱交換器はその作用媒流入側を前記供給ポ
ンプの流出側に接続することによつて、作用媒、
潤滑油間に極めて強力な熱交換が行なわれるとと
もに、熱交換器の作用媒系路を供給ポンプの流出
側と流入側とを結ぶ還流バイパスとして構成する
ことが好適である。
The heat exchanger connects the working medium inflow side to the outflow side of the supply pump, so that the working medium,
It is preferred that a very strong heat exchange takes place between the lubricating oils and that the working medium line of the heat exchanger is configured as a reflux bypass connecting the outflow side and the inflow side of the supply pump.

又、上記供給ポンプもまた前記潤滑油室の環状
内空間を利用し、そこに配置することによつて装
置の一層の小型化を図ることができる。
Further, the supply pump also utilizes the annular inner space of the lubricating oil chamber, and by arranging it there, it is possible to further downsize the apparatus.

(作用) 本発明によれば、潤滑装置を構成する潤滑油
室、給油ポンプ、回収室及び還流ポンプが、ピス
トン・シリンダ組体の筐体内に形成され、それら
部材間の循環給油系路を筐体内で配回することが
できる。
(Function) According to the present invention, the lubricating oil chamber, the oil supply pump, the recovery chamber, and the reflux pump that constitute the lubricating device are formed within the housing of the piston/cylinder assembly, and the circulation oil supply path between these members is connected to the housing. It can be distributed within the body.

又、上記潤滑油室の配置位置により前記組体と
潤滑油室とを近接させることができ筐体を小型化
させ、また潤滑油室の環状形状により、該環状内
空間を利用してそこに前記給油ポンプ、あるいは
前記組体へ作用媒を供給する手段(給油ポンプ)
を配置させ、それら部材の収まりを良くし配置ス
ペースを縮小する。
In addition, the arrangement position of the lubricating oil chamber allows the assembly and the lubricating oil chamber to be brought close to each other, thereby reducing the size of the casing, and the annular shape of the lubricating oil chamber allows for the use of the annular internal space. The oil supply pump or means for supplying a working medium to the assembly (oil supply pump)
, and to improve the fit of these parts and reduce the installation space.

さらに上記潤滑油室と回収室との間のオーバー
フロー流路の介在により、回収室内を常に潤滑油
の充満した状態に保持し、還流ポンプを介して潤
滑油室内へ還流される潤滑油中の気泡の巻込みを
防止する。
Furthermore, by interposing the overflow channel between the lubricating oil chamber and the recovery chamber, the recovery chamber is always kept filled with lubricating oil, and air bubbles in the lubricating oil are returned to the lubricating oil chamber via the reflux pump. to prevent it from getting caught.

又、冷却装置を具備する潤滑装置においては、
作用媒供給手段によりピストン・シリンダ組体へ
供給される作用媒の一部が前記潤滑油室内の熱交
換器へ迂回して流動し、該油室内の潤滑油を冷却
させる。
In addition, in a lubricating device equipped with a cooling device,
A portion of the working medium supplied to the piston-cylinder assembly by the working medium supply means detours to the heat exchanger in the lubricating oil chamber and cools the lubricating oil in the oil chamber.

そして上記熱交換器が潤滑油室内に配置された
ことにより、冷却装置の具備によつても該装置の
収まりをよくし、筐体の外形スペースが拡大され
ない。
Since the heat exchanger is disposed within the lubricating oil chamber, the device can be easily accommodated even with the provision of a cooling device, and the external space of the casing is not expanded.

(実施例) 本発明の実施例を図面により説明すれば、第1
図において10は駆動装置、12は容積形の主ポ
ンプであつて、駆動装置10は図示しないモータ
により回転駆動される主軸1、該軸に取付けられ
た回転カム2及びカム外周に支持された複数、す
なわちポンプ12の数に相当する数の押圧面4を
有するスライダ3により構成され、主ポンプ12
はピストン20、シーリングチユーブ22及びシ
リンダ25により構成されるピストン・シリンダ
組体である。
(Example) To explain an example of the present invention with reference to the drawings, the first example is as follows.
In the figure, 10 is a drive device, and 12 is a positive displacement main pump. , that is, the slider 3 has a number of pressing surfaces 4 corresponding to the number of pumps 12, and the main pump 12
is a piston-cylinder assembly composed of a piston 20, a sealing tube 22, and a cylinder 25.

上記主ポンプ12はその複数個が夫々前記回転
カム2外周の押圧面4に対向して配置される星形
多シリンダ構造であり、その各主ポンプ12は、
ピストン20底部に係合し、かつシリンダ25外
周を包囲するコツプ形プランジヤ30を介して前
記駆動装置10の押圧面4に連動する。
The main pump 12 has a star-shaped multi-cylinder structure in which a plurality of the main pumps 12 are arranged facing the pressing surface 4 on the outer periphery of the rotary cam 2, and each main pump 12 has a star-shaped multi-cylinder structure.
The plunger 30 engages with the bottom of the piston 20 and surrounds the outer periphery of the cylinder 25, and is interlocked with the pressing surface 4 of the drive device 10.

主ポンプ12はそのシーリングチユーブ22が
高い弾性を有し伸縮自在な、例えばゴムでもつて
チユーブ状に形成され、その上端をシリンダ25
上部に連結するとともに下端をピストン20に連
結して、このシーリングチユーブ22内に作動室
24を形成してなる。
The main pump 12 has a sealing tube 22 having a high elasticity and is made of rubber, for example, and is formed into a tube shape, and its upper end is connected to a cylinder 25.
The upper end of the sealing tube 22 is connected to the piston 20, and the lower end thereof is connected to the piston 20, thereby forming a working chamber 24 within the sealing tube 22.

従つて上記主ポンプ12は回転カム2の回転に
伴い押圧面4、プランジヤ30を介してピストン
20が上下動することにより、シーリングチユー
ブ22がシリンダ25内で軸方向に伸縮動し、該
チユーブ22内の作動室24の内部容積が収縮、
膨張する脈動作用を生じ、これによりシリンダ2
5上端に連通する流路28に設けた逆止弁26,
27と共働してポンプ作用を行なう。
Therefore, in the main pump 12, as the piston 20 moves up and down via the pressing surface 4 and the plunger 30 as the rotary cam 2 rotates, the sealing tube 22 expands and contracts in the axial direction within the cylinder 25. The internal volume of the working chamber 24 in the
This creates an expanding pulsating action which causes cylinder 2
5 a check valve 26 provided in a flow path 28 communicating with the upper end;
27 to perform a pumping action.

すなわちピストン20が下降する作動室24の
膨張行程時において逆止弁26が開き、逆止弁2
7が閉じて作用媒(例えば油)を流路28の流入
側から作動室24内に吸入し、ピストン20が上
昇する収縮行程時において逆止弁26が閉じ、逆
止弁27が開いて作動室24内に吸入した作用媒
を流路28の流出側へ吐出させる。
That is, during the expansion stroke of the working chamber 24 when the piston 20 descends, the check valve 26 opens and the check valve 2
7 closes to suck the working medium (for example, oil) into the working chamber 24 from the inflow side of the flow path 28, and during the contraction stroke in which the piston 20 rises, the check valve 26 closes and the check valve 27 opens to operate. The working medium sucked into the chamber 24 is discharged to the outflow side of the flow path 28.

上記作動室24内にはピストン20を下向に付
勢するスプリング23をシリンダ25の上壁とピ
ストン20との間に介在させ、これによりピスト
ン20をブツシユ形プランジヤ30の底部30b
に圧接させ、かつ該底部30bを駆動装置10の
押圧面4に押圧せしめる。
In the working chamber 24, a spring 23 for biasing the piston 20 downward is interposed between the upper wall of the cylinder 25 and the piston 20.
and press the bottom portion 30b against the pressing surface 4 of the drive device 10.

プランジヤ30はピストン20と押圧面4との
間に介在される底部30bとその外周縁から上方
に延びる円筒部30aとからなる形状にし、その
円筒部30aによりシリンダ25の外周を下端か
ら所定高さを包囲するとともに円筒部30a内面
とシリンダ25の外面とのあいだに間〓を形成し
て環状の絞り流路45を形成する。
The plunger 30 has a shape consisting of a bottom part 30b interposed between the piston 20 and the pressing surface 4, and a cylindrical part 30a extending upward from the outer periphery of the bottom part 30b. A space is formed between the inner surface of the cylindrical portion 30a and the outer surface of the cylinder 25, thereby forming an annular throttle flow path 45.

又、シリンダ25内面とシーリングチユーブ2
2外面との摺動摩擦を減ずるために、両者間に形
成される間〓路25a上部に供給口90bを通し
て潤滑油を供給するようにし、供給された潤滑油
は間〓路25aを流下してシリンダ25下端部に
位置する間〓路25aの比較的低圧な間〓路42
へ至る。
In addition, the inner surface of the cylinder 25 and the sealing tube 2
2. In order to reduce sliding friction with the outer surface of the cylinder, lubricating oil is supplied through the supply port 90b to the upper part of the passage 25a formed between the two, and the supplied lubricating oil flows down the passage 25a and flows into the cylinder. 25 located at the lower end of the passageway 25a, the relatively low pressure passageway 42
leading to.

シリンダ25の下端は開放状であつて、そのた
め前記絞り流路45は前記間〓路25aの間〓室
42に通じ、また絞り流路45の上端は円筒部3
0aの上端、すなわちシリンダ25の外周に形成
された側方室35に連通せしめる。
The lower end of the cylinder 25 is open, so that the throttle passage 45 communicates with the chamber 42 between the intermediate passages 25a, and the upper end of the throttle passage 45 is connected to the cylindrical portion 3.
It communicates with a side chamber 35 formed at the upper end of the cylinder 25, that is, at the outer periphery of the cylinder 25.

又、第1図において主軸1には前記カム2に隣
接する位置に還流ポンプ105を取付けるととも
にその側方に潤滑油の給油ポンプ100及び作用
媒の供給ポンプ150を夫々近接状に配置せし
め、また前記カム2の外周には回収室120を形
成し、供給ポンプ150の外周には主軸1の軸線
X−Xと同心状に環状の潤滑油室110を形成
し、これら部材105,100,150,12
0,110及び前述した主ポンプ12は何れも主
軸1の外周を囲む筐体内に組付けて構成される。
Further, in FIG. 1, a reflux pump 105 is attached to the main shaft 1 at a position adjacent to the cam 2, and a lubricating oil supply pump 100 and a working medium supply pump 150 are respectively disposed in close proximity to the sides thereof. A recovery chamber 120 is formed on the outer periphery of the cam 2, and an annular lubricating oil chamber 110 is formed on the outer periphery of the supply pump 150 concentrically with the axis XX of the main shaft 1, and these members 105, 100, 150, 12
0, 110 and the main pump 12 described above are all assembled into a housing surrounding the outer periphery of the main shaft 1.

そして上記供給ポンプ150は前述した主ポン
プ12の作動室24内へ作用媒すなわち油や水な
どの液体を送り込む軸流ポンプであり、その吐出
側151が流路152,154及び156を介し
て前記流路28に連通する。
The supply pump 150 is an axial flow pump that feeds a working medium, that is, a liquid such as oil or water into the working chamber 24 of the main pump 12 described above, and its discharge side 151 is connected to the It communicates with the flow path 28.

流路28は流出側151に通じる環状路であ
り、流路154は環状流路152から各主ポンプ
12へ向けて水平に延びており、その先端と各主
ポンプ12の流路28とを流路156により連通
させる。供給ポンプ150の流入側157には、
作用媒の流入口158が接続される。
The flow path 28 is an annular path leading to the outflow side 151 , and the flow path 154 extends horizontally from the annular flow path 152 toward each main pump 12 , and connects its tip to the flow path 28 of each main pump 12 . It is communicated by passage 156. On the inflow side 157 of the supply pump 150,
A working medium inlet 158 is connected.

従つて、上記流入口158を介し流入側157
に入つた作用媒は供給ポンプ150の駆動によ
り、流出側151から流路152,154を介し
流路156へ供給されており、主ポンプ12の動
作に連動して前記逆止弁26が開いたときに(逆
止弁27は閉じ状態)、作用媒は流路28を介し
て主ポンプ12の作動室24内に吸入され、作動
室24が収縮行程になつたときに、逆止弁26が
閉じ、逆止弁27が開いて、作動室24内の作用
媒は流路28の流出側へ吐出し、筐体外の所定個
所へ供給される。
Therefore, the inflow side 157 via the inflow port 158
The working medium that has entered is supplied from the outlet side 151 to the flow path 156 via the flow paths 152 and 154 by driving the supply pump 150, and the check valve 26 is opened in conjunction with the operation of the main pump 12. When the working medium is sucked into the working chamber 24 of the main pump 12 through the flow path 28 (when the check valve 27 is in the closed state), when the working chamber 24 enters the contraction stroke, the check valve 26 closes. When the valve is closed and the check valve 27 is opened, the working medium in the working chamber 24 is discharged to the outflow side of the flow path 28 and supplied to a predetermined location outside the housing.

一方上記給油ポンプ100、回収室120、及
び還流ポンプ105は、前記潤滑油室110内の
潤滑油を主ポンプ12の摺動面へ供給する閉回路
からなる潤滑油強制循環系を構成する。
On the other hand, the oil supply pump 100, the recovery chamber 120, and the reflux pump 105 constitute a forced lubricating oil circulation system consisting of a closed circuit that supplies the lubricating oil in the lubricating oil chamber 110 to the sliding surface of the main pump 12.

潤滑油室110を前記配置構成とすることによ
つて複数の主ポンプ12への連通路が円周上所定
間隔をおき、かつ等距離をおいて配置され、連通
路の配設が容易となる。
By arranging the lubricating oil chamber 110 as described above, the communication passages to the plurality of main pumps 12 are arranged at predetermined intervals on the circumference and at equal distances, and the arrangement of the communication passages becomes easy. .

強制給油ポンプ100は潤滑油室110から流
入側流路103を介して潤滑油を吸入し、それを
流出側流路104を介してフイルタ102へ送り
込みさらに環状分配流路101へ供給するもの
で、潤滑油は前記分配流路101から、調整スロ
ツトル90a,95aをそれぞれ含む圧力流路9
0,95を通つて個々の主ポンプ12に達する。
The forced oil supply pump 100 sucks lubricating oil from a lubricating oil chamber 110 through an inflow passage 103, sends it to a filter 102 through an outflow passage 104, and further supplies it to an annular distribution passage 101. The lubricating oil is transferred from the distribution channel 101 to the pressure channel 9 including the adjusting throttles 90a and 95a, respectively.
0.95 to reach the individual main pumps 12.

その流路90から主ポンプ12へ至る潤滑油は
シリンダ25の前記供給口90bを介して間〓路
25aへ供給され、シリンダ25とシーリングチ
ユーブ22との間を潤滑して間〓室42へ流下す
る。
The lubricating oil from the flow path 90 to the main pump 12 is supplied to the intermediate passage 25a through the supply port 90b of the cylinder 25, lubricates between the cylinder 25 and the sealing tube 22, and flows into the intermediate chamber 42. do.

この間〓室42はピストン20の上下動により
脈動作用を生じ、ピストン20の上昇行程におい
て間〓室42は比較的低圧となるから間〓路25
a内の潤滑油を支障なく間〓室42へ流出させ、
ピストン20の下降行程において間〓室42内に
流下せる潤滑油が絞り流路45を通して側方室3
5へ排出させる。
During this period, the chamber 42 generates a pulsating action due to the vertical movement of the piston 20, and the pressure in the chamber 42 becomes relatively low during the upward stroke of the piston 20, so that the pressure in the chamber 42 is relatively low.
The lubricating oil in a is allowed to flow out into the spacer chamber 42 without any hindrance,
During the downward stroke of the piston 20, the lubricating oil that can flow down into the side chamber 42 passes through the throttle channel 45 and flows into the side chamber 3.
Discharge to 5.

又、間〓室42から側方室35へ潤滑油を確実
に送り込むためには側方室35にも低圧が存在し
なければならない。
Further, in order to reliably feed lubricating oil from the intermediate chamber 42 to the side chamber 35, low pressure must also exist in the side chamber 35.

そのために側方室35を開口断面積の大きな平
衡流路40を介して前記潤滑油室110へ連通さ
せる。この潤滑油室110は大きな内部容積を有
し圧力解放状態に維持されている。
For this purpose, the side chamber 35 is communicated with the lubricating oil chamber 110 via a balanced flow path 40 having a large opening cross-sectional area. This lubricating oil chamber 110 has a large internal volume and is maintained in a pressure-released state.

一方、流路95を介して供給される潤滑油は、
前記プランジヤ30の円筒部30a外面とそれが
摺接する案内面48との間に供給され、ピストン
20と共に上下動する円筒部30a外面の摺接動
を円滑ならしめる。
On the other hand, the lubricating oil supplied through the flow path 95 is
It is supplied between the outer surface of the cylindrical portion 30a of the plunger 30 and the guide surface 48 with which it slides, smoothing the sliding movement of the outer surface of the cylindrical portion 30a that moves up and down together with the piston 20.

上記潤滑油は流路47を通つて前記押圧面4へ
流下し、さらに回収室120へ流入する。
The lubricating oil flows down to the pressing surface 4 through the flow path 47 and further flows into the recovery chamber 120.

還流ポンプ105は流路115を介して回収室
120の下部から回収された潤滑油を吸収し、立
上がり環流流路106を介して潤滑油室110の
頂部110aへ供給する。
The reflux pump 105 absorbs the lubricating oil recovered from the lower part of the recovery chamber 120 via the flow path 115, and supplies it to the top portion 110a of the lubricating oil chamber 110 via the rising reflux flow path 106.

上記流路115の回収室120側端は該室内に
溜る潤滑油の液面下に常に位置するようにし、こ
れにより還流ポンプ105の吸引時の気泡の巻込
みを防ぎ潤滑油室110へ流入する潤滑油に気泡
の混入をなくすようにする。
The end of the flow path 115 on the side of the recovery chamber 120 is always located below the surface of the lubricating oil accumulated in the chamber, thereby preventing air bubbles from being drawn in when the reflux pump 105 sucks the oil and causing it to flow into the lubricating oil chamber 110. Make sure that there are no air bubbles in the lubricating oil.

又、還流ポンプ105の空吸引、それによる気
泡の巻込みを確実に防止するために、回収室12
0の下部と潤滑油室110とを結ぶオーバーフロ
ー流路130を接続し、該流路130を介して回
収室120内へ潤滑油を供給し、回収室120内
に常に所定量の潤滑油が収容されているようにす
る。
In addition, in order to reliably prevent the empty suction of the reflux pump 105 and the entrainment of air bubbles, the recovery chamber 12
An overflow channel 130 connecting the lower part of the 0 and the lubricating oil chamber 110 is connected, and lubricating oil is supplied into the recovery chamber 120 through the channel 130, so that a predetermined amount of lubricating oil is always stored in the recovery chamber 120. Make it so.

又、回収室120内への潤滑油の過量流入を防
ぐために流入量の調整部材を設ける。
Further, in order to prevent an excessive amount of lubricating oil from flowing into the recovery chamber 120, an inflow amount adjusting member is provided.

この調整部材としては調節自在な絞り弁135
aを流路130に設けるだけでも十分である。し
かし図示実施例では調整部材としての制御可能な
弁135及び調整装置としてのフロート140を
含むあふれ調整機構を設ける。これにより回収室
120内を適正な油量に維持することができる。
This adjusting member is a freely adjustable throttle valve 135.
It is sufficient to simply provide a in the flow path 130. However, in the illustrated embodiment, an overflow adjustment mechanism is provided which includes a controllable valve 135 as the adjustment member and a float 140 as the adjustment device. Thereby, the inside of the recovery chamber 120 can be maintained at an appropriate amount of oil.

回収室120内に潤滑油を適正量を常に維持す
ること、したがつて還流ポンプ105の空吸引を
なくすことは、確実な強制循環給油に悪影響を及
ぼす気泡の混入を防止するためにも不可欠であ
る。
It is essential to always maintain an appropriate amount of lubricating oil in the recovery chamber 120, and therefore to eliminate idle suction from the reflux pump 105, in order to prevent the inclusion of air bubbles that will have a negative impact on reliable forced circulation lubrication. be.

第2図はポンプの強制循環給油系を示す構成図
であり、主な部材には第1図と共通の参照番号を
付してある。
FIG. 2 is a configuration diagram showing the forced circulation oil supply system of the pump, and the main members are given the same reference numbers as in FIG. 1.

すなわち、潤滑油室110内の潤滑油は給油ポ
ンプ100の駆動により流路103,104を介
してフイルタ102へ送られた後に環状分配流路
101から圧力流路90及び95を介して主ポン
プ12のシリンダ25、及びピストン20周りの
各摺動面に供給される。
That is, the lubricating oil in the lubricating oil chamber 110 is sent to the filter 102 via the flow channels 103 and 104 by the drive of the oil supply pump 100, and then is sent from the annular distribution channel 101 to the main pump 12 via the pressure channels 90 and 95. is supplied to each sliding surface around the cylinder 25 and piston 20.

そして上記シリンダ25及びピストン20周り
の潤滑の用に供された潤滑油は、その後に回収室
120へ回収されるとともに側方室35へ達した
一部の潤滑油は平衡流路40を介して潤滑油室1
10へ戻る。
The lubricating oil used for lubrication around the cylinder 25 and piston 20 is then collected into the recovery chamber 120, and some of the lubricating oil that has reached the side chamber 35 is passed through the equilibrium flow path 40. Lubricating oil chamber 1
Return to 10.

上記回収室120へ回収された潤滑油は還流ポ
ンプ105の作動によつて流路115,106を
介して潤滑油室110へ還流される。
The lubricating oil recovered into the recovery chamber 120 is returned to the lubricating oil chamber 110 via the channels 115 and 106 by the operation of the reflux pump 105.

尚、第2図においては前述したオーバーフロー
流路130も示してあり、また後述する還流ポン
プ105から気泡含みの潤滑油を回収室120へ
戻す流出路109cをも図示してある。
In addition, FIG. 2 also shows the above-mentioned overflow passage 130, and also shows an outflow passage 109c for returning the lubricating oil containing bubbles from the reflux pump 105 to the recovery chamber 120, which will be described later.

既に述べるように、強制循環給油系中の気泡を
防止することは確実な機能を得るために不可欠で
ある。第3及び4図に示すように還流ポンプ10
5の回転子105aに、ラジアル遠心ポンプ式に
配置されてポンプ回転軸線XXの半径方向に対し
てずれた方向に延びる複数の溜まり孔105bと
してのスリツトを形成することによつてこの条件
を満たす。この溜まり孔105bの中の潤滑油は
回転子105aの回転のに伴つて強い遠心力の作
用を受け、潤滑油の多量または少量の液体分と逆
に少量または多量のガスまたは気泡分とが溜まり
孔105b内で分離され、気泡分が該孔105b
の深部側(半径方向内側域)へ追い込まれ、この
溜まり孔105bからの放出時には先に液体分が
流出しそれに遅れて気泡分が放出されることとな
る。
As already mentioned, the prevention of air bubbles in forced circulation lubrication systems is essential to reliable functionality. Reflux pump 10 as shown in Figures 3 and 4
This condition is satisfied by forming slits as a plurality of reservoir holes 105b arranged in a radial centrifugal pump type in the rotor 105a of No. 5 and extending in a direction shifted from the radial direction of the pump rotation axis XX. The lubricating oil in this reservoir hole 105b is subjected to a strong centrifugal force as the rotor 105a rotates, and a large or small amount of liquid in the lubricating oil and a small or large amount of gas or bubbles accumulate in the lubricating oil. The air bubbles are separated within the hole 105b.
When discharged from the reservoir hole 105b, the liquid component flows out first, followed by the bubble component being discharged later.

従つて回転子105aの外周に2つ流出制御口
108,109bを周角度180度以下の範囲に回
転方向に前後して配置することによつて、前記溜
まり孔105bが先ず制御口108に対向し通過
する間に潤滑油のうちガス又は気泡含有分の極め
て少ない油分だけが制御口108に放出され、流
路106を介して潤滑油室110へ還流される。
Therefore, by arranging the two outflow control ports 108 and 109b on the outer periphery of the rotor 105a, one behind the other in the rotational direction within a circumferential angle of 180 degrees or less, the reservoir hole 105b first faces the control port 108. During the passage, only a very small amount of the lubricating oil containing gas or bubbles is released into the control port 108 and returned to the lubricating oil chamber 110 via the flow path 106 .

次いで溜まり孔105bが制御口109bに連
通したときに、該孔105b内に残る潤滑油のガ
ス又は気泡を多量に含む部分が制御口109bに
放出され流出路109c(第1図では図示せず)
を介して回収室120へ戻す。
Next, when the reservoir hole 105b communicates with the control port 109b, a portion of the lubricating oil remaining in the hole 105b containing a large amount of gas or bubbles is discharged to the control port 109b and flows out into an outflow path 109c (not shown in FIG. 1).
is returned to the collection chamber 120 via.

第3図から明らかなように、流出制御口108
及び109bは180度以下の範囲に設定され、そ
れ以外の範囲では溜まり孔105bの外端口が筐
体内面107により閉鎖されるので、該区間を回
転する間、溜まり孔105b内に新たな潤滑油の
流入もないことから封鎖された溜まり孔105b
内で潤滑油は気泡成分から有効に分離される。
As is clear from FIG. 3, the outflow control port 108
and 109b are set within a range of 180 degrees or less, and in other ranges, the outer end of the reservoir hole 105b is closed by the inner surface 107 of the housing, so new lubricating oil is added to the reservoir hole 105b while rotating in this section The reservoir hole 105b is closed because there is no inflow of
The lubricating oil is effectively separated from the bubble components within.

第4図は還流ポンプ105の回転子内における
ガス又は気泡分離に有効な他の変形例を示す。こ
の変形例においては拡大図示してあるが、前記溜
まり孔105b外端が筐体内面107に閉鎖され
ている区間において、該孔105bの側面開口部
が対面するように比較的に幅の広い間〓109a
を形成てしておく。
FIG. 4 shows another modification useful for gas or bubble separation within the rotor of reflux pump 105. Although this modification is shown in an enlarged view, in a section where the outer end of the reservoir hole 105b is closed to the inner surface 107 of the housing, a relatively wide space is formed so that the side openings of the hole 105b face each other. 〓109a
Form it.

これにより、溜まり孔105bが潤滑油を収容
して回転する間に、回転子の回転に伴う遠心力と
孔内の油流れによつてコースAを辿る半径方向の
循環流を孔105b及び間〓109a内で発生さ
せるようにする。その結果、前記溜まり孔105
b内の潤滑油は該孔の半径方向外側域に気泡分の
少ない油分が多く集まり分離作用を促進させるこ
とができる。
As a result, while the reservoir hole 105b accommodates the lubricating oil and rotates, the centrifugal force accompanying the rotation of the rotor and the oil flow in the hole cause a radial circulation flow that follows course A to flow between the hole 105b and the hole 105b. It is generated within 109a. As a result, the reservoir hole 105
As for the lubricating oil in the hole (b), a large amount of oil containing few bubbles gathers in the radially outer region of the hole, thereby promoting the separation action.

又、間〓109aを前記流路109cに連通さ
せて、溜まり孔105bの半径方向内側域に溜ま
る気泡分を流路109a,109cを介しあるい
は流路109cに代る別の流路を介して回収室1
20へ戻すようにすることもよい。
Further, the gap 109a is communicated with the flow path 109c, and the air bubbles accumulated in the radially inner area of the accumulation hole 105b are collected through the flow paths 109a and 109c or through another flow path instead of the flow path 109c. Room 1
It is also possible to return it to 20.

第5図及び第6図は本発明の他の実施例であつ
て、前述した環状の潤滑油室110内に潤滑油冷
却装置200を設けた場合を示す。
FIGS. 5 and 6 show another embodiment of the present invention, in which a lubricating oil cooling device 200 is provided within the annular lubricating oil chamber 110 described above.

この冷却装置200は供給ポンプ150へ導入
される作用媒の一部が第6図に示す流路系212
を有する熱交換器210を主要部材とする。
In this cooling device 200, a part of the working medium introduced into the supply pump 150 is connected to a flow path system 212 shown in FIG.
The main component is a heat exchanger 210 having:

上記供給ポンプ150は前記潤滑油室110の
内方に同心状に形成されたポンプ室140に設置
され、該室140の開口側端面はカバー232に
より閉鎖され、このカバー232と潤滑油室11
0を閉鎖する端面壁230とにより筐体の側端カ
バー面155を形成せしめる。
The supply pump 150 is installed in a pump chamber 140 that is formed concentrically inside the lubricating oil chamber 110, and the opening side end surface of the chamber 140 is closed by a cover 232.
The side end cover surface 155 of the housing is formed by the end wall 230 that closes the end face 155 of the housing.

上記カバー232にはポンプ室140内に作用
媒を導入せしめる流入口171を形成する。
The cover 232 is formed with an inlet 171 through which the working medium is introduced into the pump chamber 140.

供給ポンプ150は第5図に示す如く、その回
転子をポンプ室140内に突出せる主軸1の先端
部に取付け、その前面に流入側160を配し、背
面に流出側170を配した軸流ポンプとして構成
され、流出側170は半径方向に延びる流路17
2を介して環状流路174へ連通させる。
As shown in FIG. 5, the supply pump 150 is an axial flow type with its rotor attached to the tip of the main shaft 1 that can protrude into the pump chamber 140, with an inlet side 160 on the front side and an outlet side 170 on the back side. Configured as a pump, the outlet side 170 has a radially extending flow channel 17
2 to the annular flow path 174.

この環状流路174は複数の軸方向に延びる分
岐流路176(第5図には一本のみを示す)へ連
通し、各分岐流路176を介して前述した各主ポ
ンプ12へ作用媒を供給するためにそれら主ポン
プ12へ通じる流路28(第1図)へ接続する。
This annular flow path 174 communicates with a plurality of branch flow paths 176 (only one is shown in FIG. 5) extending in the axial direction, and the working medium is supplied to each of the main pumps 12 described above through each branch flow path 176. They are connected to a flow path 28 (FIG. 1) leading to the main pump 12 for supply.

このように構成したから、各主ポンプ12へ
は、供給ポンプ150により適度に加圧、例えば
数気圧の流動圧となつた作用媒が供給され、ピス
トン20の下降時(吸入行程)において作用媒が
作動室24内に確実に充填される。
With this configuration, each main pump 12 is supplied with a working medium that is appropriately pressurized, for example, at a flow pressure of several atmospheres, by the supply pump 150, and when the piston 20 descends (suction stroke), the working medium is is reliably filled into the working chamber 24.

又、上記分岐流路176の後方へ延びる流路部
分178は前記カバー232に形成した環状流路
180へ連通させ、供給ポンプ150の流出側1
70から分岐流路176へ供給された作用媒の一
部が流路部分178を介し環状流路180へ流入
するようにする。
Further, a flow path portion 178 extending rearward of the branch flow path 176 is communicated with an annular flow path 180 formed in the cover 232, and is connected to the outlet side 1 of the supply pump 150.
A portion of the working medium supplied from 70 to branch channel 176 flows into annular channel 180 via channel section 178 .

環状流路180を起点とする半径方向流路18
2が端面壁230に挿着支持された熱交換器21
0の導入流デイストリビユータ216に達してい
る。供給ポンプ150のポンプ室流出側170か
ら分岐した冷作用媒の部分流は潤滑油室110の
下端部に設けられた導入流デイストリビユータか
ら、詳しくは、第6図に示す熱交換器210の流
路系212を経て潤滑油室110の頂端部に、即
ち、導入流デイストリビユータ216と直径を挾
んで対向する位置に設けられた放出流コレクタ2
18に至る。この放出流コレクタ218も端面壁
230の外部に挿着支持されている。放出流コレ
クタ218は半径方向流路184を介してポンプ
室140の流入側160と連通する。
Radial flow path 18 starting from annular flow path 180
2 is inserted into and supported by the end wall 230 of the heat exchanger 21
0 inlet flow distributor 216 has been reached. A partial flow of the refrigerating medium branched from the pump chamber outlet side 170 of the supply pump 150 is transferred from an inlet flow distributor provided at the lower end of the lubricating oil chamber 110 to the heat exchanger 210 shown in FIG. A discharge flow collector 2 is provided at the top end of the lubricating oil chamber 110 via the flow passage system 212, that is, at a position facing the introduction flow distributor 216 across the diameter.
It reaches 18. This discharge flow collector 218 is also inserted and supported on the outside of the end wall 230. The discharge flow collector 218 communicates with the inlet side 160 of the pump chamber 140 via a radial passage 184 .

従つて、供給ポンプ150による作用媒の供給
系路は前記主ポンプ12の導入側へ供給する主供
給流路の他に熱交換器210へ供給され再びポン
プ室140の流入側160へ還流される還流回路
が形成される。
Therefore, the working fluid supply line by the supply pump 150 is supplied to the heat exchanger 210 in addition to the main supply passage that supplies the inlet side of the main pump 12, and is then returned to the inlet side 160 of the pump chamber 140. A reflux circuit is formed.

そして、前記主供給路への供給量及び供給圧を
適正に保持するために、前記還流回路への作用媒
の供給量を調整できるような手段を設ける。
In order to properly maintain the supply amount and supply pressure to the main supply path, means is provided to adjust the supply amount of the working medium to the reflux circuit.

すなわち、前記端面壁230に、先端が流路1
82内に出没し得る絞りネジ220を取付け、該
ネジ220の調整操作により導入流デイストリビ
ユータ216への分岐供給量を調整自在とする。
That is, the tip of the end wall 230 is connected to the flow path 1.
A throttle screw 220 that can be retracted and retracted is installed in 82, and the amount of branched supply to the introduced flow distributor 216 can be adjusted by adjusting the screw 220.

熱交換器210の構成の詳細を第6図に示し
た。同図から明らかなように、熱交換器の流路系
212はほぼ完全に潤滑油室110内及び潤滑油
液面下に浸漬している。潤滑油還流ポンプ105
の還流路106が潤滑油室110の頂端部110
aへ開口し、強制給油ポンプ100により下端部
へ吸込まれるから、補給室110内においては前
記頂端部からほぼ両円周方向に下方へ下端部にむ
かつて流下する潤滑油流が発生する。この潤滑油
流は下方の導入流デイストリビユータ216と上
方の放出流コレクタ218との間に見られる熱交
換器210の流路系に於ける作用油流とは逆方向
の流れである。即ち、潤滑油室110中の潤滑油
流と熱交換器210流路系中の作用媒流との間に
対向流熱伝達が行われるから、新しく流入する作
用媒によつて潤滑油が強力に冷却される。
The details of the structure of the heat exchanger 210 are shown in FIG. As is clear from the figure, the flow path system 212 of the heat exchanger is almost completely immersed within the lubricating oil chamber 110 and below the lubricating oil liquid level. Lubricating oil reflux pump 105
The return passage 106 is located at the top end 110 of the lubricating oil chamber 110.
a and is sucked into the lower end by the forced oil supply pump 100, so a lubricating oil flow is generated in the replenishment chamber 110 that flows from the top end downward in substantially both circumferential directions toward the lower end. This lubricating oil flow is in the opposite direction to the working oil flow in the flow system of heat exchanger 210 found between the lower inlet flow distributor 216 and the upper discharge flow collector 218. That is, since countercurrent heat transfer occurs between the lubricating oil flow in the lubricating oil chamber 110 and the working medium flow in the heat exchanger 210 flow path system, the lubricating oil is strengthened by the newly flowing working medium. cooled down.

上記熱交換器210の流路系212は、潤滑油
室110内の円周方向に延びる複数の環状熱交換
素子214により構成され、それら素子214は
前述の如く潤滑油室110内の潤滑油面に位置さ
れるから、その全表面により潤滑油との熱交換を
可能にする。
The flow passage system 212 of the heat exchanger 210 is constituted by a plurality of annular heat exchange elements 214 extending in the circumferential direction within the lubricating oil chamber 110, and these elements 214 are connected to the lubricating oil level within the lubricating oil chamber 110 as described above. The entire surface of the lubricating oil allows for heat exchange with the lubricating oil.

上記熱交換素子214は潤滑油室110内の環
状に沿わせて円弧状に形成され、導入流デイスト
リビユータ216と放出流デイストリビユータ2
18とに渉り接続されるとともにその複数本(実
施例図面では3本)が前後に間隔をおいて平行に
配設される。
The heat exchange element 214 is formed in an arc shape along the annular shape inside the lubricating oil chamber 110, and is connected to an inlet flow distributor 216 and a discharge flow distributor 2.
18, and a plurality of them (three in the drawings of the embodiment) are arranged in parallel at intervals in the front and rear.

従つて、円筒軸線方向に概ね円筒状に並列され
た熱交換器、即ち、潤滑油室及び潤滑油流の空間
的関係に適応させた面積の広い熱交換面が形成さ
れる。
Thus, heat exchangers are formed which are arranged in a generally cylindrical manner in the direction of the cylinder axis, ie, a heat exchange surface with a large area adapted to the spatial relationship of the lubricating oil chamber and the lubricating oil flow.

又、前記熱交換器210を潤滑油室110内に
配置する構成によつて、潤滑油室外に別途に配置
する構造に較べてスペースの有効利用が図れ、筐
体の小型化となる。
Further, by arranging the heat exchanger 210 within the lubricating oil chamber 110, space can be used more effectively and the casing can be made smaller than in a structure in which the heat exchanger 210 is separately disposed outside the lubricating oil chamber.

さらに、上記潤滑油室110を環状に構成した
ことによつて、装置筐体の全体構成に組込む際に
スペースが少なくてすむだけでなく、潤滑油が潤
滑油室の環状に沿つて上部から下部へ流れ、それ
と逆向の下部から上方へ冷却作用媒の流れを形成
させて潤滑油の冷却効果を高めることができる。
Furthermore, by configuring the lubricating oil chamber 110 in an annular shape, not only does it take up less space when it is incorporated into the overall structure of the device housing, but also the lubricating oil can flow from the top to the bottom along the annular shape of the lubricating oil chamber. The cooling effect of the lubricating oil can be enhanced by forming a flow of the cooling fluid from the lower part upward in the opposite direction.

(効果) 本発明によれば、前述作用の如く、潤滑装置の
潤滑油室、給油ポンプ、回収室及び還流ポンプ
が、ピストン・シリンダ組体の筐体内に収まりよ
く配設されて筐体の外形スペースを縮小し装置の
小型化が可能であるとともに前記各部材間の油系
路もまた筐体内で容易に配回す構造とすることが
でき、油系路が筐体外に露出して障害となる不便
がない。
(Effects) According to the present invention, as described above, the lubricating oil chamber, the oil supply pump, the recovery chamber, and the reflux pump of the lubricating device are arranged so that they fit well within the casing of the piston-cylinder assembly, and the outer shape of the casing The space can be reduced and the device can be made more compact, and the oil path between each of the members can also be easily routed within the casing, causing the oil path to be exposed outside the casing and become an obstacle. No inconvenience.

又、潤滑油室に還流される潤滑油中の気泡巻込
みを防止し得ることにより、ピストン・シリンダ
組体の摺動面へ供給される潤滑油には気泡の混入
がなくその潤滑性能を高く維持することが可能で
ある。
In addition, by preventing air bubbles from being trapped in the lubricating oil that is returned to the lubricating oil chamber, the lubricating oil that is supplied to the sliding surfaces of the piston-cylinder assembly is free of air bubbles and its lubrication performance is improved. It is possible to maintain

さらに、冷却装置を具備する潤滑装置において
も、潤滑油室外に熱交換器を含む冷却装置を別途
に配置し、その熱交換器へ冷却フアンにより外気
(冷媒)を送り込む従来装置に較べて、ピスト
ン・シリンダ組体へ供給する作用媒の利用及び熱
交換器の油室内配置によつて著しく小型化され
る。
Furthermore, even in lubricating systems equipped with a cooling system, compared to conventional systems in which a cooling system including a heat exchanger is placed separately outside the lubricating oil chamber, and outside air (refrigerant) is fed into the heat exchanger using a cooling fan, the piston - The size can be significantly reduced by using the working medium supplied to the cylinder assembly and arranging the heat exchanger in the oil chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は偏心輪駆動装置を含む星形多シリンダ
式往復ポンプの軸線方向断面図であり、第2図は
第1図に図示したポンプの給油系を示す流路構成
図であり、第3図は第1図に図示したポンプの給
油系の還流ポンプを軸線方向に見た拡大図であ
り、第4図は第3図に図示したポンプ羽根車の
−線に於ける部分断面図であり、第5図は第1
図と類似の、但し熱交換器が組込まれている供給
ポンプ及び潤滑油室の反対側を示すポンプの軸線
方向部分断面図であり、第6図は熱交換器を含む
潤滑油補給室付近を第5図中−線に於いて示
す本発明機関の断面図である。 図中、10は駆動装置、12は主ポンプ、20
はピストン、22はシーリングチユーブ、24は
作動室、25はシリンダ、30はプランジヤ、3
5は側方室、42は間〓室、45は絞り流路、1
00は給油ポンプ、105は還流ポンプ、110
は環状潤滑油室、120は回収室、150は供給
ポンプ、210は熱交換器である。
FIG. 1 is an axial cross-sectional view of a star-shaped multi-cylinder reciprocating pump including an eccentric wheel drive device, FIG. 2 is a flow path configuration diagram showing the oil supply system of the pump shown in FIG. 1, and FIG. The figure is an enlarged view of the reflux pump of the oil supply system of the pump shown in Fig. 1, viewed in the axial direction, and Fig. 4 is a partial sectional view taken along the - line of the pump impeller shown in Fig. 3. , Figure 5 is the first
6 is a partial sectional view in the axial direction of the pump similar to the figure, but showing the opposite side of the supply pump and lubricating oil chamber in which the heat exchanger is incorporated; FIG. 6 shows the vicinity of the lubricating oil supply chamber including the heat exchanger 5 is a sectional view of the engine of the present invention taken along the line - in FIG. 5; FIG. In the figure, 10 is a drive device, 12 is a main pump, 20
is a piston, 22 is a sealing tube, 24 is a working chamber, 25 is a cylinder, 30 is a plunger, 3
5 is a side chamber, 42 is an intermediate chamber, 45 is a throttle channel, 1
00 is the oil supply pump, 105 is the reflux pump, 110
120 is a recovery chamber, 150 is a supply pump, and 210 is a heat exchanger.

Claims (1)

【特許請求の範囲】 1 脈動作用室を形成する少なくとも1つのピス
トン・シリンダ組体と、潤滑油を収容する潤滑油
室と、前記油室から潤滑油をピストン・シリンダ
組体へ供給する給油ポンプ、ピストン・シリンダ
組体に作用した潤滑油が導入される回収室及び回
収室から前記油室へ潤滑油を戻す還流ポンプを含
む閉回路からなる強制循環給油系とを有し、前記
潤滑油室、給油ポンプ、回収室及び還流ポンプが
ピストン・シリンダ組体と共通する筐体内に形成
されるとともに潤滑油室が前記組体の駆動装置の
回転軸線を囲み、かつ該軸線と同心状な環状形状
に形成されているピストン・シリンダ組体の潤滑
装置。 2 上記還流ポンプと潤滑油室を結ぶ流路が前記
油室の頂部に開口する特許請求の範囲第1項記載
の潤滑装置。 3 上記ピストン・シリンダ組体が駆動装置の外
周に複数配設された星形多シリンダ構成である特
許請求の範囲第1項又は第2項記載の潤滑装置。 4 上記潤滑油室と回収室と間に、油室内の潤滑
油を回収室へ導入せしめるオーバーフロー流路が
介在される特許請求の範囲第1項記載の潤滑装
置。 5 脈動作用室を形成する少なくとも1つのピス
トン・シリンダ組体と、該組体へ作用媒を供給す
る作用媒供給手段と、潤滑油室と、該油室から前
記組体へ潤滑油を供給する強制循環給油系とを有
し、前記潤滑油室がピストン・シリンダ組体と共
通する筐体内に形成されるとともに該組体の駆動
装置の回転軸線を囲み、かつ該軸線と同心状な環
状形状に形成され、前記強制循環給油系が潤滑油
冷却装置を含み該冷却装置が前記作用媒の一部を
通過させる熱交換器を前記潤滑油室内に配置して
構成されるピストン・シリンダ組体の潤滑装置。 6 上記熱交換器の流路系が互いに潤滑油室の直
径を挾んで配置された少なくとも2つの連通部を
含み、一方の連通部を導入流デイストリビユータ
として、他方の連通部を放出流デイストリビユー
タとしてそれぞれ構成するとともに互いに平行に
配列された複数の熱交換素子が両半周方向に導入
流デイストリビユータから放出流デイストリビユ
ータへ円弧状に走つている特許請求の範囲第5項
記載の潤滑装置。
[Scope of Claims] 1. At least one piston/cylinder assembly forming a pulsating chamber, a lubricating oil chamber containing lubricating oil, and an oil supply pump supplying lubricating oil from the oil chamber to the piston/cylinder assembly. , a forced circulation oil supply system consisting of a closed circuit including a recovery chamber into which the lubricating oil that has acted on the piston-cylinder assembly is introduced, and a reflux pump that returns the lubricating oil from the recovery chamber to the oil chamber, and the lubricating oil chamber , the oil supply pump, the recovery chamber, and the reflux pump are formed in a housing common to the piston-cylinder assembly, and the lubricating oil chamber surrounds the rotational axis of the drive device of the assembly and has an annular shape concentric with the axis. A lubricating device for the piston/cylinder assembly. 2. The lubricating device according to claim 1, wherein the flow path connecting the reflux pump and the lubricating oil chamber opens at the top of the oil chamber. 3. The lubricating device according to claim 1 or 2, wherein the piston/cylinder assembly has a star-shaped multi-cylinder configuration in which a plurality of piston/cylinder assemblies are arranged around the outer periphery of the drive device. 4. The lubricating device according to claim 1, wherein an overflow passage is interposed between the lubricating oil chamber and the recovery chamber for introducing the lubricating oil in the oil chamber into the recovery chamber. 5. At least one piston/cylinder assembly forming a pulsating chamber, a working medium supply means for supplying a working medium to the assembly, a lubricating oil chamber, and supplying lubricating oil from the oil chamber to the assembly. a forced circulation oil supply system, the lubricating oil chamber is formed in a housing common to the piston-cylinder assembly, and has an annular shape that surrounds and is concentric with the rotation axis of the drive device of the assembly. , the forced circulation oil supply system includes a lubricating oil cooling device, and the cooling device disposes a heat exchanger in the lubricating oil chamber through which a part of the working medium passes. Lubrication device. 6. The flow passage system of the heat exchanger includes at least two communicating parts arranged to sandwich the diameter of the lubricating oil chamber from each other, one communicating part serving as an inlet flow distributor, and the other communicating part serving as a discharge flow distributor. Claim 5, wherein a plurality of heat exchange elements each configured as a tributator and arranged in parallel to each other run in an arc shape from the inlet flow distributor to the discharge flow distributor in both semicircular directions. Lubrication device.
JP63055938A 1979-06-20 1988-03-08 Lubricator for piston cylinder assembly Granted JPS6426096A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH577979A CH645435A5 (en) 1979-06-20 1979-06-20 PISTON PUMP.

Publications (2)

Publication Number Publication Date
JPS6426096A JPS6426096A (en) 1989-01-27
JPH0250358B2 true JPH0250358B2 (en) 1990-11-02

Family

ID=4299196

Family Applications (2)

Application Number Title Priority Date Filing Date
JP8126980A Granted JPS5627086A (en) 1979-06-20 1980-06-16 Displacement engine and pump such as reciprocating pump
JP63055938A Granted JPS6426096A (en) 1979-06-20 1988-03-08 Lubricator for piston cylinder assembly

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP8126980A Granted JPS5627086A (en) 1979-06-20 1980-06-16 Displacement engine and pump such as reciprocating pump

Country Status (16)

Country Link
US (1) US4671743A (en)
EP (2) EP0021315B1 (en)
JP (2) JPS5627086A (en)
AR (1) AR219466A1 (en)
AT (2) ATE51683T1 (en)
AU (1) AU5935080A (en)
BR (1) BR8003711A (en)
CA (1) CA1142030A (en)
CH (1) CH645435A5 (en)
CS (1) CS229656B2 (en)
DD (1) DD151487A5 (en)
DE (2) DE3072177D1 (en)
HU (1) HU183151B (en)
PL (1) PL130376B1 (en)
SU (1) SU1380617A3 (en)
ZA (1) ZA803580B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332355C1 (en) * 1983-09-08 1984-11-15 Hemscheidt Maschf Hermann Cylinder piston arrangement for a piston engine
US4997344A (en) * 1988-06-15 1991-03-05 Deere & Company Rotor bearing pre-load for a radial piston pump
US5709536A (en) * 1995-01-30 1998-01-20 Titan Tool, Inc. Hydro mechanical packingless pump and liquid spray system
DE19804275A1 (en) * 1998-02-04 1999-08-12 Bosch Gmbh Robert Radial piston pump for high-pressure fuel supply
JP3349945B2 (en) 1998-03-13 2002-11-25 日本電気株式会社 Signal conversion device and optical transmission system using the signal conversion device
ES2233236T3 (en) * 1999-05-31 2005-06-16 Crt Common Rail Technologies Ag POWER PUMP FOR HIGH PRESSURES.
DE10228552B9 (en) * 2002-06-26 2007-08-23 Siemens Ag Radial piston pump unit
DE102009060733A1 (en) 2009-12-29 2011-06-30 European Charcoal Ag Apparatus for continuous conversion of biomass and energy generation system therefrom
US9752590B2 (en) * 2013-03-13 2017-09-05 Ghsp, Inc. Two pump design with coplanar interface surface
US11015585B2 (en) 2014-05-01 2021-05-25 Ghsp, Inc. Submersible pump assembly
US10087927B2 (en) 2014-05-01 2018-10-02 Ghsp, Inc. Electric motor with flux collector

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US781678A (en) * 1904-05-17 1905-02-07 Clarence H Richwood Air-compressing machine.
GB224013A (en) * 1924-04-23 1924-11-06 William Thomas Shannon Improvements in engine lubricating systems
US1750170A (en) * 1926-04-15 1930-03-11 Frisch August Pumping apparatus
DE530598C (en) * 1927-11-28 1931-07-30 Drysdale & Co Ltd Circulating lubrication device
FR666890A (en) * 1929-01-03 1929-10-07 Cem Comp Electro Mec Device for cooling lubricating oil in machines operating pumps
US2064750A (en) * 1932-04-23 1936-12-15 Bosch Robert Piston pump for the conveyance of liquids
US2179354A (en) * 1935-08-07 1939-11-07 Super Diesel Tractor Corp Pump
GB524199A (en) * 1938-10-26 1940-08-01 Hamilton Neil Wylie Improvements in variable stroke radial pumps
GB549670A (en) * 1941-01-23 1942-12-07 Clement Brown Improvements in or relating to rotary pumps
US2364111A (en) * 1942-03-20 1944-12-05 John W Tucker Pump and the like
US2472355A (en) * 1946-02-01 1949-06-07 New York Air Brake Co Pump
GB650312A (en) * 1946-02-09 1951-02-21 Poul Haahr Improvements in or relating to high-pressure pumps
US2523543A (en) * 1946-04-29 1950-09-26 James E Smith Variable stroke radial pump
FR1095226A (en) * 1954-03-12 1955-05-31 Oil level regulator
US2917003A (en) * 1957-04-22 1959-12-15 James E Smith Variable stroke variable pressure pump or compressor
US2963886A (en) * 1958-01-02 1960-12-13 Carrier Corp Lubricant cooling system
CH422524A (en) * 1963-04-23 1966-10-15 Philips Nv Centrifugal pump suitable for pumping boiling liquids
US3289651A (en) * 1963-12-10 1966-12-06 Yanmar Diesel Engine Co Cooling device for rotary piston engines
GB1114680A (en) * 1964-05-18 1968-05-22 Sibany Mfg Corp Apparatus for pumping fluids
US3554090A (en) * 1969-04-04 1971-01-12 Arthur G Wallace Fluid pressure actuated motor
US3703342A (en) * 1971-07-30 1972-11-21 Walbro Corp Fuel pump bellows construction
US3854383A (en) * 1972-12-26 1974-12-17 Dynacycle Corp Tension actuated pressurized gas driven rotary motors
IT1042341B (en) * 1975-09-08 1980-01-30 Pirelli IMPROVEMENTS IN PUMPING SYSTEMS FOR ELECTRIC CABLES IN O.F.
DE2914694C2 (en) * 1979-04-11 1980-09-11 Hermann Hemscheidt Maschinenfabrik Gmbh & Co, 5600 Wuppertal Cylinder piston unit

Also Published As

Publication number Publication date
CH645435A5 (en) 1984-09-28
EP0153982B1 (en) 1990-04-04
BR8003711A (en) 1981-01-13
ZA803580B (en) 1981-07-29
PL225024A1 (en) 1981-04-24
US4671743A (en) 1987-06-09
PL130376B1 (en) 1984-08-31
DD151487A5 (en) 1981-10-21
AR219466A1 (en) 1980-08-15
EP0021315A1 (en) 1981-01-07
CS229656B2 (en) 1984-06-18
ATE51683T1 (en) 1990-04-15
AU5935080A (en) 1981-01-08
DE3070978D1 (en) 1985-09-19
DE3072177D1 (en) 1990-05-10
EP0153982A2 (en) 1985-09-11
CA1142030A (en) 1983-03-01
EP0021315B1 (en) 1985-08-14
JPS6426096A (en) 1989-01-27
SU1380617A3 (en) 1988-03-07
JPS6365830B2 (en) 1988-12-16
EP0153982A3 (en) 1985-11-21
ATE14915T1 (en) 1985-08-15
HU183151B (en) 1984-04-28
JPS5627086A (en) 1981-03-16

Similar Documents

Publication Publication Date Title
US4583921A (en) Plunger pump
US4385875A (en) Rotary compressor with fluid diode check value for lubricating pump
US5320501A (en) Electric motor driven hydraulic apparatus with an integrated pump
JPH0250358B2 (en)
US9382906B2 (en) Multi-stage reciprocating compressor
US3930758A (en) Means for lubricating swash plate air conditioning compressor
US4561829A (en) Rotary compressor with tapered valve ports for lubricating pump
US4019342A (en) Compressor for a refrigerant gas
US6425734B2 (en) Feed pump
SE456006B (en) DEVICE AT MARINE DRIVENET
US3519370A (en) Radial-piston pump with improved cooling and lubrication
US4299543A (en) Swash plate compressor
US2246272A (en) Rotary pump
JPS598672B2 (en) Compressor for refrigerator
KR950009938A (en) Gear pump
US2953096A (en) Diaphragm pump
US3171589A (en) Hermetic motor compressor unit
JP2731625B2 (en) Rotary screw compressor with inlet chamber
US2191326A (en) Refrigeration compressor
US4487562A (en) Rotary vane type compressor
US3713758A (en) Refrigeration compressor for vehicles
JPH0214695Y2 (en)
JPH06330877A (en) Horizontal rotary compressor
CN220204016U (en) General purpose petrol engine
CN213394562U (en) Variable displacement oil pump