JPH02500997A - heat pump - Google Patents

heat pump

Info

Publication number
JPH02500997A
JPH02500997A JP50615188A JP50615188A JPH02500997A JP H02500997 A JPH02500997 A JP H02500997A JP 50615188 A JP50615188 A JP 50615188A JP 50615188 A JP50615188 A JP 50615188A JP H02500997 A JPH02500997 A JP H02500997A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
evaporator
heat pump
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50615188A
Other languages
Japanese (ja)
Inventor
シユタインケルナー,カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH02500997A publication Critical patent/JPH02500997A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ヒートポンプ 本発明は圧縮機、凝縮器、膨張弁及び蒸発器を含む冷媒循環系を有するヒートポ ンプに関し、この場合蒸発器は本質的に垂直に配置されておりまた下方に導く冷 媒回路とその後に続く上方に導く冷媒回路とを形成する有利には地下に埋設され た導管からなる。[Detailed description of the invention] heat pump The present invention provides a heat pump having a refrigerant circulation system including a compressor, a condenser, an expansion valve, and an evaporator. In this case, the evaporator is essentially vertically arranged and the cooling The refrigerant circuit forming the refrigerant circuit and the subsequent upwardly leading refrigerant circuit is advantageously buried underground. It consists of a conduit.

圧縮機は給油を必要とすることから、ヒートポンプの冷媒中には常に一定量の油 又は同様の潤滑剤が含まれており、これは圧縮機の直後に油分離機が組み込まれ ているにもかかわらず少なくとも1部が冷媒と共に循環することになる。冷媒が 油を含むことによってヒートポンプ装置内に蒸発器を垂直に配設することは困難 になる。それというのも冷媒が蒸発することによシ油は特に長細い蒸発器内に沈 殿し、蒸発器の底部に集積されるからである。その圧力比は分離された油を冷媒 蒸気と共に蒸発器から不十分な程度でしか吸収することができず、その結果蒸発 器内に生じる油溜による運転障害又は十分な給油ができないことによる圧縮機の 乾燥運転の恐れがある。従って大型のヒートポンプ装置は従来蒸発器を水平に配 置することが望まれ、より深い地層の一層高い温度は地下に埋設された直接蒸発 器によって利用゛することができず、高価なロスの多い二次循環系を用いた場合 にのみ利用可能であるにすぎない。Since the compressor requires oiling, there is always a certain amount of oil in the heat pump refrigerant. or similar lubricants, which are equipped with an oil separator immediately after the compressor. Despite this, at least a portion of the refrigerant will circulate with the refrigerant. The refrigerant It is difficult to install the evaporator vertically in a heat pump device due to the presence of oil. become. This is because when the refrigerant evaporates, the oil settles in a particularly long and narrow evaporator. This is because it is deposited and accumulated at the bottom of the evaporator. The pressure ratio is that the separated oil is the refrigerant can be absorbed to an insufficient extent from the evaporator along with the vapor, resulting in evaporation Operation failure due to oil accumulation inside the compressor or failure of the compressor due to insufficient oil supply. There is a risk of dry operation. Therefore, in conventional large heat pump equipment, the evaporator is arranged horizontally. Higher temperatures in deeper geological formations can be achieved by direct evaporation buried underground. When using a secondary circulatory system that cannot be used depending on the device and is expensive and has a lot of loss. It is only available for

従って本発明は、これら′の欠点を除去することまた大型の垂直蒸発器を使用す る場合にも経済的に故障することなく確実に機能して作動することが保証される 、最初に記載した形式のヒートポンプを提供することを根本課題とする。The present invention therefore aims to eliminate these drawbacks and also to use a large vertical evaporator. Guaranteed to function and operate economically without failure even when , the fundamental task is to provide a heat pump of the type described at the beginning.

本発明は、蒸発器の上方に導く冷媒回路内に少なくとも1個の油分離機を組み込 み、これが受油槽の上方に存在しかつ受油槽の充填状態と関連する冷媒用通過域 を備えた方向変換部位を有することによって、上記課題を解決する。その数が上 方に導く冷媒回路の長さ及び他の運転条件によって左右される油分離機は、分離 された又は分離可能の油滴を段階的に連行し、従って蒸発器内での油の残留及び これに関連する危険性は排除される。油は冷媒蒸気と共に油分離機から油分離機 へ連行され、その際過剰の油は相応する高度を克服してそれぞれの油分離機に集 められ、少しづつ先へ送られる。受油槽中の油量が増加することによって冷媒通 過域は狭窄し、これは方向変換域における冷媒流を加速しまた圧力を降下させる ことから、油の搬出を促す流動比の変化が常に油を更に連行させることになる。The invention incorporates at least one oil separator in the refrigerant circuit leading above the evaporator. This is the refrigerant passage area that exists above the oil tank and is related to the filling state of the oil tank. The above-mentioned problem is solved by having a direction changing part equipped with. That number is higher Depending on the length of the refrigerant circuit leading to the oil separator and other operating conditions, the oil separator entraining the separated or separable oil droplets in stages, thus reducing the oil residue in the evaporator and The risks associated with this are eliminated. The oil is passed from the oil separator to the oil separator along with the refrigerant vapor. The excess oil is then collected in the respective oil separators by overcoming the corresponding altitude. He is then sent onwards little by little. The refrigerant flow increases due to the increase in the amount of oil in the oil tank. The region narrows, which accelerates the refrigerant flow in the redirection region and also reduces the pressure. Therefore, a change in the flow ratio that promotes oil removal always entrains more oil.

冷媒循環系から油成分が完全に分離されることを阻止しまたその高さとは無関係 に油が蒸発器中を十分に貫流することを保証する特定の平衡状態が得られる。そ の際付加的なポンプ装置又は同様な費用の嵩む配管設備は不要であり、互いに適 当な間隔で配置された簡単な油分離機で充分である。・ 油分離機はそれだけでその都度適当な形式で構成することができるが、油分離機 が軸方向に突出した溢流ノズルを形成する導管中間底部と、この溢流ノズルを覆 いかつその縁部がノズル排出口の下にまで延びている方向変換フードとからなる 場合に特に有利な構造体を生じる。この場合簡単な構成法で中間底部及び方向変 換フードによって受油槽及び方向変換部位が得られる。フード縁と中間底部に集 積された油との間に残存する僅かな横断部は冷媒流用のその都度の通過域を決定 し、生じた油滴のエントレーンメントをその冷媒流によって左右する。Prevents complete separation of oil components from the refrigerant circulation system and is independent of its height. A certain equilibrium condition is obtained which ensures sufficient flow of oil through the evaporator. So No additional pumping equipment or similar costly piping equipment is required and they are compatible with each other. Simple oil separators placed at appropriate intervals are sufficient.・ The oil separator itself can be configured in an appropriate format each time, but the oil separator The intermediate bottom of the conduit forms an overflow nozzle that projects in the axial direction, and the overflow nozzle is covered with and a direction-changing hood whose edge extends below the nozzle outlet. This results in a particularly advantageous structure. In this case, the intermediate bottom and direction can be changed using a simple construction method. The exchange hood provides an oil tank and a direction change area. Concentrates on the hood edge and mid-bottom. The small cross section remaining between the piled oil determines the respective passage zone for the refrigerant flow. The entrainment of the resulting oil droplets is determined by the coolant flow.

蒸発器の前方に位置する膨張弁が双方の冷媒回路間の圧力差との関連において作 動可能である場合、冷媒循環系は始めから、蒸発器の規則的な貫流が蒸発器出口 で冷媒流中の油量を大きく変動することなく保証されるように、制御することが できる。The expansion valve located in front of the evaporator operates in conjunction with the pressure difference between the two refrigerant circuits. If possible, the refrigerant circulation system starts from the beginning with a regular flow through the evaporator at the evaporator outlet. It is possible to control the amount of oil in the refrigerant flow to ensure that it does not fluctuate significantly. can.

図面には本発明の対象が例示的に示されている。The object of the invention is illustrated by way of example in the drawing.

第1図は本発明によるヒートポンプの構造を示す略示図であシ、第2図はこのヒ ートポンプの蒸発器の1部を拡大して示した縦断面図である。FIG. 1 is a schematic diagram showing the structure of a heat pump according to the present invention, and FIG. FIG. 2 is an enlarged vertical cross-sectional view of a part of the evaporator of the evaporator of the evaporator.

地熱を利用するヒートポンプ1は本質的には少なくとも1個の圧縮機2、凝縮器 3、膨張弁4及び、1個又は数個の蒸発器5を含み、導管6は閉鎖された冷媒循 環系を構成する。蒸発器5中で蒸発可能の冷媒によシ直接大地から採取された蒸 発熱は圧縮機2によってくみ揚げられ、凝縮器3中で凝縮熱として凝縮冷媒から 熱交換3aを介して図示されていない消費者に提供される。冷媒凝縮物は次いで 受液槽7及び冷媒乾燥器8を介して膨張弁4”に達し、そこで放圧され、次いで 再び蒸発器5に流入する。A geothermal heat pump 1 essentially includes at least one compressor 2 and a condenser. 3, an expansion valve 4 and one or several evaporators 5, the conduit 6 being a closed refrigerant circuit. Construct a ring system. The vapor collected directly from the earth is transferred to the evaporable refrigerant in the evaporator 5. The heat generated is pumped up by the compressor 2, and is transferred from the condensed refrigerant as heat of condensation in the condenser 3. It is provided to a consumer (not shown) via a heat exchanger 3a. The refrigerant condensate is then It reaches the expansion valve 4'' through the liquid receiving tank 7 and the refrigerant dryer 8, where it is depressurized, and then It flows into the evaporator 5 again.

圧縮器2は給油する必要があることから冷媒循環系には潤滑剤が存在するが、こ れは圧縮機2の直後で油分離機9により冷媒から除去され、油調整槽10f:介 して再び圧縮機2に導かれる。完全な油分離は不可能であり、一定量の油又は潤 滑剤は全冷媒循環系中に存在する。Compressor 2 needs to be lubricated, so lubricant is present in the refrigerant circulation system, but this This is removed from the refrigerant by the oil separator 9 immediately after the compressor 2, and the oil is removed from the refrigerant by the oil regulating tank 10f: Then, it is guided to the compressor 2 again. Complete oil separation is not possible, and only a certain amount of oil or Lubricants are present throughout the entire refrigerant circuit.

大地中の深度が深まるにつれて上昇し、一様になる温度の利点を利用し得るよう にするため、蒸発器5は垂直に配設され、本質的にU字状に延びた導管11から なる(その一方の脚部は下方へ導く冷媒回路11aをまた他方の脚部は上方に導 く冷媒回路11bを構成する)。冷媒の蒸発時にその比容積が変化することから 、上方に導く冷媒回路11bの横断面は下方に導く冷媒回路11&の横断面よシ も相応して大きく、従ってその流動比は冷媒の状態変化に適合される。To take advantage of the increasing and uniform temperature with increasing depth underground. In order to (One leg leads the refrigerant circuit 11a downward and the other leg leads upward. (constitutes the refrigerant circuit 11b). Because the specific volume of the refrigerant changes when it evaporates. , the cross section of the refrigerant circuit 11b leading upward is similar to the cross section of the refrigerant circuit 11& leading downward. is correspondingly large, so that its flow ratio is adapted to changing conditions of the refrigerant.

垂直に配置された蒸発器は一定の長さを超えるとこれによシ克服すべき高度差に より冷媒循環系中に含まれる油にとってそれ自体克服不能の障害を意味し、また 冷媒蒸発時に沈殿する油は蒸発器5の底部に集積する可能性があり、その結果短 時間で故障を生じ、ヒートポンプの運転を中断しなければならなくなる恐れがあ る。従って簡単に蒸発器5内においても油の搬送を確保するため、上方に導く冷 媒回路11b中に互いに適当な間隔を置いて油分離機12を積み重ね、これによ り油を段階的に油分離機から油分離機へ、上方に導く冷媒回路1ib中を上昇さ せて、蒸発器5内に油が残留するのを阻止することができる。Vertically arranged evaporators have a height difference that must be overcome if they exceed a certain length. This represents an insurmountable obstacle in itself for the oil contained in the refrigerant circulation system, and Oil that precipitates during refrigerant evaporation can accumulate at the bottom of the evaporator 5, resulting in short There is a risk that the heat pump will malfunction over time and the operation of the heat pump will have to be interrupted. Ru. Therefore, in order to easily ensure the conveyance of oil even within the evaporator 5, the coolant is guided upward. The oil separators 12 are stacked at appropriate intervals in the medium circuit 11b, and thereby The oil rises in the refrigerant circuit 1ib which leads the oil upward from the oil separator to the oil separator in stages. This can prevent oil from remaining in the evaporator 5.

特に第2図から明らかなように、油分離機12は導管11の中間底部13からな シ、中間底部は軸方向に突出する溢流ノズル13aを構成しまたこのノズル13 aを取シ囲む周辺部で導管11の壁面と一緒に受油槽13bとして利用される。As is particularly clear from FIG. The intermediate bottom portion constitutes an overflow nozzle 13a projecting in the axial direction, and this nozzle 13 The peripheral area surrounding a is used together with the wall surface of the conduit 11 as an oil receiving tank 13b.

溢流ノズル13aは方向変換フード14によって覆われており、フード14はそ の縁部14aがノズル13aの排出口の下まで達し、油の落下を必然的に伴う冷 媒用方向変換部位を形成する。溢流ノズル13aを通って上方に流出する冷媒は 方向変換フード14によって方向を変え、方向変換フード14と導管11の壁面 との間の残存する空間を通って更に流れる。方向変換に際して過剰の油が分離さ れ、受油槽13bに集積され、これにより受油槽は冷媒用の自由通過域14bを 制御する。油の分離量が増すにつれて、受油槽13b内の充填位置は高まシまた 通過域14bは小さくなる。その結果流速は高まシまた圧力は低下する。これに よシ分離された油は再び増量し更に搬送される。この手段は自己制御可能の搬送 工程をもたらす。すなわち油は少しづつ上方へ導く冷媒回路11bに運び上げら れ、実際に克服すべき高度差とは無関係に蒸発器内で油分離が増大するのを阻止 される。例えば地中60mの深さにまで延び、それぞれ12mの高さ間隔で油分 離機を有する地中に埋設された蒸発器はすでに試験済みである。この蒸発器は冷 媒循環系内に存在する油量を正確に保持し、油が蒸発器内に集積されるのを阻止 する。The overflow nozzle 13a is covered by a direction changing hood 14, which The edge 14a of the nozzle 13a reaches below the outlet of the nozzle 13a, and the cooling process inevitably accompanies oil drop. Forms a medial direction conversion site. The refrigerant flowing upward through the overflow nozzle 13a is The direction is changed by the direction changing hood 14, and the wall of the direction changing hood 14 and the conduit 11 further flows through the remaining space between. Excess oil is separated during direction changes. The oil is accumulated in the oil receiving tank 13b, and the oil receiving tank has a free passage area 14b for the refrigerant. Control. As the amount of oil separated increases, the filling position in the oil receiving tank 13b becomes higher and higher. The passage area 14b becomes smaller. As a result, the flow rate increases and the pressure decreases. to this The separated oil is increased in volume again and transported further. This means self-controllable conveyance bring about the process. In other words, the oil is carried upward little by little into the refrigerant circuit 11b. This prevents oil separation from increasing in the evaporator, regardless of the actual altitude difference that must be overcome. be done. For example, it extends to a depth of 60m underground, and oil deposits are distributed at 12m height intervals. An underground evaporator with a separator has already been tested. This evaporator is Precisely maintains the amount of oil present in the medium circulation system and prevents oil from accumulating in the evaporator do.

冷媒循環系の安全性を保持するため導管6内に圧力監視装置15を組み込み、ま た蒸発器5内の流動比及び圧力比を油の連行に適した条件に合わせるため膨張弁 4を蒸発器50前後における圧力差との関連において作動させる。もちろんヒー トポンプ1に対し他の制御装置をまた冷媒循環系を監視するため及びその効率を 改良するだめの付加装置を使用することもできる。In order to maintain the safety of the refrigerant circulation system, a pressure monitoring device 15 is installed in the conduit 6. An expansion valve is used to adjust the flow ratio and pressure ratio in the evaporator 5 to conditions suitable for oil entrainment. 4 is operated in conjunction with the pressure difference across the evaporator 50. Of course heat The pump 1 is also equipped with other control devices for monitoring the refrigerant circulation system and its efficiency. Additional devices may also be used to improve the reservoir.

蒸発器5自体及び油分離機12もこの特殊な構造形に限定されるものではない。The evaporator 5 itself and the oil separator 12 are not limited to this special structure either.

国際調査報告 一一一一胛一ム峠−−−−m p(τ/入丁 8ε/QC・Cジ2国際調査報告international search report 1111 Yuichimu Pass---mp(τ/Entry 8ε/QC・Cji2 International Investigation Report

Claims (3)

【特許請求の範囲】[Claims] 1.蒸発器(5)が実際に垂直に配置されておりまた下方に導く冷媒回路とその 後に続く上方に導く冷媒回路(11a,11b)とを形成する有利には地下に埋 設された導管(11)からなる形式の、圧縮機(2)、凝縮器(3)、膨張弁( 4)及び蒸発器(5)を含む冷媒循環系を有するヒートポンプ(1)において、 蒸発器(5)の上方に導く冷媒回路(11b)内に少なくとも1個の油分離機( 12)が組み込まれており、これが受油槽(13b)の上方に存在しかつ受油槽 の充填状態と関連する冷媒用通過域(14b)を備えた方向変換部位を有するこ とを特徴とするヒートポンプ。1. The evaporator (5) is actually arranged vertically, and the refrigerant circuit leading downwards and its The refrigerant circuit (11a, 11b) which follows is preferably buried underground. A compressor (2), a condenser (3), an expansion valve ( 4) and a heat pump (1) having a refrigerant circulation system including an evaporator (5), At least one oil separator ( 12) is incorporated, which is located above the oil tank (13b) and located above the oil tank (13b). having a redirection section with a refrigerant passage area (14b) associated with the filling state of the refrigerant; A heat pump characterized by. 2.油分離機(12)が軸方向に突出した溢流ノズル(13a)を形成する、導 管(11)の中間底部(13)と、この溢流ノズル(13a)を覆いかつその縁 部(14a)がノズル排出口の下にまで延びている方向変換フード(14)とか らなる、請求項1記載のヒートポンプ。2. The oil separator (12) forms an axially projecting overflow nozzle (13a). The intermediate bottom (13) of the pipe (11) and the overflow nozzle (13a) are covered and the edge thereof A direction changing hood (14) in which the portion (14a) extends below the nozzle outlet. The heat pump according to claim 1, comprising: 3.蒸発器(5)の前方に配設された膨張弁(4)が双方の冷媒回路(11a, 11b)間の圧力差との関連において作動可能である請求項1又は2記載のヒー トポンプ。3. The expansion valve (4) disposed in front of the evaporator (5) connects both refrigerant circuits (11a, 3. The heater according to claim 1 or 2, operable in connection with a pressure difference between Topomp.
JP50615188A 1987-07-15 1988-07-12 heat pump Pending JPH02500997A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1787/87 1987-07-15
AT178787A AT387650B (en) 1987-07-15 1987-07-15 HEAT PUMP

Publications (1)

Publication Number Publication Date
JPH02500997A true JPH02500997A (en) 1990-04-05

Family

ID=3520963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50615188A Pending JPH02500997A (en) 1987-07-15 1988-07-12 heat pump

Country Status (6)

Country Link
EP (1) EP0299947A1 (en)
JP (1) JPH02500997A (en)
AT (1) AT387650B (en)
FI (1) FI891164A (en)
NO (1) NO891066L (en)
WO (1) WO1989000666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516991A (en) * 2007-01-18 2010-05-20 アース トゥ エア システムズ,エルエルシー Multi-surface direct exchange geothermal heating / cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952527A (en) * 1988-02-19 1990-08-28 Massachusetts Institute Of Technology Method of making buffer layers for III-V devices using solid phase epitaxy

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR615785A (en) * 1926-05-07 1927-01-15 Landskrona Gjuteri Aktiebolag Improvements in refrigeration machines
GB352528A (en) * 1930-04-07 1931-07-07 Lightfoot Refrigeration Compan Improvements in or relating to evaporator coils for refrigerating apparatus
GB699568A (en) * 1951-09-20 1953-11-11 Gen Electric Improvements relating to compression refrigerating systems
GB725925A (en) * 1953-11-02 1955-03-09 Svenska Turbinfab Ab Device for controlling the flow of liquid refrigerant to the compressor of a refrigerating plant
US3438218A (en) * 1967-09-13 1969-04-15 Dunham Bush Inc Refrigeration system with oil return means
US3837177A (en) * 1973-11-01 1974-09-24 Refrigeration Research Suction accumulator
US4199960A (en) * 1978-10-26 1980-04-29 Parker-Hannifin Corporation Accumulator for air conditioning systems
DE2931485A1 (en) * 1979-08-03 1981-02-05 Rudolf Oetjengerdes Heat recovery from ground water bore holes - using evaporator of refrigeration circuit with vertical copper cylinder surrounded by plastic heat transfer tube
BE887276A (en) * 1981-01-29 1981-05-14 Bruyn Bernard De HEAT PUMP
BE890012A (en) * 1981-08-19 1981-12-16 Dammekens Jozef HEAT PUMP OR HEAT GENERATOR
US4557115A (en) * 1983-05-25 1985-12-10 Mitsubishi Denki Kabushiki Kaisha Heat pump having improved compressor lubrication
US4530219A (en) * 1984-01-30 1985-07-23 Jerry Aleksandrow Self-regulated energy saving refrigeration circuit
SE446286B (en) * 1984-08-27 1986-08-25 Bengt Thoren HEAT PUMP WITH STRIPING DEVICES DISTRIBUTED BY THE STEERING PIPE
US4573327A (en) * 1984-09-21 1986-03-04 Robert Cochran Fluid flow control system
US4551990A (en) * 1984-10-18 1985-11-12 Honoshowsky John C Oil return apparatus for a refrigeration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516991A (en) * 2007-01-18 2010-05-20 アース トゥ エア システムズ,エルエルシー Multi-surface direct exchange geothermal heating / cooling system

Also Published As

Publication number Publication date
AT387650B (en) 1989-02-27
ATA178787A (en) 1988-07-15
FI891164A0 (en) 1989-03-10
EP0299947A1 (en) 1989-01-18
FI891164A (en) 1989-03-10
NO891066D0 (en) 1989-03-13
NO891066L (en) 1989-03-13
WO1989000666A1 (en) 1989-01-26

Similar Documents

Publication Publication Date Title
KR100623052B1 (en) Oil return from refrigeration system evaporator using hot oil as motive force
US6516627B2 (en) Flowing pool shell and tube evaporator
US2577598A (en) Water remover and air concentrator for refrigerating systems
US20110163175A1 (en) Compact heat pump using water as refrigerant
US5906714A (en) Method for treating emulsified liquids
CN203824178U (en) Freon barrel and pump combined unit
US3283532A (en) Refrigerating apparatus with oil separating means
US3021689A (en) Oil separator for refrigeration system
WO2010091350A2 (en) Oil return system and method for active charge control in an air conditioning system
US2461342A (en) Removal of liquid refrigerant from the supply line to a compressor
US3249438A (en) Combination filter and separator unit
US3012416A (en) Evaporative cooling apparatus
US4181577A (en) Refrigeration type water desalinisation units
EP0071062A1 (en) Multiple function thermodynamic fluid reservoir
KR20050100399A (en) Cooling system
US3304741A (en) Oil separator arrangement for a refrigeration system
JPH02500997A (en) heat pump
US2353859A (en) Refrigeration
US3318071A (en) Method and apparatus for dehydrating and separating liquids from gaseous fluids
US2363381A (en) Refrigeration
US2760355A (en) Method of returning oil from an element of a refrigeration system to the compressor thereof
US3837175A (en) Refrigeration system having improved heat transfer and reduced power requirements
US2042394A (en) Art of purging and rectifying oil in refrigerator systems
US4534182A (en) Oil collection/recirculation for vapor-compression refrigeration system
US2230892A (en) Purification of volatile refrigerants